FreeBSD Handbook
Table of Contents
	Preface
	I. Getting Started	1. Introduction	1.1. Synopsis
	1.2. Welcome to FreeBSD!	1.2.1. What Can FreeBSD Do?
	1.2.2. Who Uses FreeBSD?

	1.3. About the FreeBSD Project	1.3.1. A Brief History of FreeBSD
	1.3.2. FreeBSD Project Goals
	1.3.3. The FreeBSD Development Model
	1.3.4. Third Party Programs
	1.3.5. Additional Documentation

	2. Installing FreeBSD	2.1. Synopsis
	2.2. Minimum Hardware Requirements
	2.3. Pre-Installation Tasks	2.3.1. Prepare the Installation Media	2.3.1.1. Writing an Image File to USB

	2.4. Starting the Installation	2.4.1. Booting on i386™ and amd64
	2.4.2. Booting on PowerPC®
	2.4.3. Booting on SPARC64®
	2.4.4. FreeBSD Boot Menu

	2.5. Using bsdinstall	2.5.1. Selecting the Keymap Menu
	2.5.2. Setting the Hostname
	2.5.3. Selecting Components to Install
	2.5.4. Installing from the Network

	2.6. Allocating Disk Space	2.6.1. Designing the Partition Layout
	2.6.2. Guided Partitioning
	2.6.3. Manual Partitioning
	2.6.4. Root-on-ZFS Automatic Partitioning
	2.6.5. Shell Mode Partitioning

	2.7. Committing to the Installation
	2.8. Post-Installation	2.8.1. Setting the
	root
	Password
	2.8.2. Configuring Network Interfaces
	2.8.3. Setting the Time Zone
	2.8.4. Enabling Services
	2.8.5. Enabling Crash Dumps
	2.8.6. Add Users
	2.8.7. Final Configuration

	2.9. Troubleshooting
	2.10. Using the Live CD

	3. FreeBSD Basics	3.1. Synopsis
	3.2. Virtual Consoles and Terminals	3.2.1. Virtual Consoles
	3.2.2. Single User Mode
	3.2.3. Changing Console Video Modes

	3.3. Users and Basic Account Management	3.3.1. Account Types	3.3.1.1. System Accounts
	3.3.1.2. User Accounts
	3.3.1.3. The Superuser Account

	3.3.2. Managing Accounts	3.3.2.1. adduser
	3.3.2.2. rmuser
	3.3.2.3. chpass
	3.3.2.4. passwd
	3.3.2.5. pw

	3.3.3. Managing Groups

	3.4. Permissions	3.4.1. Symbolic Permissions
	3.4.2. FreeBSD File Flags
	3.4.3. The setuid,
	 setgid, and sticky
	 Permissions

	3.5. Directory Structure
	3.6. Disk Organization
	3.7. Mounting and Unmounting File Systems	3.7.1. The fstab File
	3.7.2. Using mount(8)
	3.7.3. Using umount(8)

	3.8. Processes and Daemons	3.8.1. Viewing Processes
	3.8.2. Killing Processes

	3.9. Shells	3.9.1. Changing the Shell
	3.9.2. Advanced Shell Techniques

	3.10. Text Editors
	3.11. Devices and Device Nodes
	3.12. Manual Pages	3.12.1. GNU Info Files

	4. Installing Applications: Packages and Ports	4.1. Synopsis
	4.2. Overview of Software Installation
	4.3. Finding Software
	4.4. Using pkg for Binary Package
 Management	4.4.1. Getting Started with
	pkg
	4.4.2. Obtaining Information About Installed Packages
	4.4.3. Installing and Removing Packages
	4.4.4. Upgrading Installed Packages
	4.4.5. Auditing Installed Packages
	4.4.6. Automatically Removing Unused Packages
	4.4.7. Restoring the Package Database
	4.4.8. Removing Stale Packages
	4.4.9. Modifying Package Metadata

	4.5. Using the Ports Collection	4.5.1. Installing Ports	4.5.1.1. Customizing Ports Installation

	4.5.2. Removing Installed Ports
	4.5.3. Upgrading Ports	4.5.3.1. Tools to Upgrade and Manage Ports
	4.5.3.2. Upgrading Ports Using
	 Portmaster
	4.5.3.3. Upgrading Ports Using Portupgrade

	4.5.4. Ports and Disk Space

	4.6. Building Packages with
 Poudriere	4.6.1. Initialize Jails and Port Trees
	4.6.2. Configuring pkg Clients to Use a Poudriere
	Repository

	4.7. Post-Installation Considerations
	4.8. Dealing with Broken Ports

	5. The X Window System	5.1. Synopsis
	5.2. Terminology
	5.3. Installing Xorg
	5.4. Xorg Configuration	5.4.1. Quick Start
	5.4.2. User Group for Accelerated Video
	5.4.3. Kernel Mode Setting (KMS)
	5.4.4. Configuration Files	5.4.4.1. Directory
	5.4.4.2. Single or Multiple Files

	5.4.5. Video Cards
	5.4.6. Monitors
	5.4.7. Input Devices	5.4.7.1. Keyboards
	5.4.7.2. Mice and Pointing Devices

	5.4.8. Manual Configuration

	5.5. Using Fonts in Xorg	5.5.1. Type1 Fonts
	5.5.2. TrueType® Fonts
	5.5.3. Anti-Aliased Fonts

	5.6. The X Display Manager	5.6.1. Configuring XDM
	5.6.2. Configuring Remote Access

	5.7. Desktop Environments	5.7.1. GNOME
	5.7.2. KDE
	5.7.3. Xfce

	5.8. Installing Compiz Fusion	5.8.1. Setting up the FreeBSD nVidia Driver
	5.8.2. Configuring xorg.conf for Desktop Effects
	5.8.3. Installing and Configuring Compiz Fusion

	5.9. Troubleshooting	5.9.1. Configuration with Intel® i810
	 Graphics Chipsets
	5.9.2. Adding a Widescreen Flatpanel to the Mix
	5.9.3. Troubleshooting Compiz Fusion

	II. Common Tasks	6. Desktop Applications	6.1. Synopsis
	6.2. Browsers	6.2.1. Firefox
	6.2.2. Opera
	6.2.3. Konqueror
	6.2.4. Chromium

	6.3. Productivity	6.3.1. Calligra
	6.3.2. AbiWord
	6.3.3. The GIMP
	6.3.4. Apache OpenOffice
	6.3.5. LibreOffice

	6.4. Document Viewers	6.4.1. Xpdf
	6.4.2. gv
	6.4.3. Geeqie
	6.4.4. ePDFView
	6.4.5. Okular

	6.5. Finance	6.5.1. GnuCash
	6.5.2. Gnumeric
	6.5.3. KMyMoney

	7. Multimedia	7.1. Synopsis
	7.2. Setting Up the Sound Card	7.2.1. Configuring a Custom Kernel with Sound Support
	7.2.2. Testing Sound
	7.2.3. Setting up Bluetooth Sound Devices
	7.2.4. Troubleshooting Sound
	7.2.5. Utilizing Multiple Sound Sources
	7.2.6. Setting Default Values for Mixer Channels

	7.3. MP3 Audio	7.3.1. MP3 Players
	7.3.2. Ripping CD Audio Tracks
	7.3.3. Encoding and Decoding MP3s

	7.4. Video Playback	7.4.1. Determining Video Capabilities	7.4.1.1. XVideo

	7.4.2. Ports and Packages Dealing with Video	7.4.2.1. MPlayer and
	 MEncoder
	7.4.2.2. The xine Video
	 Player
	7.4.2.3. The Transcode
	 Utilities

	7.5. TV Cards	7.5.1. Loading the Driver
	7.5.2. Useful Applications
	7.5.3. Troubleshooting

	7.6. MythTV	7.6.1. Hardware
	7.6.2. Setting up the MythTV Backend

	7.7. Image Scanners	7.7.1. Checking the Scanner
	7.7.2. SANE Configuration
	7.7.3. Scanner Permissions

	8. Configuring the FreeBSD Kernel	8.1. Synopsis
	8.2. Why Build a Custom Kernel?
	8.3. Finding the System Hardware
	8.4. The Configuration File
	8.5. Building and Installing a Custom Kernel
	8.6. If Something Goes Wrong

	9. Printing	9.1. Quick Start
	9.2. Printer Connections	9.2.1. Summary

	9.3. Common Page Description Languages	9.3.1. Converting PostScript® to Other
	PDLs
	9.3.2. Summary

	9.4. Direct Printing
	9.5. LPD (Line Printer Daemon)	9.5.1. Initial Setup
	9.5.2. Printing with lpr(1)
	9.5.3. Filters	9.5.3.1. Preventing Stairstepping on Plain Text Printers
	9.5.3.2. Fancy Plain Text on PostScript® Printers with
	 print/enscript
	9.5.3.3. Printing PostScript® to
	 PCL Printers
	9.5.3.4. Smart Filters
	9.5.3.5. Other Smart Filters

	9.5.4. Multiple Queues
	9.5.5. Monitoring and Controlling Printing	9.5.5.1. lpq(1)
	9.5.5.2. lprm(1)
	9.5.5.3. lpc(8)

	9.5.6. Shared Printers	9.5.6.1. Aliases
	9.5.6.2. Header Pages

	9.5.7. References

	9.6. Other Printing Systems	9.6.1. CUPS (Common UNIX® Printing
	System)
	9.6.2. HPLIP
	9.6.3. LPRng

	10. Linux® Binary Compatibility	10.1. Synopsis
	10.2. Configuring Linux® Binary Compatibility	10.2.1. Installing Additional Libraries Manually
	10.2.2. Installing Linux® ELF
	Binaries
	10.2.3. Installing a Linux® RPM Based
	Application
	10.2.4. Configuring the Hostname Resolver

	10.3. Advanced Topics

	III. System Administration	11. Configuration and Tuning	11.1. Synopsis
	11.2. Starting Services	11.2.1. Extended Application Configuration
	11.2.2. Using Services to Start Services

	11.3. Configuring cron(8)	11.3.1. Creating a User Crontab

	11.4. Managing Services in FreeBSD	11.4.1. Managing System-Specific Configuration

	11.5. Setting Up Network Interface Cards	11.5.1. Locating the Correct Driver	11.5.1.1. Using Windows® NDIS Drivers

	11.5.2. Configuring the Network Card
	11.5.3. Testing and Troubleshooting	11.5.3.1. Testing the Ethernet Card
	11.5.3.2. Troubleshooting

	11.6. Virtual Hosts
	11.7. Configuring System Logging	11.7.1. Configuring Local Logging
	11.7.2. Log Management and Rotation
	11.7.3. Configuring Remote Logging	11.7.3.1. Log Server Configuration
	11.7.3.2. Log Client Configuration
	11.7.3.3. Debugging Log Servers
	11.7.3.4. Security Considerations

	11.8. Configuration Files	11.8.1. /etc
	Layout
	11.8.2. Hostnames	11.8.2.1. /etc/resolv.conf
	11.8.2.2. /etc/hosts

	11.9. Tuning with sysctl(8)	11.9.1. sysctl.conf
	11.9.2. sysctl(8) Read-only

	11.10. Tuning Disks	11.10.1. Sysctl Variables	11.10.1.1. vfs.vmiodirenable
	11.10.1.2. vfs.write_behind
	11.10.1.3. vfs.hirunningspace
	11.10.1.4. vm.swap_idle_enabled
	11.10.1.5. hw.ata.wc
	11.10.1.6. SCSI_DELAY
	 (kern.cam.scsi_delay)

	11.10.2. Soft Updates	11.10.2.1. More Details About Soft Updates

	11.11. Tuning Kernel Limits	11.11.1. File/Process Limits	11.11.1.1. kern.maxfiles
	11.11.1.2. kern.ipc.soacceptqueue

	11.11.2. Network Limits	11.11.2.1. net.inet.ip.portrange.*
	11.11.2.2. TCP Bandwidth Delay Product

	11.11.3. Virtual Memory	11.11.3.1. kern.maxvnodes

	11.12. Adding Swap Space	11.12.1. Swap on a New Hard Drive or Existing Partition
	11.12.2. Creating a Swap File

	11.13. Power and Resource Management	11.13.1. Configuring ACPI
	11.13.2. Common Problems	11.13.2.1. Mouse Issues
	11.13.2.2. Suspend/Resume
	11.13.2.3. System Hangs
	11.13.2.4. Panics
	11.13.2.5. System Powers Up After Suspend or Shutdown
	11.13.2.6. BIOS Contains Buggy Bytecode

	11.13.3. Overriding the Default AML
	11.13.4. Getting and Submitting Debugging Info
	11.13.5. References

	12. The FreeBSD Booting Process	12.1. Synopsis
	12.2. FreeBSD Boot Process	12.2.1. The Boot Manager
	12.2.2. Stage One and Stage Two
	12.2.3. Stage Three
	12.2.4. Last Stage	12.2.4.1. Single-User Mode
	12.2.4.2. Multi-User Mode

	12.3. Configuring Boot Time Splash Screens
	12.4. Device Hints
	12.5. Shutdown Sequence

	13. Security	13.1. Synopsis
	13.2. Introduction	13.2.1. Preventing Logins
	13.2.2. Permitted Account Escalation
	13.2.3. Password Hashes
	13.2.4. Password Policy Enforcement
	13.2.5. Detecting Rootkits
	13.2.6. Binary Verification
	13.2.7. System Tuning for Security

	13.3. One-time Passwords	13.3.1. Initializing OPIE
	13.3.2. Insecure Connection Initialization
	13.3.3. Generating a Single One-time Password
	13.3.4. Generating Multiple One-time Passwords
	13.3.5. Restricting Use of UNIX® Passwords

	13.4. TCP Wrapper	13.4.1. Initial Configuration
	13.4.2. Advanced Configuration

	13.5. Kerberos	13.5.1. Setting up a Heimdal KDC
	13.5.2. Configuring a Server to Use
	Kerberos
	13.5.3. Configuring a Client to Use
	Kerberos
	13.5.4. MIT Differences
	13.5.5. Kerberos Tips, Tricks, and
	Troubleshooting
	13.5.6. Mitigating Kerberos
	Limitations
	13.5.7. Resources and Further Information

	13.6. OpenSSL	13.6.1. Generating Certificates
	13.6.2. Using Certificates

	13.7. VPN over
	IPsec	13.7.1. Configuring a VPN on FreeBSD

	13.8. OpenSSH	13.8.1. Using the SSH Client Utilities	13.8.1.1. Key-based Authentication
	13.8.1.2. SSH Tunneling

	13.8.2. Enabling the SSH Server
	13.8.3. SSH Server Security

	13.9. Access Control Lists	13.9.1. Enabling ACL Support
	13.9.2. Using ACLs

	13.10. Monitoring Third Party Security Issues
	13.11. FreeBSD Security Advisories	13.11.1. Format of a Security Advisory

	13.12. Process Accounting	13.12.1. Enabling and Utilizing Process Accounting

	13.13. Resource Limits	13.13.1. Configuring Login Classes
	13.13.2. Enabling and Configuring Resource Limits

	13.14. Shared Administration with Sudo	13.14.1. Logging Output

	14. Jails	14.1. Synopsis
	14.2. Terms Related to Jails
	14.3. Creating and Controlling Jails
	14.4. Fine Tuning and Administration	14.4.1. System Tools for Jail Tuning in FreeBSD
	14.4.2. High-Level Administrative Tools in the FreeBSD Ports
	Collection
	14.4.3. Keeping Jails Patched and up to Date

	14.5. Updating Multiple Jails	14.5.1. Creating the Template
	14.5.2. Creating Jails
	14.5.3. Upgrading

	14.6. Managing Jails with
	ezjail	14.6.1. Installing ezjail
	14.6.2. Initial Setup
	14.6.3. Creating and Starting a New Jail
	14.6.4. Updating Jails	14.6.4.1. Updating the Operating System
	14.6.4.2. Updating Ports

	14.6.5. Controlling Jails	14.6.5.1. Stopping and Starting Jails
	14.6.5.2. Archiving and Restoring Jails

	14.6.6. Full Example: BIND in a
	Jail

	15. Mandatory Access Control	15.1. Synopsis
	15.2. Key Terms
	15.3. Understanding MAC Labels	15.3.1. Label Configuration
	15.3.2. Predefined Labels
	15.3.3. Numeric Labels
	15.3.4. User Labels
	15.3.5. Network Interface Labels

	15.4. Planning the Security Configuration
	15.5. Available MAC Policies	15.5.1. The MAC See Other UIDs Policy
	15.5.2. The MAC BSD Extended Policy
	15.5.3. The MAC Interface Silencing Policy
	15.5.4. The MAC Port Access Control List Policy
	15.5.5. The MAC Partition Policy
	15.5.6. The MAC Multi-Level Security Module
	15.5.7. The MAC Biba Module
	15.5.8. The MAC Low-watermark Module

	15.6. User Lock Down
	15.7. Nagios in a MAC Jail	15.7.1. Create an Insecure User Class
	15.7.2. Configure Users
	15.7.3. Create the Contexts File
	15.7.4. Loader Configuration
	15.7.5. Testing the Configuration

	15.8. Troubleshooting the MAC Framework

	16. Security Event Auditing	16.1. Synopsis
	16.2. Key Terms
	16.3. Audit Configuration	16.3.1. Event Selection Expressions
	16.3.2. Configuration Files	16.3.2.1. The audit_control File
	16.3.2.2. The audit_user File

	16.4. Working with Audit Trails	16.4.1. Live Monitoring Using Audit Pipes
	16.4.2. Rotating and Compressing Audit Trail Files

	17. Storage	17.1. Synopsis
	17.2. Adding Disks
	17.3. Resizing and Growing Disks
	17.4. USB Storage Devices	17.4.1. Device Configuration
	17.4.2. Automounting Removable Media

	17.5. Creating and Using CD Media	17.5.1. Supported Devices
	17.5.2. Burning a CD
	17.5.3. Writing Data to an ISO File
	System
	17.5.4. Using Data CDs
	17.5.5. Duplicating Audio CDs

	17.6. Creating and Using DVD Media	17.6.1. Configuration
	17.6.2. Burning Data DVDs
	17.6.3. Burning a DVD-Video
	17.6.4. Using a DVD+RW
	17.6.5. Using a DVD-RW
	17.6.6. Multi-Session
	17.6.7. For More Information
	17.6.8. Using a DVD-RAM

	17.7. Creating and Using Floppy Disks
	17.8. Backup Basics	17.8.1. File System Backups
	17.8.2. Directory Backups
	17.8.3. Using Data Tapes for Backups
	17.8.4. Third-Party Backup Utilities
	17.8.5. Emergency Recovery

	17.9. Memory Disks	17.9.1. Attaching and Detaching Existing Images
	17.9.2. Creating a File- or Memory-Backed Memory Disk

	17.10. File System Snapshots
	17.11. Disk Quotas	17.11.1. Enabling Disk Quotas
	17.11.2. Setting Quota Limits
	17.11.3. Checking Quota Limits and Disk Usage
	17.11.4. Quotas over NFS

	17.12. Encrypting Disk Partitions	17.12.1. Disk Encryption with
	gbde
	17.12.2. Disk Encryption with geli

	17.13. Encrypting Swap	17.13.1. Configuring Encrypted Swap
	17.13.2. Encrypted Swap Verification

	17.14. Highly Available Storage
	(HAST)	17.14.1. HAST Operation
	17.14.2. HAST Configuration	17.14.2.1. Failover Configuration

	17.14.3. Troubleshooting	17.14.3.1. Recovering from the Split-brain Condition

	18. GEOM: Modular Disk Transformation Framework	18.1. Synopsis
	18.2. RAID0 - Striping
	18.3. RAID1 - Mirroring	18.3.1. Metadata Issues
	18.3.2. Creating a Mirror with Two New Disks
	18.3.3. Creating a Mirror with an Existing Drive
	18.3.4. Troubleshooting
	18.3.5. Recovering from Disk Failure

	18.4. RAID3 - Byte-level Striping with
	Dedicated Parity	18.4.1. Creating a Dedicated RAID3
	Array

	18.5. Software RAID Devices	18.5.1. Creating an Array
	18.5.2. Multiple Volumes
	18.5.3. Converting a Single Drive to a Mirror
	18.5.4. Inserting New Drives into the Array
	18.5.5. Removing Drives from the Array
	18.5.6. Stopping the Array
	18.5.7. Checking Array Status
	18.5.8. Deleting Arrays
	18.5.9. Deleting Unexpected Arrays

	18.6. GEOM Gate Network
	18.7. Labeling Disk Devices	18.7.1. Label Types and Examples

	18.8. UFS Journaling Through GEOM

	19. The Z File System (ZFS)	19.1. What Makes ZFS Different
	19.2. Quick Start Guide	19.2.1. Single Disk Pool
	19.2.2. RAID-Z
	19.2.3. Recovering RAID-Z
	19.2.4. Data Verification

	19.3. zpool Administration	19.3.1. Creating and Destroying Storage Pools
	19.3.2. Adding and Removing Devices
	19.3.3. Checking the Status of a Pool
	19.3.4. Clearing Errors
	19.3.5. Replacing a Functioning Device
	19.3.6. Dealing with Failed Devices
	19.3.7. Scrubbing a Pool
	19.3.8. Self-Healing
	19.3.9. Growing a Pool
	19.3.10. Importing and Exporting Pools
	19.3.11. Upgrading a Storage Pool
	19.3.12. Displaying Recorded Pool History
	19.3.13. Performance Monitoring
	19.3.14. Splitting a Storage Pool

	19.4. zfs Administration	19.4.1. Creating and Destroying Datasets
	19.4.2. Creating and Destroying Volumes
	19.4.3. Renaming a Dataset
	19.4.4. Setting Dataset Properties	19.4.4.1. Getting and Setting Share Properties

	19.4.5. Managing Snapshots	19.4.5.1. Creating Snapshots
	19.4.5.2. Comparing Snapshots
	19.4.5.3. Snapshot Rollback
	19.4.5.4. Restoring Individual Files from Snapshots

	19.4.6. Managing Clones
	19.4.7. Replication	19.4.7.1. Incremental Backups
	19.4.7.2. Sending Encrypted Backups over
	 SSH

	19.4.8. Dataset, User, and Group Quotas
	19.4.9. Reservations
	19.4.10. Compression
	19.4.11. Deduplication
	19.4.12. ZFS and Jails

	19.5. Delegated Administration	19.5.1. Delegating Dataset Creation
	19.5.2. Delegating Permission Delegation

	19.6. Advanced Topics	19.6.1. Tuning
	19.6.2. ZFS on i386	19.6.2.1. Memory
	19.6.2.2. Kernel Configuration
	19.6.2.3. Loader Tunables

	19.7. Additional Resources
	19.8. ZFS Features and Terminology

	20. Other File Systems	20.1. Synopsis
	20.2. Linux® File Systems	20.2.1. ext2

	21. Virtualization	21.1. Synopsis
	21.2. FreeBSD as a Guest on Parallels for
 Mac OS® X	21.2.1. Installing FreeBSD on Parallels/Mac OS® X
	21.2.2. Configuring FreeBSD on
	Parallels

	21.3. FreeBSD as a Guest on Virtual PC
 for Windows®	21.3.1. Installing FreeBSD on
	Virtual PC
	21.3.2. Configuring FreeBSD on Virtual
	 PC

	21.4. FreeBSD as a Guest on VMware Fusion
 for Mac OS®	21.4.1. Installing FreeBSD on
	VMware Fusion
	21.4.2. Configuring FreeBSD on VMware
	 Fusion

	21.5. FreeBSD as a Guest on VirtualBox™
	21.6. FreeBSD as a Host with
 VirtualBox	21.6.1. Installing VirtualBox™
	21.6.2. VirtualBox™ USB Support
	21.6.3. VirtualBox™ Host
	DVD/CD Access

	21.7. FreeBSD as a Host with
 bhyve	21.7.1. Preparing the Host
	21.7.2. Creating a FreeBSD Guest
	21.7.3. Creating a Linux® Guest
	21.7.4. Booting bhyve Virtual Machines
	with UEFI Firmware
	21.7.5. Graphical UEFI Framebuffer for
	bhyve Guests
	21.7.6. Using ZFS with
	bhyve Guests
	21.7.7. Virtual Machine Consoles
	21.7.8. Managing Virtual Machines
	21.7.9. Persistent Configuration

	21.8. FreeBSD as a Xen™-Host	21.8.1. Hardware Requirements for Xen™ Dom0
	21.8.2. Xen™ Dom0 Control Domain Setup
	21.8.3. Xen™ DomU Guest VM Configuration
	21.8.4. Troubleshooting	21.8.4.1. Host Boot Troubleshooting
	21.8.4.2. Guest Creation Troubleshooting

	22. Localization -
 i18n/L10n Usage and
 Setup	22.1. Synopsis
	22.2. Using Localization	22.2.1. Setting Locale for Login Shell	22.2.1.1. Login Classes Method	22.2.1.1.1. Utilities Which Change Login Classes

	22.2.1.2. Shell Startup File Method

	22.2.2. Console Setup
	22.2.3. Xorg Setup

	22.3. Finding i18n Applications
	22.4. Locale Configuration for Specific Languages	22.4.1. Russian Language (KOI8-R Encoding)
	22.4.2. Additional Language-Specific Resources

	23. Updating and Upgrading FreeBSD	23.1. Synopsis
	23.2. FreeBSD Update	23.2.1. The Configuration File
	23.2.2. Applying Security Patches
	23.2.3. Performing Major and Minor Version Upgrades	23.2.3.1. Custom Kernels with FreeBSD 9.X and Later
	23.2.3.2. Upgrading Packages After a Major Version
	 Upgrade

	23.2.4. System State Comparison

	23.3. Updating the Documentation Set	23.3.1. Updating Documentation from Source
	23.3.2. Updating Documentation from Ports

	23.4. Tracking a Development Branch	23.4.1. Using FreeBSD-CURRENT
	23.4.2. Using FreeBSD-STABLE

	23.5. Updating FreeBSD from Source	23.5.1. Quick Start
	23.5.2. Preparing for a Source Update
	23.5.3. Updating the Source
	23.5.4. Building from Source	23.5.4.1. Performing a Clean Build
	23.5.4.2. Setting the Number of Jobs
	23.5.4.3. Building Only the Kernel
	23.5.4.4. Building a Custom Kernel

	23.5.5. Installing the Compiled Code
	23.5.6. Completing the Update	23.5.6.1. Merging Configuration Files with
	 mergemaster(8)
	23.5.6.2. Checking for Outdated Files and Libraries
	23.5.6.3. Restarting After the Update

	23.6. Tracking for Multiple Machines

	24. DTrace	24.1. Synopsis
	24.2. Implementation Differences
	24.3. Enabling DTrace Support
	24.4. Using DTrace

	25. USB Device Mode / USB OTG	25.1. Synopsis
	25.2. USB Virtual Serial Ports	25.2.1. Configuring USB Device Mode Serial Ports
	25.2.2. Connecting to USB Device Mode Serial Ports from
	FreeBSD
	25.2.3. Connecting to USB Device Mode Serial Ports from
	macOS
	25.2.4. Connecting to USB Device Mode Serial Ports from
	Linux
	25.2.5. Connecting to USB Device Mode Serial Ports from
	Microsoft Windows 10

	25.3. USB Device Mode Network
 Interfaces
	25.4. USB Virtual Storage Device	25.4.1. Configuring USB Mass Storage Target Using the cfumass
	Startup Script
	25.4.2. Configuring USB Mass Storage Using Other Means

	IV. Network Communication	26. Serial Communications	26.1. Synopsis
	26.2. Serial Terminology and Hardware	26.2.1. Serial Cables and Ports
	26.2.2. Serial Port Configuration

	26.3. Terminals	26.3.1. Terminal Configuration
	26.3.2. Troubleshooting the Connection

	26.4. Dial-in Service	26.4.1. Modem Configuration
	26.4.2. Troubleshooting

	26.5. Dial-out Service	26.5.1. Using a Stock Hayes Modem
	26.5.2. Using AT Commands
	26.5.3. The @ Sign Does Not Work
	26.5.4. Dialing from the Command Line
	26.5.5. Setting the bps Rate
	26.5.6. Accessing a Number of Hosts Through a Terminal
	Server
	26.5.7. Using More Than One Line with
	tip
	26.5.8. Using the Force Character
	26.5.9. Upper Case Characters
	26.5.10. File Transfers with tip
	26.5.11. Using zmodem with
	tip?

	26.6. Setting Up the Serial Console	26.6.1. Quick Serial Console Configuration
	26.6.2. In-Depth Serial Console Configuration
	26.6.3. Setting a Faster Serial Port Speed
	26.6.4. Entering the DDB Debugger from the Serial Line

	27. PPP	27.1. Synopsis
	27.2. Configuring PPP	27.2.1. Basic Configuration
	27.2.2. Advanced Configuration	27.2.2.1. PAP and CHAP Authentication
	27.2.2.2. Using PPP Network Address
	 Translation Capability

	27.2.3. Final System Configuration
	27.2.4. Using ppp
	27.2.5. Configuring Dial-in Services

	27.3. Troubleshooting PPP Connections	27.3.1. Check the Device Nodes
	27.3.2. Connecting Manually
	27.3.3. Debugging

	27.4. Using PPP over Ethernet (PPPoE)	27.4.1. Using a PPPoE Service Tag
	27.4.2. PPPoE with a 3Com®
	HomeConnect® ADSL
	Modem Dual Link

	27.5. Using PPP over
 ATM (PPPoA)	27.5.1. Using mpd
	27.5.2. Using pptpclient

	28. Electronic Mail	28.1. Synopsis
	28.2. Mail Components
	28.3. Sendmail Configuration
	Files
	28.4. Changing the Mail Transfer Agent	28.4.1. Disable Sendmail
	28.4.2. Replace the Default MTA

	28.5. Troubleshooting
	28.6. Advanced Topics	28.6.1. Basic Configuration
	28.6.2. Mail for a Domain

	28.7. Setting Up to Send Only
	28.8. Using Mail with a Dialup Connection
	28.9. SMTP Authentication
	28.10. Mail User Agents	28.10.1. mail
	28.10.2. mutt
	28.10.3. alpine

	28.11. Using fetchmail
	28.12. Using procmail

	29. Network Servers	29.1. Synopsis
	29.2. The inetd
 Super-Server	29.2.1. Configuration File
	29.2.2. Command-Line Options
	29.2.3. Security Considerations

	29.3. Network File System (NFS)	29.3.1. Configuring the Server
	29.3.2. Configuring the Client
	29.3.3. Locking
	29.3.4. Automating Mounts with amd(8)
	29.3.5. Automating Mounts with autofs(5)

	29.4. Network Information System
 (NIS)	29.4.1. NIS Terms and Processes
	29.4.2. Machine Types
	29.4.3. Planning Considerations	29.4.3.1. Choosing a NIS Domain Name
	29.4.3.2. Physical Server Requirements

	29.4.4. Configuring the NIS Master
	Server	29.4.4.1. Initializing the NIS Maps
	29.4.4.2. Adding New Users

	29.4.5. Setting up a NIS Slave Server
	29.4.6. Setting Up an NIS Client
	29.4.7. NIS Security	29.4.7.1. Barring Some Users

	29.4.8. Using Netgroups
	29.4.9. Password Formats

	29.5. Lightweight Directory Access Protocol
	(LDAP)	29.5.1. LDAP Terminology and Structure
	29.5.2. Configuring an LDAP Server

	29.6. Dynamic Host Configuration Protocol
 (DHCP)	29.6.1. Configuring a DHCP Client
	29.6.2. Installing and Configuring a DHCP
	Server

	29.7. Domain Name System (DNS)	29.7.1. Reasons to Run a Name Server
	29.7.2. DNS Server Configuration

	29.8. Apache HTTP Server	29.8.1. Configuring and Starting Apache
	29.8.2. Virtual Hosting
	29.8.3. Apache Modules	29.8.3.1. mod_ssl
	29.8.3.2. mod_perl
	29.8.3.3. mod_php

	29.8.4. Dynamic Websites	29.8.4.1. Django
	29.8.4.2. Ruby on Rails

	29.9. File Transfer Protocol (FTP)	29.9.1. Configuration

	29.10. File and Print Services for Microsoft® Windows® Clients
 (Samba)	29.10.1. Server Configuration	29.10.1.1. Global Settings
	29.10.1.2. Security Settings
	29.10.1.3. Samba Users

	29.10.2. Starting Samba

	29.11. Clock Synchronization with NTP	29.11.1. NTP Configuration
	29.11.2. Using NTP with a
	PPP Connection

	29.12. iSCSI Initiator and Target
 Configuration	29.12.1. Configuring an iSCSI Target	29.12.1.1. Authentication

	29.12.2. Configuring an iSCSI Initiator	29.12.2.1. Connecting to a Target Without a Configuration
	 File
	29.12.2.2. Connecting to a Target with a Configuration
	 File

	30. Firewalls	30.1. Synopsis
	30.2. Firewall Concepts
	30.3. PF	30.3.1. Enabling PF
	30.3.2. PF Rulesets	30.3.2.1. A Simple Gateway with NAT
	30.3.2.2. Creating an FTP Proxy
	30.3.2.3. Managing ICMP	30.3.2.3.1. Path MTU Discovery

	30.3.2.4. Using Tables
	30.3.2.5. Using Overload Tables to Protect
	 SSH
	30.3.2.6. Protecting Against SPAM
	30.3.2.7. Network Hygiene
	30.3.2.8. Handling Non-Routable Addresses

	30.3.3. Enabling ALTQ

	30.4. IPFW	30.4.1. Enabling IPFW
	30.4.2. IPFW Rule Syntax
	30.4.3. Example Ruleset
	30.4.4. Configuring NAT	30.4.4.1. Port Redirection
	30.4.4.2. Address Redirection

	30.4.5. The IPFW Command	30.4.5.1. Logging Firewall Messages
	30.4.5.2. Building a Rule Script

	30.4.6. IPFW Kernel Options

	30.5. IPFILTER (IPF)	30.5.1. Enabling IPF
	30.5.2. IPF Rule Syntax
	30.5.3. Example Ruleset
	30.5.4. Configuring NAT
	30.5.5. Viewing IPF Statistics
	30.5.6. IPF Logging

	31. Advanced Networking	31.1. Synopsis
	31.2. Gateways and Routes	31.2.1. Routing Basics
	31.2.2. Configuring a Router with Static Routes
	31.2.3. Troubleshooting
	31.2.4. Multicast Considerations

	31.3. Wireless Networking	31.3.1. Wireless Networking Basics
	31.3.2. Quick Start
	31.3.3. Basic Setup	31.3.3.1. Kernel Configuration
	31.3.3.2. Setting the Correct Region

	31.3.4. Infrastructure Mode	31.3.4.1. FreeBSD Clients	31.3.4.1.1. How to Find Access Points
	31.3.4.1.2. Basic Settings	31.3.4.1.2.1. Selecting an Access Point
	31.3.4.1.2.2. Authentication
	31.3.4.1.2.3. Getting an IP Address with
	 DHCP
	31.3.4.1.2.4. Static IP Address

	31.3.4.1.3. WPA	31.3.4.1.3.1. WPA-PSK
	31.3.4.1.3.2. WPA with
	 EAP-TLS
	31.3.4.1.3.3. WPA with
	 EAP-TTLS
	31.3.4.1.3.4. WPA with
	 EAP-PEAP

	31.3.4.1.4. WEP

	31.3.5. Ad-hoc Mode
	31.3.6. FreeBSD Host Access Points	31.3.6.1. Basic Settings
	31.3.6.2. Host-based Access Point Without Authentication or
	 Encryption
	31.3.6.3. WPA2 Host-based Access Point	31.3.6.3.1. WPA2-PSK

	31.3.6.4. WEP Host-based Access Point

	31.3.7. Using Both Wired and Wireless Connections
	31.3.8. Troubleshooting

	31.4. USB Tethering
	31.5. Bluetooth	31.5.1. Loading Bluetooth Support
	31.5.2. Finding Other Bluetooth Devices
	31.5.3. Device Pairing
	31.5.4. Network Access with
	PPP Profiles
	31.5.5. Bluetooth Protocols	31.5.5.1. Logical Link Control and Adaptation Protocol
	 (L2CAP)
	31.5.5.2. Radio Frequency Communication
	 (RFCOMM)
	31.5.5.3. Service Discovery Protocol
	 (SDP)
	31.5.5.4. OBEX Object Push
	 (OPUSH)
	31.5.5.5. Serial Port Profile (SPP)

	31.5.6. Troubleshooting

	31.6. Bridging	31.6.1. Enabling the Bridge
	31.6.2. Enabling Spanning Tree
	31.6.3. Bridge Interface Parameters
	31.6.4. SNMP Monitoring

	31.7. Link Aggregation and Failover	31.7.1. Configuration Examples

	31.8. Diskless Operation with PXE	31.8.1. Setting Up the PXE
	 Environment
	31.8.2. Configuring the DHCP Server
	31.8.3. Debugging PXE Problems

	31.9. IPv6	31.9.1. Background on IPv6 Addresses
	31.9.2. Configuring IPv6
	31.9.3. Connecting to a Provider
	31.9.4. Router Advertisement and Host Auto Configuration
	31.9.5. IPv6 and IPv6
	Address Mapping

	31.10. Common Address Redundancy Protocol
	(CARP)	31.10.1. Using CARP on FreeBSD 10 and
	Later
	31.10.2. Using CARP on FreeBSD 9 and
	Earlier

	31.11. VLANs

	V. Appendices	A. Obtaining FreeBSD	A.1. CD and
 DVD Sets
	A.2. FTP Sites
	A.3. Using Subversion	A.3.1. Introduction
	A.3.2. Root SSL Certificates
	A.3.3. Svnlite
	A.3.4. Installation
	A.3.5. Running Subversion
	A.3.6. Subversion Mirror
	Sites
	A.3.7. For More Information

	A.4. Using rsync

	B. Bibliography	B.1. Books Specific to FreeBSD
	B.2. Users' Guides
	B.3. Administrators' Guides
	B.4. Programmers' Guides
	B.5. Operating System Internals
	B.6. Security Reference
	B.7. Hardware Reference
	B.8. UNIX® History
	B.9. Periodicals, Journals, and Magazines

	C. Resources on the Internet	C.1. Websites
	C.2. Mailing Lists	C.2.1. List Summary
	C.2.2. How to Subscribe
	C.2.3. List Charters
	C.2.4. Filtering on the Mailing Lists

	C.3. Usenet Newsgroups	C.3.1. BSD Specific Newsgroups
	C.3.2. Other UNIX® Newsgroups of Interest
	C.3.3. X Window System

	C.4. Official Mirrors

	D. OpenPGP Keys	D.1. Officers	D.1.1. Security Officer Team <security-officer@FreeBSD.org>
	D.1.2. Security Team Secretary <secteam-secretary@FreeBSD.org>
	D.1.3. Core Team Secretary <core-secretary@FreeBSD.org>
	D.1.4. Ports Management Team Secretary <portmgr-secretary@FreeBSD.org>

	FreeBSD Glossary
	Index

List of Figures
	2.1. FreeBSD Boot Loader Menu
	2.2. FreeBSD Boot Options Menu
	2.3. Welcome Menu
	2.4. Keymap Selection
	2.5. Selecting Keyboard Menu
	2.6. Enhanced Keymap Menu
	2.7. Setting the Hostname
	2.8. Selecting Components to Install
	2.9. Installing from the Network
	2.10. Choosing a Mirror
	2.11. Partitioning Choices on FreeBSD 10.x and Higher
	2.12. Selecting from Multiple Disks
	2.13. Selecting Entire Disk or Partition
	2.14. Review Created Partitions
	2.15. Manually Create Partitions
	2.16. Manually Create Partitions
	2.17. Manually Create Partitions
	2.18. ZFS Partitioning Menu
	2.19. ZFS Pool Type
	2.20. Disk Selection
	2.21. Invalid Selection
	2.22. Analyzing a Disk
	2.23. Disk Encryption Password
	2.24. Last Chance
	2.25. Final Confirmation
	2.26. Fetching Distribution Files
	2.27. Verifying Distribution Files
	2.28. Extracting Distribution Files
	2.29. Setting the root Password
	2.30. Choose a Network Interface
	2.31. Scanning for Wireless Access Points
	2.32. Choosing a Wireless Network
	2.33. WPA2 Setup
	2.34. Choose IPv4 Networking
	2.35. Choose IPv4 DHCP
	 Configuration
	2.36. IPv4 Static Configuration
	2.37. Choose IPv6 Networking
	2.38. Choose IPv6 SLAAC Configuration
	2.39. IPv6 Static Configuration
	2.40. DNS Configuration
	2.41. Select Local or UTC Clock
	2.42. Select a Region
	2.43. Select a Country
	2.44. Select a Time Zone
	2.45. Confirm Time Zone
	2.46. Selecting Additional Services to Enable
	2.47. Enabling Crash Dumps
	2.48. Add User Accounts
	2.49. Enter User Information
	2.50. Exit User and Group Management
	2.51. Final Configuration
	2.52. Manual Configuration
	2.53. Complete the Installation
	31.1. PXE Booting Process with
	 NFS Root Mount

List of Tables
	2.1. Partitioning Schemes
	3.1. Utilities for Managing User Accounts
	3.2. UNIX® Permissions
	3.3. Disk Device Names
	3.4. Common Environment Variables
	5.1. XDM Configuration Files
	7.1. Common Error Messages
	9.1. Output PDLs
	12.1. Loader Built-In Commands
	12.2. Kernel Interaction During Boot
	13.1. Login Class Resource Limits
	16.1. Default Audit Event Classes
	16.2. Prefixes for Audit Event Classes
	22.1. Common Language and Country Codes
	22.2. Defined Terminal Types for Character Sets
	22.3. Available Console from Ports Collection
	22.4. Available Input Methods
	23.1. FreeBSD Versions and Repository Paths
	26.1. RS-232C Signal Names
	26.2. DB-25 to DB-25 Null-Modem Cable
	26.3. DB-9 to DB-9 Null-Modem Cable
	26.4. DB-9 to DB-25 Null-Modem Cable
	29.1. NIS Terminology
	29.2. Additional Users
	29.3. Additional Systems
	29.4. DNS Terminology
	30.1. Useful pfctl Options
	31.1. Commonly Seen Routing Table Flags
	31.2. Station Capability Codes
	31.3. Reserved IPv6 Addresses

List of Examples
	2.1. Creating Traditional Split File System
	 Partitions
	3.1. Install a Program As the Superuser
	3.2. Adding a User on FreeBSD
	3.3. rmuser Interactive Account
	 Removal
	3.4. Using chpass as
	 Superuser
	3.5. Using chpass as Regular
	 User
	3.6. Changing Your Password
	3.7. Changing Another User's Password as the
	 Superuser
	3.8. Adding a Group Using pw(8)
	3.9. Adding User Accounts to a New Group Using
	 pw(8)
	3.10. Adding a New Member to a Group Using pw(8)
	3.11. Using id(1) to Determine Group Membership
	3.12. Sample Disk, Slice, and Partition Names
	3.13. Conceptual Model of a Disk
	5.1. Select Intel® Video Driver in a File
	5.2. Select Radeon Video Driver in a File
	5.3. Select VESA Video Driver in a
		File
	5.4. Select scfb Video Driver in a
		File
	5.5. Set Screen Resolution in a File
	5.6. Manually Setting Monitor Frequencies
	5.7. Setting a Keyboard Layout
	5.8. Setting Multiple Keyboard Layouts
	5.9. Enabling Keyboard Exit from X
	5.10. Setting the Number of Mouse Buttons
	11.1. Sample Log Server Configuration
	11.2. Creating a Swap File on
	 FreeBSD 10.X and Later
	11.3. Creating a Swap File on
	 FreeBSD 9.X and Earlier
	12.1. boot0 Screenshot
	12.2. boot2 Screenshot
	12.3. Configuring an Insecure Console in
	 /etc/ttys
	13.1. Create a Secure Tunnel for
	 SMTP
	13.2. Secure Access of a POP3
	 Server
	13.3. Bypassing a Firewall
	14.1. mergemaster(8) on Untrusted Jail
	14.2. mergemaster(8) on Trusted Jail
	14.3. Running BIND in a Jail
	17.1. Using dump over
	 ssh
	17.2. Using dump over
	 ssh with RSH
	 Set
	17.3. Backing Up the Current Directory with
	 tar
	17.4. Restoring Up the Current Directory with
	 tar
	17.5. Using ls and cpio
	 to Make a Recursive Backup of the Current Directory
	17.6. Backing Up the Current Directory with
	 pax
	18.1. Labeling Partitions on the Boot Disk
	23.1. Increasing the Number of Build Jobs
	26.1. Configuring Terminal Entries
	29.1. Reloading the inetd
	 Configuration File
	29.2. Mounting an Export with
	 amd
	29.3. Mounting an Export with autofs(5)
	29.4. Sample /etc/ntp.conf
	31.1. LACP Aggregation with a Cisco®
	 Switch
	31.2. Failover Mode
	31.3. Failover Mode Between Ethernet and Wireless
	 Interfaces

FreeBSD Handbook
The FreeBSD Documentation Project

Revision: 53138Copyright © 1995-2019 The FreeBSD Documentation Project
CopyrightLegal NoticeLast modified on 2019-06-11 18:45:23 by bcr.Abstract
Welcome to FreeBSD! This handbook covers the installation
	and day to day use of
	FreeBSD 12.0-RELEASE and
	FreeBSD 11.2-RELEASE. This book
	is the result of ongoing work by many individuals. Some
	sections might be outdated. Those interested in helping to
	update and expand this document should send email to the
	FreeBSD documentation project mailing list.
The latest version of this book is available from the
	FreeBSD web
	 site. Previous versions can be obtained from https://docs.FreeBSD.org/doc/.
	The book can be downloaded in a variety of formats and
	compression options from the FreeBSD
	 FTP server or one of the numerous
	mirror sites. Printed
	copies can be purchased at the
	FreeBSD
	 Mall. Searches can be performed on the handbook and
	other documents on the
	search
	 page.

 [

	 Split HTML
	
 /
 Single HTML
]

Part I. Getting Started
This part of the handbook is for users and administrators
	who are new to FreeBSD. These chapters:
	Introduce FreeBSD.

	Guide readers through the installation process.

	Teach UNIX® basics and fundamentals.

	Show how to install the wealth of third party
	 applications available for FreeBSD.

	Introduce X, the UNIX® windowing system, and detail
	 how to configure a desktop environment that makes users
	 more productive.

The number of forward references in the text have been
	kept to a minimum so that this section can be read from front
	to back with minimal page flipping.

Chapter 1. Introduction
Restructured, reorganized, and parts rewritten
	 by Jim Mock. 1.1. Synopsis
Thank you for your interest in FreeBSD! The following chapter
 covers various aspects of the FreeBSD Project, such as its
 history, goals, development model, and so on.
After reading this chapter, you will know:
	How FreeBSD relates to other computer operating
	 systems.

	The history of the FreeBSD Project.

	The goals of the FreeBSD Project.

	The basics of the FreeBSD open-source development
	 model.

	And of course: where the name “FreeBSD” comes
	 from.

1.2. Welcome to FreeBSD!
FreeBSD is an Open Source, standards-compliant Unix-like
 operating system for x86 (both 32 and 64 bit), ARM®, AArch64,
 RISC-V®, MIPS®, POWER®, PowerPC®, and Sun UltraSPARC®
 computers. It provides all the features that are
 nowadays taken for granted, such as preemptive multitasking,
 memory protection, virtual memory, multi-user facilities, SMP
 support, all the Open Source development tools for different
 languages and frameworks, and desktop features centered around
 X Window System, KDE, or GNOME. Its particular strengths
 are:
	Liberal Open Source license,
	 which grants you rights to freely modify and extend
	 its source code and incorporate it in both Open Source
	 projects and closed products without imposing
	 restrictions typical to copyleft licenses, as well
	 as avoiding potential license incompatibility
	 problems.

	Strong TCP/IP networking
	 - FreeBSD
	 implements industry standard protocols with ever
	 increasing performance and scalability. This makes
	 it a good match in both server, and routing/firewalling
	 roles - and indeed many companies and vendors use it
	 precisely for that purpose.

	Fully integrated OpenZFS support,
	 including root-on-ZFS, ZFS Boot Environments, fault
	 management, administrative delegation, support for jails,
	 FreeBSD specific documentation, and system installer
	 support.

	Extensive security features,
	 from the Mandatory Access Control framework to Capsicum
	 capability and sandbox mechanisms.

	Over 30 thousand prebuilt
	 packages for all supported architectures,
	 and the Ports Collection which makes it easy to build your
	 own, customized ones.

	Documentation - in addition
	 to Handbook and books from different authors that cover
	 topics ranging from system administration to kernel
	 internals, there are also the man(1) pages, not only
	 for userspace daemons, utilities, and configuration files,
	 but also for kernel driver APIs (section 9) and individual
	 drivers (section 4).

	Simple and consistent repository structure
	 and build system - FreeBSD uses a single
	 repository for all of its components, both kernel and
	 userspace. This, along with an unified and easy to
	 customize build system and a well thought out development
	 process makes it easy to integrate FreeBSD with build
	 infrastructure for your own product.

	Staying true to Unix philosophy,
	 preferring composability instead of monolithic “all
	 in one” daemons with hardcoded behavior.

	
	 Binary compatibility with Linux,
	 which makes it possible to run many Linux binaries without
	 the need for virtualisation.

FreeBSD is based on the 4.4BSD-Lite release from Computer
 Systems Research Group (CSRG) at the University of California at Berkeley, and
 carries on the distinguished tradition of BSD systems
 development. In addition to the fine work provided by CSRG,
 the FreeBSD Project has put in many thousands of man-hours
 into extending the functionality and fine-tuning the system
 for maximum performance and reliability
 in real-life load situations. FreeBSD offers performance and
 reliability on par with other Open Source and commercial
 offerings, combined with cutting-edge features not available
 anywhere else.
1.2.1. What Can FreeBSD Do?
The applications to which FreeBSD can be put are truly
	limited only by your own imagination. From software
	development to factory automation, inventory control to
	azimuth correction of remote satellite antennae; if it can be
	done with a commercial UNIX® product then it is more than
	likely that you can do it with FreeBSD too! FreeBSD also benefits
	significantly from literally thousands of high quality
	applications developed by research centers and universities
	around the world, often available at little to no cost.
Because the source code for FreeBSD itself is generally
	available, the system can also be customized to an almost
	unheard of degree for special applications or projects, and in
	ways not generally possible with operating systems from most
	major commercial vendors. Here is just a sampling of some of
	the applications in which people are currently using
	FreeBSD:
	Internet Services: The robust
	 TCP/IP networking built into FreeBSD makes it an ideal
	 platform for a variety of Internet services such
	 as:
	Web servers

	IPv4 and IPv6 routing

	Firewalls
		and NAT
		(“IP masquerading”) gateways

	FTP servers

	
		
		
		Email servers

	And more...

	Education: Are you a student of
	 computer science or a related engineering field? There
	 is no better way of learning about operating systems,
	 computer architecture and networking than the hands on,
	 under the hood experience that FreeBSD can provide. A number
	 of freely available CAD, mathematical and graphic design
	 packages also make it highly useful to those whose primary
	 interest in a computer is to get
	 other work done!

	Research: With source code for
	 the entire system available, FreeBSD is an excellent platform
	 for research in operating systems as well as other
	 branches of computer science. FreeBSD's freely available
	 nature also makes it possible for remote groups to
	 collaborate on ideas or shared development without having
	 to worry about special licensing agreements or limitations
	 on what may be discussed in open forums.

	Networking: Need a new
	 router? A name server (DNS)? A firewall to keep people out of your
	 internal network? FreeBSD can easily turn that unused
	 PC sitting in the corner into an advanced router with
	 sophisticated packet-filtering capabilities.

	Embedded: FreeBSD makes an
	 excellent platform to build embedded systems upon.
	
	 With support for the ARM®, MIPS® and PowerPC®
	 platforms, coupled with a robust network stack, cutting
	 edge features and the permissive BSD
	 license FreeBSD makes an excellent foundation for
	 building embedded routers, firewalls, and other
	 devices.

	
	
	
	
	 Desktop: FreeBSD makes a
	 fine choice for an inexpensive desktop solution
	 using the freely available X11 server.
	 FreeBSD offers a choice from many open-source desktop
	 environments, including the standard
	 GNOME and
	 KDE graphical user interfaces.
	 FreeBSD can even boot “diskless” from
	 a central server, making individual workstations
	 even cheaper and easier to administer.

	Software Development: The basic
	 FreeBSD system comes with a full complement of development
	 tools including a full
	 C/C++
	 compiler and debugger suite.
	 Support for many other languages are also available
	 through the ports and packages collection.

FreeBSD is available to download free of charge, or can be
	obtained on either CD-ROM or DVD. Please see
	Appendix A, Obtaining FreeBSD for more information about obtaining
	FreeBSD.
1.2.2. Who Uses FreeBSD?
FreeBSD has been known for its web serving capabilities -
	sites that run on FreeBSD include
	Hacker News,
	Netcraft,
	NetEase,
	Netflix,
	Sina,
	Sony Japan,
	Rambler,
	Yahoo!, and
	Yandex.

FreeBSD's advanced features, proven security, predictable
	release cycle, and permissive license have led to its use as a
	platform for building many commercial and open source
	appliances, devices, and products. Many of the world's
	largest IT companies use FreeBSD:
	Apache
	 - The Apache Software Foundation runs most of
	 its public facing infrastructure, including possibly one
	 of the largest SVN repositories in the world with over 1.4
	 million commits, on FreeBSD.

	Apple
	 - OS X borrows heavily from FreeBSD for the
	 network stack, virtual file system, and many userland
	 components. Apple iOS also contains elements borrowed
	 from FreeBSD.

	Cisco
	 - IronPort network security and anti-spam
	 appliances run a modified FreeBSD kernel.

	Citrix
	 - The NetScaler line of security appliances
	 provide layer 4-7 load balancing, content caching,
	 application firewall, secure VPN, and mobile cloud network
	 access, along with the power of a FreeBSD shell.

	Dell EMC Isilon
	 - Isilon's enterprise storage appliances
	 are based on FreeBSD. The extremely liberal FreeBSD license
	 allowed Isilon to integrate their intellectual property
	 throughout the kernel and focus on building their product
	 instead of an operating system.

	Dell
	 KACE
	 - The KACE system management appliances run
	 FreeBSD because of its reliability, scalability, and the
	 community that supports its continued development.

	iXsystems
	 - The TrueNAS line of unified storage
	 appliances is based on FreeBSD. In addition to their
	 commercial products, iXsystems also manages development of
	 the open source projects TrueOS and FreeNAS.

	Juniper
	 - The JunOS operating system that powers all
	 Juniper networking gear (including routers, switches,
	 security, and networking appliances) is based on FreeBSD.
	 Juniper is one of many vendors that showcases the
	 symbiotic relationship between the project and vendors of
	 commercial products. Improvements generated at Juniper
	 are upstreamed into FreeBSD to reduce the complexity of
	 integrating new features from FreeBSD back into JunOS in the
	 future.

	McAfee
	 - SecurOS, the basis of McAfee enterprise
	 firewall products including Sidewinder is based on
	 FreeBSD.

	NetApp
	 - The Data ONTAP GX line of storage
	 appliances are based on FreeBSD. In addition, NetApp has
	 contributed back many features, including the new BSD
	 licensed hypervisor, bhyve.

	Netflix
	 - The OpenConnect appliance that Netflix
	 uses to stream movies to its customers is based on FreeBSD.
	 Netflix has made extensive contributions to the codebase
	 and works to maintain a zero delta from mainline FreeBSD.
	 Netflix OpenConnect appliances are responsible for
	 delivering more than 32% of all Internet traffic in North
	 America.

	Sandvine
	 - Sandvine uses FreeBSD as the basis of their
	 high performance real-time network processing platforms
	 that make up their intelligent network policy control
	 products.

	Sony
	 - The PlayStation 4 gaming console runs a
	 modified version of FreeBSD.

	Sophos
	 - The Sophos Email Appliance product is based
	 on a hardened FreeBSD and scans inbound mail for spam and
	 viruses, while also monitoring outbound mail for malware
	 as well as the accidental loss of sensitive
	 information.

	Spectra
	 Logic
	 - The nTier line of archive grade storage
	 appliances run FreeBSD and OpenZFS.

	Stormshield
	 - Stormshield Network Security appliances
	 are based on a hardened version of FreeBSD. The BSD license
	 allows them to integrate their own intellectual property with
	 the system while returning a great deal of interesting
	 development to the community.

	The Weather
	 Channel
	 - The IntelliStar appliance that is installed
	 at each local cable provider's headend and is responsible
	 for injecting local weather forecasts into the cable TV
	 network's programming runs FreeBSD.

	Verisign
	 - Verisign is responsible for operating the
	 .com and .net root domain registries as well as the
	 accompanying DNS infrastructure. They rely on a number of
	 different network operating systems including FreeBSD to
	 ensure there is no common point of failure in their
	 infrastructure.

	Voxer
	 - Voxer powers their mobile voice messaging
	 platform with ZFS on FreeBSD. Voxer switched from a Solaris
	 derivative to FreeBSD because of its superior documentation,
	 larger and more active community, and more developer
	 friendly environment. In addition to critical features
	 like ZFS and DTrace, FreeBSD also offers
	 TRIM support for ZFS.

	WhatsApp
	 - When WhatsApp needed a platform that would
	 be able to handle more than 1 million concurrent TCP
	 connections per server, they chose FreeBSD. They then
	 proceeded to scale past 2.5 million connections per
	 server.

	Wheel
	 Systems
	 - The FUDO security appliance allows
	 enterprises to monitor, control, record, and audit
	 contractors and administrators who work on their systems.
	 Based on all of the best security features of FreeBSD
	 including ZFS, GELI, Capsicum, HAST, and
	 auditdistd.

FreeBSD has also spawned a number of related open source
	projects:
	BSD
	 Router
	 - A FreeBSD based replacement for large
	 enterprise routers designed to run on standard PC
	 hardware.

	FreeNAS
	 - A customized FreeBSD designed to be used as a
	 network file server appliance. Provides a python based
	 web interface to simplify the management of both the UFS
	 and ZFS file systems. Includes support for NFS, SMB/CIFS,
	 AFP, FTP, and iSCSI. Includes an extensible plugin system
	 based on FreeBSD jails.

	GhostBSD
	 - A desktop oriented distribution of FreeBSD
	 bundled with the Gnome desktop environment.

	mfsBSD
	 - A toolkit for building a FreeBSD system image
	 that runs entirely from memory.

	NAS4Free
	 - A file server distribution based on FreeBSD
	 with a PHP powered web interface.

	OPNSense
	 - OPNsense is an open source, easy-to-use and
	 easy-to-build FreeBSD based firewall and routing platform.
	 OPNsense includes most of the features available in
	 expensive commercial firewalls, and more in many cases.
	 It brings the rich feature set of commercial offerings
	 with the benefits of open and verifiable sources.

	TrueOS
	 - A customized version of FreeBSD geared towards
	 desktop users with graphical utilities to exposing the
	 power of FreeBSD to all users. Designed to ease the
	 transition of Windows and OS X users.

	pfSense
	 - A firewall distribution based on FreeBSD with
	 a huge array of features and extensive IPv6
	 support.

	ZRouter
	 - An open source alternative firmware for
	 embedded devices based on FreeBSD. Designed to replace the
	 proprietary firmware on off-the-shelf routers.

A list of
	 testimonials from companies basing their products and
	 services on FreeBSD can be found at the FreeBSD
	 Foundation website. Wikipedia also maintains a list
	 of products based on FreeBSD.
1.3. About the FreeBSD Project
The following section provides some background information
 on the project, including a brief history, project goals, and
 the development model of the project.
1.3.1. A Brief History of FreeBSD
The FreeBSD Project had its genesis in the early part
	of 1993, partially as an outgrowth of the Unofficial
	386BSDPatchkit by the patchkit's last 3 coordinators: Nate
	Williams, Rod Grimes and Jordan Hubbard.
The original goal was to produce an intermediate snapshot
	of 386BSD in order to fix a number of problems with it that
	the patchkit mechanism just was not capable of solving. The
	early working title for the project was 386BSD 0.5 or 386BSD
	Interim in reference of that fact.
386BSD was Bill Jolitz's operating system, which had been
	up to that point suffering rather severely from almost a
	year's worth of neglect. As the patchkit swelled ever more
	uncomfortably with each passing day, they decided to assist
	Bill by providing this interim “cleanup”
	snapshot. Those plans came to a rude halt when Bill Jolitz
	suddenly decided to withdraw his sanction from the project
	without any clear indication of what would be done
	instead.
The trio thought that the goal remained worthwhile, even
	without Bill's support, and so they adopted the name "FreeBSD"
	coined by David Greenman. The initial objectives were set
	after consulting with the system's current users and, once it
	became clear that the project was on the road to perhaps even
	becoming a reality, Jordan contacted Walnut Creek CDROM with
	an eye toward improving FreeBSD's distribution channels for those
	many unfortunates without easy access to the Internet. Walnut
	Creek CDROM not only supported the idea of distributing FreeBSD
	on CD but also went so far as to provide the project with a
	machine to work on and a fast Internet connection. Without
	Walnut Creek CDROM's almost unprecedented degree of faith in
	what was, at the time, a completely unknown project, it is
	quite unlikely that FreeBSD would have gotten as far, as fast, as
	it has today.
The first CD-ROM (and general net-wide) distribution was
	FreeBSD 1.0, released in December of 1993. This was based
	on the 4.3BSD-Lite (“Net/2”) tape from U.C.
	Berkeley, with many components also provided by 386BSD and the
	Free Software Foundation. It was a fairly reasonable success
	for a first offering, and they followed it with the highly
	successful FreeBSD 1.1 release in May of 1994.
Around this time, some rather unexpected storm clouds
	formed on the horizon as Novell and U.C. Berkeley settled
	their long-running lawsuit over the legal status of the
	Berkeley Net/2 tape. A condition of that settlement was U.C.
	Berkeley's concession that large parts of Net/2 were
	“encumbered” code and the property of Novell, who
	had in turn acquired it from AT&T some time previously.
	What Berkeley got in return was Novell's
	“blessing” that the 4.4BSD-Lite release, when
	it was finally released, would be declared unencumbered and
	all existing Net/2 users would be strongly encouraged to
	switch. This included FreeBSD, and the project was given until
	the end of July 1994 to stop shipping its own Net/2 based
	product. Under the terms of that agreement, the project was
	allowed one last release before the deadline, that release
	being FreeBSD 1.1.5.1.
FreeBSD then set about the arduous task of literally
	re-inventing itself from a completely new and rather
	incomplete set of 4.4BSD-Lite bits. The “Lite”
	releases were light in part because Berkeley's CSRG had
	removed large chunks of code required for actually
	constructing a bootable running system (due to various legal
	requirements) and the fact that the Intel port of 4.4 was
	highly incomplete. It took the project until November of 1994
	to make this transition, and in December it released
	FreeBSD 2.0 to the world. Despite being still more than a
	little rough around the edges, the release was a significant
	success and was followed by the more robust and easier to
	install FreeBSD 2.0.5 release in June of 1995.
Since that time, FreeBSD has made a series of releases each
	time improving the stability, speed, and feature set of the
	previous version.
For now, long-term development projects continue to take
	place in the 10.X-CURRENT (trunk) branch, and snapshot
	releases of 10.X are continually made available from the
	 snapshot server as work progresses.
1.3.2. FreeBSD Project Goals
Contributed by Jordan Hubbard. The goals of the FreeBSD Project are to provide software
	that may be used for any purpose and without strings attached.
	Many of us have a significant investment in the code (and
	project) and would certainly not mind a little financial
	compensation now and then, but we are definitely not prepared
	to insist on it. We believe that our first and foremost
	“mission” is to provide code to any and all
	comers, and for whatever purpose, so that the code gets the
	widest possible use and provides the widest possible benefit.
	This is, I believe, one of the most fundamental goals of Free
	Software and one that we enthusiastically support.
That code in our source tree which falls under the GNU
	General Public License (GPL) or Library General Public License
	(LGPL) comes with slightly more strings attached, though at
	least on the side of enforced access rather than the usual
	opposite. Due to the additional complexities that can evolve
	in the commercial use of GPL software we do, however, prefer
	software submitted under the more relaxed BSD copyright when
	it is a reasonable option to do so.
1.3.3. The FreeBSD Development Model
Contributed by Satoshi Asami. The development of FreeBSD is a very open and flexible
	process, being literally built from the contributions of
	thousands of people around the world, as can be seen from our
	list
	 of contributors. FreeBSD's development infrastructure
	allow these thousands of contributors to collaborate over the
	Internet. We are constantly on the lookout for new developers
	and ideas, and those interested in becoming more closely
	involved with the project need simply contact us at the
	FreeBSD technical discussions mailing list. The FreeBSD announcements mailing list is also available to those
	wishing to make other FreeBSD users aware of major areas of
	work.
Useful things to know about the FreeBSD Project and its
	development process, whether working independently or in close
	cooperation:
	The SVN repositories
	
	

	

	

	

	

	
	 For several years, the central source tree for FreeBSD
	 was maintained by
	 CVS
	 (Concurrent Versions System), a freely available source
	 code control tool. In June 2008, the Project switched
	 to using SVN
	 (Subversion). The switch was deemed necessary, as the
	 technical limitations imposed by
	 CVS were becoming obvious due
	 to the rapid expansion of the source tree and the amount
	 of history already stored. The Documentation Project
	 and Ports Collection repositories also moved from
	 CVS to
	 SVN in May 2012 and July
	 2012, respectively. Please refer to the Synchronizing your source
		tree section for more information on obtaining
	 the FreeBSD src/ repository and Using the Ports
		Collection for details on obtaining the FreeBSD
	 Ports Collection.

	The committers list
	The committers
	 are the people who have
	 write access to the Subversion
	 tree, and are authorized to make modifications to the
	 FreeBSD source (the term “committer” comes
	 from commit, the source control
	 command which is used to bring new changes into the
	 repository). Anyone can submit a bug to the Bug
	 Database. Before submitting a bug report, the
	 FreeBSD mailing lists, IRC channels, or forums can be used to
	 help verify that an issue is actually a bug.

	The FreeBSD core team
	The FreeBSD core team
	 would be equivalent to the board of
	 directors if the FreeBSD Project were a company. The
	 primary task of the core team is to make sure the
	 project, as a whole, is in good shape and is heading in
	 the right directions. Inviting dedicated and
	 responsible developers to join our group of committers
	 is one of the functions of the core team, as is the
	 recruitment of new core team members as others move on.
	 The current core team was elected from a pool of
	 committer candidates in July 2018. Elections are held
	 every 2 years.
Note:
Like most developers, most members of the
		core team are also volunteers when
		it comes to FreeBSD development and do not benefit from
		the project financially, so “commitment”
		should also not be misconstrued as meaning
		“guaranteed support.” The
		“board of directors” analogy above is not
		very accurate, and it may be more suitable to say that
		these are the people who gave up their lives in favor
		of FreeBSD against their better judgement!

	Outside contributors
	Last, but definitely not least, the largest group of
	 developers are the users themselves who provide feedback
	 and bug fixes to us on an almost constant basis. The
	 primary way of keeping in touch with FreeBSD's more
	 non-centralized development is to subscribe to the
	 FreeBSD technical discussions mailing list where such things are discussed. See
	 Appendix C, Resources on the Internet for more information about
	 the various FreeBSD mailing lists.
The
		 FreeBSD Contributors List
	 is a long and growing one, so why not join
	 it by contributing something back to FreeBSD today?
Providing code is not the only way of contributing
	 to the project; for a more complete list of things that
	 need doing, please refer to the FreeBSD Project
		web site.

In summary, our development model is organized as a loose
	set of concentric circles. The centralized model is designed
	for the convenience of the users of FreeBSD,
	who are provided with an easy way of tracking one central code
	base, not to keep potential contributors out! Our desire is to
	present a stable operating system with a large set of coherent
	application programs that the
	users can easily install and use — this model works very
	well in accomplishing that.
All we ask of those who would join us as FreeBSD developers
	is some of the same dedication its current people have to its
	continued success!
1.3.4. Third Party Programs
In addition to the base distributions, FreeBSD offers a
	ported software collection with thousands of commonly
	sought-after programs. At the time of this writing, there
	were over 24,000 ports! The list of ports ranges from
	http servers, to games, languages, editors, and almost
	everything in between. The entire Ports Collection requires
	approximately 500 MB. To compile a port, you simply
	change to the directory of the program you wish to install,
	type make install, and let the system do
	the rest. The full original distribution for each port you
	build is retrieved dynamically so you need only enough disk
	space to build the ports you want. Almost every port is also
	provided as a pre-compiled “package”, which can
	be installed with a simple command
	(pkg install) by those who do not wish to
	compile their own ports from source. More information on
	packages and ports can be found in
	Chapter 4, Installing Applications: Packages and Ports.
1.3.5. Additional Documentation
All supported FreeBSD versions provide an option in the
	installer to
	install additional documentation under
	/usr/local/share/doc/freebsd during the
	initial system setup. Documentation may also be installed at
	any later time using packages as described in
	Section 23.3.2, “Updating Documentation from Ports”. You may view the
	locally installed manuals with any HTML capable browser using
	the following URLs:
	The FreeBSD Handbook
	/usr/local/share/doc/freebsd/handbook/index.html

	The FreeBSD FAQ
	/usr/local/share/doc/freebsd/faq/index.html

You can also view the master (and most frequently updated)
	copies at https://www.FreeBSD.org/.
Chapter 2. Installing FreeBSD
Restructured, reorganized, and parts rewritten
	 by Jim Mock. Updated for bsdinstall by Gavin Atkinson and Warren Block. Updated for root-on-ZFS by Allan Jude. 2.1. Synopsis
There are several different ways of getting FreeBSD to run,
 depending on the environment. Those are:
	Virtual Machine images, to download and import on a
	 virtual environment of choice. These can be downloaded from
	 the Download
	 FreeBSD page. There are images for KVM
	 (“qcow2”), VMWare (“vmdk”),
	 Hyper-V (“vhd”), and raw device images that are
	 universally supported. These are not installation images,
	 but rather the preconfigured (“already
	 installed”) instances, ready to run and perform
	 post-installation tasks.

	Virtual Machine images available at Amazon's AWS
	 Marketplace, Microsoft
	 Azure Marketplace, and Google
	 Cloud Platform, to run on their respective hosting
	 services. For more information on deploying FreeBSD on Azure
	 please consult the relevant chapter in the Azure
	 Documentation.

	SD card images, for embedded systems such as Raspberry
	 Pi or BeagleBone Black. These can be downloaded from the
	 Download
	 FreeBSD page. These files must be uncompressed and
	 written as a raw image to an SD card, from which the board
	 will then boot.

	Installation images, to install FreeBSD on
	 a hard drive for the usual desktop, laptop, or server
	 systems.

The rest of this chapter describes the fourth case,
 explaining how to install FreeBSD using the text-based
 installation program named
 bsdinstall.
In general, the installation instructions in this chapter
 are written for the i386™ and AMD64
 architectures. Where applicable, instructions specific to other
 platforms will be listed. There may be minor differences
 between the installer and what is shown here, so use this
 chapter as a general guide rather than as a set of literal
 instructions.
Note:
Users who prefer to install FreeBSD using a graphical
	installer may be interested in
	pc-sysinstall, the installer used
	by the TrueOS Project. It can be used to install either a
	graphical desktop (TrueOS) or a command line version of FreeBSD.
	Refer to the TrueOS Users Handbook for details (https://www.trueos.org/handbook/trueos.html).

After reading this chapter, you will know:
	The minimum hardware requirements and FreeBSD supported
	 architectures.

	How to create the FreeBSD installation media.

	How to start
	 bsdinstall.

	The questions bsdinstall will
	 ask, what they mean, and how to answer them.

	How to troubleshoot a failed installation.

	How to access a live version of FreeBSD before committing
	 to an installation.

Before reading this chapter, you should:
	Read the supported hardware list that shipped with the
	 version of FreeBSD to be installed and verify that the system's
	 hardware is supported.

2.2. Minimum Hardware Requirements
The hardware requirements to install FreeBSD vary by
 architecture. Hardware architectures and devices supported by a
 FreeBSD release are listed on the FreeBSD Release
 Information page. The FreeBSD download page
 also has recommendations for choosing the correct image for
 different architectures.
A FreeBSD installation requires a minimum of 96 MB of
 RAM and 1.5 GB of free hard drive space.
 However, such small amounts of memory and disk space are really
 only suitable for custom applications like embedded appliances.
 General-purpose desktop systems need more resources.
 2-4 GB RAM and at least 8 GB hard drive space is a
 good starting point.
These are the processor requirements for each
 architecture:
	amd64
	This is the most common desktop and laptop processor
	 type, used in most modern systems. Intel® calls it
	 Intel64. Other manufacturers sometimes
	 call it x86-64.
Examples of amd64 compatible processors
	 include: AMD Athlon™64, AMD Opteron™,
	 multi-core Intel® Xeon™, and
	 Intel® Core™ 2 and later processors.

	i386
	Older desktops and laptops often use this 32-bit, x86
	 architecture.
Almost all i386-compatible processors with a floating
	 point unit are supported. All Intel® processors 486 or
	 higher are supported.
FreeBSD will take advantage of Physical Address
	 Extensions (PAE) support on
	 CPUs with this feature. A kernel with
	 the PAE feature enabled will detect
	 memory above 4 GB and allow it to be used by the
	 system. However, using PAE places
	 constraints on device drivers and other features of FreeBSD.
	 Refer to pae(4) for details.

	ia64
	Currently supported processors are the Itanium® and
	 the Itanium® 2. Supported chipsets include the HP zx1,
	 Intel® 460GX, and Intel® E8870. Both Uniprocessor
	 (UP) and Symmetric Multi-processor
	 (SMP) configurations are
	 supported.

	powerpc
	All New World ROM Apple®
	 Mac® systems with built-in USB
	 are supported. SMP is supported on
	 machines with multiple CPUs.
A 32-bit kernel can only use the first 2 GB of
	 RAM.

	sparc64
	Systems supported by FreeBSD/sparc64 are listed at
	 the FreeBSD/sparc64
	 Project.
SMP is supported on all systems
	 with more than 1 processor. A dedicated disk is required
	 as it is not possible to share a disk with another
	 operating system at this time.

2.4. Starting the Installation
Important:
By default, the installation will not make any changes to
	the disk(s) before the following message:
Your changes will now be written to disk. If you
have chosen to overwrite existing data, it will
be PERMANENTLY ERASED. Are you sure you want to
commit your changes?
The install can be exited at any time prior to this
	warning. If
	there is a concern that something is incorrectly configured,
	just turn the computer off before this point and no changes
	will be made to the system's disks.

This section describes how to boot the system from the
 installation media which was prepared using the instructions in
 Section 2.3.1, “Prepare the Installation Media”. When using a
 bootable USB stick, plug in the USB stick
 before turning on the computer. When booting from
 CD or DVD, turn on the
 computer and insert the media at the first opportunity. How to
 configure the system to boot from the inserted media depends
 upon the architecture.
2.4.1. Booting on i386™ and amd64
These architectures provide a BIOS
	menu for selecting the boot device. Depending upon the
	installation media being used, select the
	CD/DVD or
	USB device as the first boot device. Most
	systems also provide a key for selecting the boot device
	during startup without having to enter the
	BIOS. Typically, the key is either
	F10, F11,
	F12, or Escape.
If the computer loads the existing operating system
	instead of the FreeBSD installer, then either:
	The installation media was not inserted early enough
	 in the boot process. Leave the media inserted and try
	 restarting the computer.

	The BIOS changes were incorrect or
	 not saved. Double-check that the right boot device is
	 selected as the first boot device.

	This system is too old to support booting from the
	 chosen media. In this case, the Plop Boot
	 Manager (http://www.plop.at/en/bootmanagers.html)
	 can be used to boot the system from the selected
	 media.

2.4.2. Booting on PowerPC®
On most machines, holding C on the
	keyboard during boot will boot from the CD.
	Otherwise, hold Command+Option+O+F, or
	Windows+Alt+O+F on non-Apple® keyboards. At the
	0 > prompt, enter
boot cd:,\ppc\loader cd:0
2.4.3. Booting on SPARC64®
Most SPARC64® systems are set up to boot automatically
	from disk. To install FreeBSD from a CD
	requires a break into the PROM.
To do this, reboot the system and wait until the boot
	message appears. The message depends on the model, but should
	look something like this:
Sun Blade 100 (UltraSPARC-IIe), Keyboard Present
Copyright 1998-2001 Sun Microsystems, Inc. All rights reserved.
OpenBoot 4.2, 128 MB memory installed, Serial #51090132.
Ethernet address 0:3:ba:b:92:d4, Host ID: 830b92d4.
If the system proceeds to boot from disk at this point,
	press L1+A
	or Stop+A
	on the keyboard, or send a BREAK over the
	serial console. When using tip or
	cu, ~# will
	issue a BREAK. The PROM prompt will be
	ok on systems with one
	CPU and ok {0} on
	SMP systems, where the digit indicates the
	number of the active CPU.
At this point, place the CD into the
	drive and type boot cdrom from the
	PROM prompt.
2.4.4. FreeBSD Boot Menu
Once the system boots from the installation media, a menu
	similar to the following will be displayed:
[image: FreeBSD Boot Loader Menu]

Figure 2.1. FreeBSD Boot Loader Menu

By default, the menu will wait ten seconds for user input
	before booting into the FreeBSD installer or, if FreeBSD is already
	installed, before booting into FreeBSD. To pause the boot timer
	in order to review the selections, press
	Space. To select an option, press its
	highlighted number, character, or key. The following options
	are available.
	Boot Multi User: This will
	 continue the FreeBSD boot process. If the boot timer has
	 been paused, press 1, upper- or
	 lower-case B, or
	 Enter.

	Boot Single User: This mode can be
	 used to fix an existing FreeBSD installation as described in
	 Section 12.2.4.1, “Single-User Mode”. Press
	 2 or the upper- or lower-case
	 S to enter this mode.

	Escape to loader prompt: This will
	 boot the system into a repair prompt that contains a
	 limited number of low-level commands. This prompt is
	 described in Section 12.2.3, “Stage Three”. Press
	 3 or Esc to boot into
	 this prompt.

	Reboot: Reboots the system.

	Configure Boot Options: Opens the
	 menu shown in, and described under, Figure 2.2, “FreeBSD Boot Options Menu”.

[image: FreeBSD Boot Options Menu]

Figure 2.2. FreeBSD Boot Options Menu

The boot options menu is divided into two sections. The
	first section can be used to either return to the main boot
	menu or to reset any toggled options back to their
	defaults.
The next section is used to toggle the available options
	to On or Off by pressing
	the option's highlighted number or character. The system will
	always boot using the settings for these options until they
	are modified. Several options can be toggled using this
	menu:
	ACPI Support: If the system hangs
	 during boot, try toggling this option to
	 Off.

	Safe Mode: If the system still
	 hangs during boot even with ACPI
	 Support set to Off, try
	 setting this option to On.

	Single User: Toggle this option to
	 On to fix an existing FreeBSD installation
	 as described in Section 12.2.4.1, “Single-User Mode”. Once
	 the problem is fixed, set it back to
	 Off.

	Verbose: Toggle this option to
	 On to see more detailed messages during
	 the boot process. This can be useful when troubleshooting
	 a piece of hardware.

After making the needed selections, press
	1 or Backspace to return to
	the main boot menu, then press Enter to
	continue booting into FreeBSD. A series of boot messages will
	appear as FreeBSD carries out its hardware device probes and
	loads the installation program. Once the boot is complete,
	the welcome menu shown in Figure 2.3, “Welcome Menu” will be displayed.
[image: Welcome Menu]

Figure 2.3. Welcome Menu

Press Enter to select the default of
	[Install] to enter the
	installer. The rest of this chapter describes how to use this
	installer. Otherwise, use the right or left arrows or the
	colorized letter to select the desired menu item. The
	[Shell] can be used to
	access a FreeBSD shell in order to use command line utilities to
	prepare the disks before installation. The
	[Live CD] option can be
	used to try out FreeBSD before installing it. The live version
	is described in Section 2.10, “Using the Live CD”.
Tip:
To review the boot messages, including the hardware
	 device probe, press the upper- or lower-case
	 S and then Enter to access
	 a shell. At the shell prompt, type more
	 /var/run/dmesg.boot and use the space bar to
	 scroll through the messages. When finished, type
	 exit to return to the welcome
	 menu.

2.7. Committing to the Installation
Once the disks are configured, the next menu provides the
 last chance to make changes before the selected hard drive(s)
 are formatted. If changes need to be made, select
 [Back] to return to the main
 partitioning menu.
 [Revert & Exit]
 will exit the installer without making any changes to the hard
 drive.
[image: Final Confirmation]

Figure 2.25. Final Confirmation

To instead start the actual installation, select
 [Commit] and press
 Enter.
Installation time will vary depending on the distributions
 chosen, installation media, and speed of the computer. A series
 of messages will indicate the progress.
First, the installer formats the selected disk(s) and
 initializes the partitions. Next, in the case of a bootonly
 media, it downloads the selected components:
[image: Fetching Distribution Files]

Figure 2.26. Fetching Distribution Files

Next, the integrity of the distribution files is verified
 to ensure they have not been corrupted during download or
 misread from the installation media:
[image: Verifying Distribution Files]

Figure 2.27. Verifying Distribution Files

Finally, the verified distribution files are extracted to
 the disk:
[image: Extracting Distribution Files]

Figure 2.28. Extracting Distribution Files

Once all requested distribution files have been extracted,
 bsdinstall displays the first
 post-installation configuration screen. The available
 post-configuration options are described in the next
 section.
2.8. Post-Installation
Once FreeBSD is installed,
 bsdinstall will prompt to configure
 several options before booting into the newly installed system.
 This section describes these configuration options.
Tip:
Once the system has booted,
	bsdconfig provides a menu-driven method for
	configuring the system using these and additional
	options.

2.8.1. Setting the
	root
	Password
First, the root
	password must be set. While entering the password, the
	characters being typed are not displayed on the screen. After
	the password has been entered, it must be entered again. This
	helps prevent typing errors.
[image: Setting the root Password]

Figure 2.29. Setting the root Password

2.8.2. Configuring Network Interfaces
Next, a list of the network interfaces found on the
	computer is shown. Select the interface to configure.
Note:
The network configuration menus will be skipped if the
	 network was previously configured as part of a
	 bootonly installation.

[image: Choose a Network Interface]

Figure 2.30. Choose a Network Interface

If an Ethernet interface is selected, the installer will
	skip ahead to the menu shown in Figure 2.34, “Choose IPv4 Networking”. If a wireless
	network interface is chosen, the system will instead scan for
	wireless access points:
[image: Scanning for Wireless Access Points]

Figure 2.31. Scanning for Wireless Access Points

Wireless networks are identified by a Service Set
	Identifier (SSID), a short, unique name
	given to each network. SSIDs found during
	the scan are listed, followed by a description of the
	encryption types available for that network. If the desired
	SSID does not appear in the list, select
	[Rescan] to scan again. If
	the desired network still does not appear, check for problems
	with antenna connections or try moving the computer closer to
	the access point. Rescan after each change is made.
[image: Choosing a Wireless Network]

Figure 2.32. Choosing a Wireless Network

Next, enter the encryption information for connecting to
	the selected wireless network. WPA2
	encryption is strongly recommended as older encryption types,
	like WEP, offer little security. If the
	network uses WPA2, input the password, also
	known as the Pre-Shared Key (PSK). For
	security reasons, the characters typed into the input box are
	displayed as asterisks.
[image: WPA2 Setup]

Figure 2.33. WPA2 Setup

Next, choose whether or not an IPv4
	address should be configured on the Ethernet or wireless
	interface:
[image: Choose IPv4 Networking]

Figure 2.34. Choose IPv4 Networking

There are two methods of IPv4
	configuration. DHCP will automatically
	configure the network interface correctly and should be used
	if the network provides a DHCP server.
	Otherwise, the addressing information needs to be input
	manually as a static configuration.
Note:
Do not enter random network information as it will not
	 work. If a DHCP server is not available,
	 obtain the information listed in Required Network Information from
	 the network administrator or Internet service
	 provider.

If a DHCP server is available, select
	[Yes] in the next menu to
	automatically configure the network interface. The installer
	will appear to pause for a minute or so as it finds the
	DHCP server and obtains the addressing
	information for the system.
[image: Choose IPv4 DHCP Configuration]

Figure 2.35. Choose IPv4 DHCP
	 Configuration

If a DHCP server is not available,
	select [No] and input the
	following addressing information in this menu:
[image: IPv4 Static Configuration]

Figure 2.36. IPv4 Static Configuration

	IP Address - The
	 IPv4 address assigned to this computer.
	 The address must be unique and not already in use by
	 another piece of equipment on the local network.

	Subnet Mask - The subnet mask for
	 the network.

	Default Router - The
	 IP address of the network's default
	 gateway.

The next screen will ask if the interface should be
	configured for IPv6. If
	IPv6 is available and desired, choose
	[Yes] to select it.
[image: Choose IPv6 Networking]

Figure 2.37. Choose IPv6 Networking

IPv6 also has two methods of
	configuration. StateLess Address AutoConfiguration
	(SLAAC) will automatically request the
	correct configuration information from a local router. Refer
	to http://tools.ietf.org/html/rfc4862
	for more information. Static configuration requires manual
	entry of network information.
If an IPv6 router is available, select
	[Yes] in the next menu to
	automatically configure the network interface. The installer
	will appear to pause for a minute or so as it finds the router
	and obtains the addressing information for the system.
[image: Choose IPv6 SLAAC Configuration]

Figure 2.38. Choose IPv6 SLAAC Configuration

If an IPv6 router is not available,
	select [No] and input the
	following addressing information in this menu:
[image: IPv6 Static Configuration]

Figure 2.39. IPv6 Static Configuration

	IPv6 Address - The
	 IPv6 address assigned to this computer.
	 The address must be unique and not already in use by
	 another piece of equipment on the local network.

	Default Router - The
	 IPv6 address of the network's default
	 gateway.

The last network configuration menu is used to configure
	the Domain Name System (DNS) resolver,
	which converts hostnames to and from network addresses. If
	DHCP or SLAAC was used
	to autoconfigure the network interface, the Resolver
	 Configuration values may already be filled in.
	Otherwise, enter the local network's domain name in the
	Search field. DNS #1
	and DNS #2 are the IPv4
	and/or IPv6 addresses of the
	DNS servers. At least one
	DNS server is required.
[image: DNS Configuration]

Figure 2.40. DNS Configuration

2.8.3. Setting the Time Zone
The next menu asks if the system clock uses
	UTC or local time. When in doubt, select
	[No] to choose the more
	commonly-used local time.
[image: Select Local or UTC Clock]

Figure 2.41. Select Local or UTC Clock

The next series of menus are used to determine the correct
	local time by selecting the geographic region, country, and
	time zone. Setting the time zone allows the system to
	automatically correct for regional time changes, such as
	daylight savings time, and perform other time zone related
	functions properly.
The example shown here is for a machine located in the
	Eastern time zone of the United States. The selections will
	vary according to the geographical location.
[image: Select a Region]

Figure 2.42. Select a Region

The appropriate region is selected using the arrow keys
	and then pressing Enter.
[image: Select a Country]

Figure 2.43. Select a Country

Select the appropriate country using the arrow keys and
	press Enter.
[image: Select a Time Zone]

Figure 2.44. Select a Time Zone

The appropriate time zone is selected using the arrow keys
	and pressing Enter.
[image: Confirm Time Zone]

Figure 2.45. Confirm Time Zone

Confirm the abbreviation for the time zone is correct. If
	it is, press Enter to continue with the
	post-installation configuration.
2.8.4. Enabling Services
The next menu is used to configure which system services
	will be started whenever the system boots. All of these
	services are optional. Only start the services that are
	needed for the system to function.
[image: Selecting Additional Services to Enable]

Figure 2.46. Selecting Additional Services to Enable

Here is a summary of the services which can be enabled in
	this menu:
	sshd - The Secure Shell
	 (SSH) daemon is used to remotely access
	 a system over an encrypted connection. Only enable this
	 service if the system should be available for remote
	 logins.

	moused - Enable this service if the
	 mouse will be used from the command-line system
	 console.

	ntpd - The Network Time Protocol
	 (NTP) daemon for automatic clock
	 synchronization. Enable this service if there is a
	 Windows®, Kerberos, or LDAP server on
	 the network.

	powerd - System power control
	 utility for power control and energy saving.

2.8.5. Enabling Crash Dumps
The next menu is used to configure whether or not crash
	dumps should be enabled. Enabling crash dumps can be useful
	in debugging issues with the system, so users are encouraged
	to enable crash dumps.
[image: Enabling Crash Dumps]

Figure 2.47. Enabling Crash Dumps

2.8.6. Add Users
The next menu prompts to create at least one user account.
	It is recommended to login to the system using a user account
	rather than as root.
	When logged in as root, there are essentially no
	limits or protection on what can be done. Logging in as a
	normal user is safer and more secure.
Select [Yes] to add new
	users.
[image: Add User Accounts]

Figure 2.48. Add User Accounts

Follow the prompts and input the requested information for
	the user account. The example shown in Figure 2.49, “Enter User Information” creates the asample user account.
[image: Enter User Information]

Figure 2.49. Enter User Information

Here is a summary of the information to input:
	Username - The name the user will
	 enter to log in. A common convention is to use the first
	 letter of the first name combined with the last name, as
	 long as each username is unique for the system. The
	 username is case sensitive and should not contain any
	 spaces.

	Full name - The user's full name.
	 This can contain spaces and is used as a description for
	 the user account.

	Uid - User ID.
	 Typically, this is left blank so the system will assign a
	 value.

	Login group - The user's group.
	 Typically this is left blank to accept the default.

	Invite user into
	 other groups? - Additional groups to which the
	 user will be added as a member. If the user needs
	 administrative access, type wheel
	 here.

	Login class - Typically left blank
	 for the default.

	Shell - Type in one of the listed
	 values to set the interactive shell for the user. Refer
	 to Section 3.9, “Shells” for more information about
	 shells.

	Home directory - The user's home
	 directory. The default is usually correct.

	Home directory permissions -
	 Permissions on the user's home directory. The default is
	 usually correct.

	Use password-based authentication?
	 - Typically yes so that the user is
	 prompted to input their password at login.

	Use an empty password? -
	 Typically no as it is insecure to have
	 a blank password.

	Use a random password? - Typically
	 no so that the user can set their own
	 password in the next prompt.

	Enter password - The password for
	 this user. Characters typed will not show on the
	 screen.

	Enter password again - The password
	 must be typed again for verification.

	Lock out the account after
	 creation? - Typically no so
	 that the user can login.

After entering everything, a summary is shown for review.
	If a mistake was made, enter no and try
	again. If everything is correct, enter yes
	to create the new user.
[image: Exit User and Group Management]

Figure 2.50. Exit User and Group Management

If there are more users to add, answer the Add
	 another user? question with
	yes. Enter no to finish
	adding users and continue the installation.
For more information on adding users and user management,
	see Section 3.3, “Users and Basic Account Management”.
2.8.7. Final Configuration
After everything has been installed and configured, a
	final chance is provided to modify settings.
[image: Final Configuration]

Figure 2.51. Final Configuration

Use this menu to make any changes or do any additional
	configuration before completing the installation.
	Add User - Described in Section 2.8.6, “Add Users”.

	Root Password - Described in Section 2.8.1, “Setting the
	root
	Password”.

	Hostname - Described in Section 2.5.2, “Setting the Hostname”.

	Network - Described in Section 2.8.2, “Configuring Network Interfaces”.

	Services - Described in Section 2.8.4, “Enabling Services”.

	Time Zone - Described in Section 2.8.3, “Setting the Time Zone”.

	Handbook - Download and install the
	 FreeBSD Handbook.

After any final configuration is complete, select
	Exit.
[image: Manual Configuration]

Figure 2.52. Manual Configuration

bsdinstall will prompt if there
	are any additional configuration that needs to be done before
	rebooting into the new system. Select
	[Yes] to exit to a shell
	within the new system or
	[No] to proceed to the last
	step of the installation.
[image: Complete the Installation]

Figure 2.53. Complete the Installation

If further configuration or special setup is needed,
	select [Live CD] to
	boot the install media into Live CD
	mode.
If the installation is complete, select
	[Reboot] to reboot the
	computer and start the new FreeBSD system. Do not forget to
	remove the FreeBSD install media or the computer may boot from it
	again.
As FreeBSD boots, informational messages are displayed.
	After the system finishes booting, a login prompt is
	displayed. At the login: prompt, enter the
	username added during the installation. Avoid logging in as
	root. Refer to
	Section 3.3.1.3, “The Superuser Account” for instructions on how to
	become the superuser when administrative access is
	needed.
The messages that appeared during boot can be reviewed by
	pressing Scroll-Lock to turn on the
	scroll-back buffer. The PgUp,
	PgDn, and arrow keys can be used to scroll
	back through the messages. When finished, press
	Scroll-Lock again to unlock the display and
	return to the console. To review these messages once the
	system has been up for some time, type less
	 /var/run/dmesg.boot from a command prompt. Press
	q to return to the command line after
	viewing.
If sshd was enabled in Figure 2.46, “Selecting Additional Services to Enable”, the first boot may be
	a bit slower as the system will generate the
	RSA and DSA keys.
	Subsequent boots will be faster. The fingerprints of the keys
	will be displayed, as seen in this example:
Generating public/private rsa1 key pair.
Your identification has been saved in /etc/ssh/ssh_host_key.
Your public key has been saved in /etc/ssh/ssh_host_key.pub.
The key fingerprint is:
10:a0:f5:af:93:ae:a3:1a:b2:bb:3c:35:d9:5a:b3:f3 root@machine3.example.com
The key's randomart image is:
+--[RSA1 1024]----+
| o.. |
| o . . |
| . o |
| o |
| o S |
| + + o |
|o . + * |
|o+ ..+ . |
|==o..o+E |
+-----------------+
Generating public/private dsa key pair.
Your identification has been saved in /etc/ssh/ssh_host_dsa_key.
Your public key has been saved in /etc/ssh/ssh_host_dsa_key.pub.
The key fingerprint is:
7e:1c:ce:dc:8a:3a:18:13:5b:34:b5:cf:d9:d1:47:b2 root@machine3.example.com
The key's randomart image is:
+--[DSA 1024]----+
| |
| o . . + |
| E .|
| . . o o . . |
| + S = . |
| + . = o |
| + . * . |
| . . o . |
| .o. . |
+-----------------+
Starting sshd.
Refer to Section 13.8, “OpenSSH” for more information
	about fingerprints and SSH.
FreeBSD does not install a graphical environment by default.
	Refer to Chapter 5, The X Window System for more information about
	installing and configuring a graphical window manager.
Proper shutdown of a FreeBSD computer helps protect data and
	hardware from damage. Do not turn off the power
	before the system has been properly shut down! If
	the user is a member of the wheel group, become the
	superuser by typing su at the command line
	and entering the root password. Then, type
	shutdown -p now and the system will shut
	down cleanly, and if the hardware supports it, turn itself
	off.
2.9. Troubleshooting
This section covers basic installation
 troubleshooting, such as common problems people have
 reported.
Check the Hardware Notes (https://www.freebsd.org/releases/index.html)
 document for the version of FreeBSD to make sure the hardware is
 supported. If the hardware is supported and lock-ups or other
 problems occur, build a custom kernel using the instructions in
 Chapter 8, Configuring the FreeBSD Kernel to add support for devices which
 are not present in the GENERIC kernel. The
 default kernel assumes that most hardware devices are in their
 factory default configuration in terms of
 IRQs, I/O addresses, and
 DMA channels. If the hardware has been
 reconfigured, a custom kernel configuration file can tell FreeBSD
 where to find things.
Note:
Some installation problems can be avoided or alleviated by
	updating the firmware on various hardware components, most
	notably the motherboard. Motherboard firmware is usually
	referred to as the BIOS. Most motherboard
	and computer manufacturers have a website for upgrades and
	upgrade information.
Manufacturers generally advise against upgrading the
	motherboard BIOS unless there is a good
	reason for doing so, like a critical update. The upgrade
	process can go wrong, leaving the
	BIOS incomplete and the computer
	inoperative.

If the system hangs while probing hardware during boot, or
 it behaves strangely during install, ACPI may
 be the culprit. FreeBSD makes extensive use of the system
 ACPI service on the i386,
 amd64, and ia64 platforms to aid in system configuration
 if it is detected during boot. Unfortunately, some bugs still
 exist in both the ACPI driver and within
 system motherboards and BIOS firmware.
 ACPI can be disabled by setting the
 hint.acpi.0.disabled hint in the third stage
 boot loader:
set hint.acpi.0.disabled="1"
This is reset each time the system is booted, so it is
 necessary to add hint.acpi.0.disabled="1" to
 the file /boot/loader.conf. More
 information about the boot loader can be found in Section 12.1, “Synopsis”.
Chapter 3. FreeBSD Basics
3.1. Synopsis
This chapter covers the basic commands and functionality of
 the FreeBSD operating system. Much of this material is relevant
 for any UNIX®-like operating system. New FreeBSD users are
 encouraged to read through this chapter carefully.
After reading this chapter, you will know:
	How to use and configure virtual consoles.

	How to create and manage users and groups on
	 FreeBSD.

	How UNIX® file permissions and FreeBSD file flags
	 work.

	The default FreeBSD file system layout.

	The FreeBSD disk organization.

	How to mount and unmount file systems.

	What processes, daemons, and signals are.

	What a shell is, and how to change the default login
	 environment.

	How to use basic text editors.

	What devices and device nodes are.

	How to read manual pages for more information.

3.3. Users and Basic Account Management
FreeBSD allows multiple users to use the computer at the same
 time. While only one user can sit in front of the screen and
 use the keyboard at any one time, any number of users can log
 in to the system through the network. To use the system, each
 user should have their own user account.
This chapter describes:
	The different types of user accounts on a
	 FreeBSD system.

	How to add, remove, and modify user accounts.

	How to set limits to control the
	 resources that users and
	 groups are allowed to access.

	How to create groups and add users as members of a
	 group.

3.3.1. Account Types
Since all access to the FreeBSD system is achieved using
	accounts and all processes are run by users, user and account
	management is important.
There are three main types of accounts: system accounts,
	user accounts, and the superuser account.
3.3.1.1. System Accounts
System accounts are used to run services such as DNS,
	 mail, and web servers. The reason for this is security; if
	 all services ran as the superuser, they could act without
	 restriction.
Examples of system accounts are
	 daemon,
	 operator,
	 bind,
	 news, and
	 www.
nobody is the
	 generic unprivileged system account. However, the more
	 services that use
	 nobody, the more
	 files and processes that user will become associated with,
	 and hence the more privileged that user becomes.
3.3.1.2. User Accounts
User accounts are assigned to real people and are used
	 to log in and use the system. Every person accessing the
	 system should have a unique user account. This allows the
	 administrator to find out who is doing what and prevents
	 users from clobbering the settings of other users.
Each user can set up their own environment to
	 accommodate their use of the system, by configuring their
	 default shell, editor, key bindings, and language
	 settings.
Every user account on a FreeBSD system has certain
	 information associated with it:
	User name
	The user name is typed at the
		login: prompt. Each user must have
		a unique user name. There are a number of rules for
		creating valid user names which are documented in
		passwd(5). It is recommended to use user names
		that consist of eight or fewer, all lower case
		characters in order to maintain backwards
		compatibility with applications.

	Password
	Each account has an associated password.

	User ID (UID)
	The User ID (UID) is a number
		used to uniquely identify the user to the FreeBSD system.
		Commands that allow a user name to be specified will
		first convert it to the UID. It is
		recommended to use a UID less than 65535, since higher
		values may cause compatibility issues with some
		software.

	Group ID (GID)
	The Group ID (GID) is a number
		used to uniquely identify the primary group that the
		user belongs to. Groups are a mechanism for
		controlling access to resources based on a user's
		GID rather than their
		UID. This can significantly reduce
		the size of some configuration files and allows users
		to be members of more than one group. It is
		recommended to use a GID of 65535 or lower as higher
		GIDs may break some software.

	Login class
	Login classes are an extension to the group
		mechanism that provide additional flexibility when
		tailoring the system to different users. Login
		classes are discussed further in
		Section 13.13.1, “Configuring Login Classes”.

	Password change time
	By default, passwords do not expire. However,
		password expiration can be enabled on a per-user
		basis, forcing some or all users to change their
		passwords after a certain amount of time has
		elapsed.

	Account expiration time
	By default, FreeBSD does not expire accounts. When
		creating accounts that need a limited lifespan, such
		as student accounts in a school, specify the account
		expiry date using pw(8). After the expiry time
		has elapsed, the account cannot be used to log in to
		the system, although the account's directories and
		files will remain.

	User's full name
	The user name uniquely identifies the account to
		FreeBSD, but does not necessarily reflect the user's real
		name. Similar to a comment, this information can
		contain spaces, uppercase characters, and be more
		than 8 characters long.

	Home directory
	The home directory is the full path to a directory
		on the system. This is the user's starting directory
		when the user logs in. A common convention is to put
		all user home directories under /home/username
		or /usr/home/username.
		Each user stores their personal files and
		subdirectories in their own home directory.

	User shell
	The shell provides the user's default environment
		for interacting with the system. There are many
		different kinds of shells and experienced users will
		have their own preferences, which can be reflected in
		their account settings.

3.3.1.3. The Superuser Account
The superuser account, usually called
	 root, is used to
	 manage the system with no limitations on privileges. For
	 this reason, it should not be used for day-to-day tasks like
	 sending and receiving mail, general exploration of the
	 system, or programming.
The superuser, unlike other user accounts, can operate
	 without limits, and misuse of the superuser account may
	 result in spectacular disasters. User accounts are unable
	 to destroy the operating system by mistake, so it is
	 recommended to login as a user account and to only become
	 the superuser when a command requires extra
	 privilege.
Always double and triple-check any commands issued as
	 the superuser, since an extra space or missing character can
	 mean irreparable data loss.
There are several ways to gain superuser privilege.
	 While one can log in as
	 root, this is
	 highly discouraged.
Instead, use su(1) to become the superuser. If
	 - is specified when running this command,
	 the user will also inherit the root user's environment. The
	 user running this command must be in the
	 wheel group or
	 else the command will fail. The user must also know the
	 password for the
	 root user
	 account.
In this example, the user only becomes superuser in
	 order to run make install as this step
	 requires superuser privilege. Once the command completes,
	 the user types exit to leave the
	 superuser account and return to the privilege of their user
	 account.
Example 3.1. Install a Program As the Superuser
% configure
% make
% su -
Password:
make install
exit
%

The built-in su(1) framework works well for single
	 systems or small networks with just one system
	 administrator. An alternative is to install the
	 security/sudo package or port. This
	 software provides activity logging and allows the
	 administrator to configure which users can run which
	 commands as the superuser.
3.3.2. Managing Accounts
FreeBSD provides a variety of different commands to manage
	user accounts. The most common commands are summarized in
	Table 3.1, “Utilities for Managing User Accounts”, followed by some
	examples of their usage. See the manual page for each utility
	for more details and usage examples.
Table 3.1. Utilities for Managing User Accounts
	Command	Summary
	adduser(8)	The recommended command-line application for
		adding new users.
	rmuser(8)	The recommended command-line application for
		removing users.
	chpass(1)	A flexible tool for changing user database
		information.
	passwd(1)	The command-line tool to change user
		passwords.
	pw(8)	A powerful and flexible tool for modifying all
		aspects of user accounts.

3.3.2.1. adduser
The recommended program for adding new users is
	 adduser(8). When a new user is added, this program
	 automatically updates /etc/passwd and
	 /etc/group. It also creates a home
	 directory for the new user, copies in the default
	 configuration files from
	 /usr/share/skel, and can optionally
	 mail the new user a welcome message. This utility must be
	 run as the superuser.
The adduser(8) utility is interactive and walks
	 through the steps for creating a new user account. As seen
	 in Example 3.2, “Adding a User on FreeBSD”, either input
	 the required information or press Return
	 to accept the default value shown in square brackets.
	 In this example, the user has been invited into the
	 wheel group,
	 allowing them to become the superuser with su(1).
	 When finished, the utility will prompt to either
	 create another user or to exit.
Example 3.2. Adding a User on FreeBSD
adduser
Username: jru
Full name: J. Random User
Uid (Leave empty for default):
Login group [jru]:
Login group is jru. Invite jru into other groups? []: wheel
Login class [default]:
Shell (sh csh tcsh zsh nologin) [sh]: zsh
Home directory [/home/jru]:
Home directory permissions (Leave empty for default):
Use password-based authentication? [yes]:
Use an empty password? (yes/no) [no]:
Use a random password? (yes/no) [no]:
Enter password:
Enter password again:
Lock out the account after creation? [no]:
Username : jru
Password : ****
Full Name : J. Random User
Uid : 1001
Class :
Groups : jru wheel
Home : /home/jru
Shell : /usr/local/bin/zsh
Locked : no
OK? (yes/no): yes
adduser: INFO: Successfully added (jru) to the user database.
Add another user? (yes/no): no
Goodbye!
#

Note:
Since the password is not echoed when typed, be
	 careful to not mistype the password when creating the user
	 account.

3.3.2.2. rmuser
To completely remove a user from the system, run
	 rmuser(8) as the superuser. This command performs the
	 following steps:
	Removes the user's crontab(1) entry, if one
	 exists.

	Removes any at(1) jobs belonging to the
	 user.

	Kills all processes owned by the user.

	Removes the user from the system's local password
	 file.

	Optionally removes the user's home directory, if it
	 is owned by the user.

	Removes the incoming mail files belonging to the
	 user from /var/mail.

	Removes all files owned by the user from temporary
	 file storage areas such as
	 /tmp.

	Finally, removes the username from all groups to
	 which it belongs in /etc/group. If
	 a group becomes empty and the group name is the same as
	 the username, the group is removed. This complements
	 the per-user unique groups created by
	 adduser(8).

rmuser(8) cannot be used to remove superuser
	 accounts since that is almost always an indication of
	 massive destruction.
By default, an interactive mode is used, as shown
	 in the following example.
Example 3.3. rmuser Interactive Account
	 Removal
rmuser jru
Matching password entry:
jru:*:1001:1001::0:0:J. Random User:/home/jru:/usr/local/bin/zsh
Is this the entry you wish to remove? y
Remove user's home directory (/home/jru)? y
Removing user (jru): mailspool home passwd.
#

3.3.2.3. chpass
Any user can use chpass(1) to change their default
	 shell and personal information associated with their user
	 account. The superuser can use this utility to change
	 additional account information for any user.
When passed no options, aside from an optional username,
	 chpass(1) displays an editor containing user
	 information. When the user exits from the editor, the user
	 database is updated with the new information.
Note:
This utility will prompt for the user's password when
	 exiting the editor, unless the utility is run as the
	 superuser.

In Example 3.4, “Using chpass as
	 Superuser”, the
	 superuser has typed chpass jru and is
	 now viewing the fields that can be changed for this user.
	 If jru runs this
	 command instead, only the last six fields will be displayed
	 and available for editing. This is shown in
	 Example 3.5, “Using chpass as Regular
	 User”.
Example 3.4. Using chpass as
	 Superuser
#Changing user database information for jru.
Login: jru
Password: *
Uid [#]: 1001
Gid [# or name]: 1001
Change [month day year]:
Expire [month day year]:
Class:
Home directory: /home/jru
Shell: /usr/local/bin/zsh
Full Name: J. Random User
Office Location:
Office Phone:
Home Phone:
Other information:

Example 3.5. Using chpass as Regular
	 User
#Changing user database information for jru.
Shell: /usr/local/bin/zsh
Full Name: J. Random User
Office Location:
Office Phone:
Home Phone:
Other information:

Note:
The commands chfn(1) and chsh(1) are links
	 to chpass(1), as are ypchpass(1),
	 ypchfn(1), and ypchsh(1). Since
	 NIS support is automatic, specifying
	 the yp before the command is not
	 necessary. How to configure NIS is covered in Chapter 29, Network Servers.

3.3.2.4. passwd
Any user can easily change their password using
	 passwd(1). To prevent accidental or unauthorized
	 changes, this command will prompt for the user's original
	 password before a new password can be set:
Example 3.6. Changing Your Password
% passwd
Changing local password for jru.
Old password:
New password:
Retype new password:
passwd: updating the database...
passwd: done

The superuser can change any user's password by
	 specifying the username when running passwd(1). When
	 this utility is run as the superuser, it will not prompt for
	 the user's current password. This allows the password to be
	 changed when a user cannot remember the original
	 password.
Example 3.7. Changing Another User's Password as the
	 Superuser
passwd jru
Changing local password for jru.
New password:
Retype new password:
passwd: updating the database...
passwd: done

Note:
As with chpass(1), yppasswd(1) is a link to
	 passwd(1), so NIS works with
	 either command.

3.3.2.5. pw
The pw(8) utility can create, remove,
	 modify, and display users and groups. It functions as a
	 front end to the system user and group files. pw(8)
	 has a very powerful set of command line options that make it
	 suitable for use in shell scripts, but new users may find it
	 more complicated than the other commands presented in this
	 section.
3.3.3. Managing Groups
A group is a list of users. A group is identified by its
	group name and GID. In FreeBSD, the kernel
	uses the UID of a process, and the list of
	groups it belongs to, to determine what the process is allowed
	to do. Most of the time, the GID of a user
	or process usually means the first group in the list.
The group name to GID mapping is listed
	in /etc/group. This is a plain text file
	with four colon-delimited fields. The first field is the
	group name, the second is the encrypted password, the third
	the GID, and the fourth the comma-delimited
	list of members. For a more complete description of the
	syntax, refer to group(5).
The superuser can modify /etc/group
	using a text editor. Alternatively, pw(8) can be used to
	add and edit groups. For example, to add a group called
	teamtwo and then
	confirm that it exists:
Example 3.8. Adding a Group Using pw(8)
pw groupadd teamtwo
pw groupshow teamtwo
teamtwo:*:1100:

In this example, 1100 is the
	GID of
	teamtwo. Right
	now, teamtwo has no
	members. This command will add
	jru as a member of
	teamtwo.
Example 3.9. Adding User Accounts to a New Group Using
	 pw(8)
pw groupmod teamtwo -M jru
pw groupshow teamtwo
teamtwo:*:1100:jru

The argument to -M is a comma-delimited
	list of users to be added to a new (empty) group or to replace
	the members of an existing group. To the user, this group
	membership is different from (and in addition to) the user's
	primary group listed in the password file. This means that
	the user will not show up as a member when using
	groupshow with pw(8), but will show up
	when the information is queried via id(1) or a similar
	tool. When pw(8) is used to add a user to a group, it
	only manipulates /etc/group and does not
	attempt to read additional data from
	/etc/passwd.
Example 3.10. Adding a New Member to a Group Using pw(8)
pw groupmod teamtwo -m db
pw groupshow teamtwo
teamtwo:*:1100:jru,db

In this example, the argument to -m is a
	comma-delimited list of users who are to be added to the
	group. Unlike the previous example, these users are appended
	to the group and do not replace existing users in the
	group.
Example 3.11. Using id(1) to Determine Group Membership
% id jru
uid=1001(jru) gid=1001(jru) groups=1001(jru), 1100(teamtwo)

In this example,
	jru is a member of
	the groups jru and
	teamtwo.
For more information about this command and the format of
	/etc/group, refer to pw(8) and
	group(5).
3.4. Permissions
In FreeBSD, every file and directory has an associated set of
 permissions and several utilities are available for viewing
 and modifying these permissions. Understanding how permissions
 work is necessary to make sure that users are able to access
 the files that they need and are unable to improperly access
 the files used by the operating system or owned by other
 users.
This section discusses the traditional UNIX® permissions
 used in FreeBSD. For finer grained file system access control,
 refer to Section 13.9, “Access Control Lists”.
In UNIX®, basic permissions are assigned using
 three types of access: read, write, and execute. These access
 types are used to determine file access to the file's owner,
 group, and others (everyone else). The read, write, and execute
 permissions can be represented as the letters
 r, w, and
 x. They can also be represented as binary
 numbers as each permission is either on or off
 (0). When represented as a number, the
 order is always read as rwx, where
 r has an on value of 4,
 w has an on value of 2
 and x has an on value of
 1.
Table 4.1 summarizes the possible numeric and alphabetic
 possibilities. When reading the “Directory
	Listing” column, a - is used to
 represent a permission that is set to off.
Table 3.2. UNIX® Permissions
	Value	Permission	Directory Listing
	0	No read, no write, no execute	---
	1	No read, no write, execute	--x
	2	No read, write, no execute	-w-
	3	No read, write, execute	-wx
	4	Read, no write, no execute	r--
	5	Read, no write, execute	r-x
	6	Read, write, no execute	rw-
	7	Read, write, execute	rwx

Use the -l argument to ls(1) to view a
 long directory listing that includes a column of information
 about a file's permissions for the owner, group, and everyone
 else. For example, a ls -l in an arbitrary
 directory may show:
% ls -l
total 530
-rw-r--r-- 1 root wheel 512 Sep 5 12:31 myfile
-rw-r--r-- 1 root wheel 512 Sep 5 12:31 otherfile
-rw-r--r-- 1 root wheel 7680 Sep 5 12:31 email.txt
The first (leftmost) character in the first column indicates
 whether this file is a regular file, a directory, a special
 character device, a socket, or any other special pseudo-file
 device. In this example, the - indicates a
 regular file. The next three characters, rw-
 in this example, give the permissions for the owner of the file.
 The next three characters, r--, give the
 permissions for the group that the file belongs to. The final
 three characters, r--, give the permissions
 for the rest of the world. A dash means that the permission is
 turned off. In this example, the permissions are set so the
 owner can read and write to the file, the group can read the
 file, and the rest of the world can only read the file.
 According to the table above, the permissions for this file
 would be 644, where each digit represents the
 three parts of the file's permission.
How does the system control permissions on devices? FreeBSD
 treats most hardware devices as a file that programs can open,
 read, and write data to. These special device files are
 stored in /dev/.
Directories are also treated as files. They have read,
 write, and execute permissions. The executable bit for a
 directory has a slightly different meaning than that of files.
 When a directory is marked executable, it means it is possible
 to change into that directory using cd(1). This also
 means that it is possible to access the files within that
 directory, subject to the permissions on the files
 themselves.
In order to perform a directory listing, the read permission
 must be set on the directory. In order to delete a file that
 one knows the name of, it is necessary to have write
 and execute permissions to the directory
 containing the file.
There are more permission bits, but they are primarily used
 in special circumstances such as setuid binaries and sticky
 directories. For more information on file permissions and how
 to set them, refer to chmod(1).
3.4.1. Symbolic Permissions
Contributed by Tom Rhodes. Symbolic permissions use characters instead of octal
	values to assign permissions to files or directories.
	Symbolic permissions use the syntax of (who) (action)
	(permissions), where the following values are
	available:
	Option	Letter	Represents
	(who)	u	User
	(who)	g	Group owner
	(who)	o	Other
	(who)	a	All (“world”)
	(action)	+	Adding permissions
	(action)	-	Removing permissions
	(action)	=	Explicitly set permissions
	(permissions)	r	Read
	(permissions)	w	Write
	(permissions)	x	Execute
	(permissions)	t	Sticky bit
	(permissions)	s	Set UID or GID

These values are used with chmod(1), but with
	letters instead of numbers. For example, the following
	command would block other users from accessing
	FILE:
% chmod go= FILE
A comma separated list can be provided when more than one
	set of changes to a file must be made. For example, the
	following command removes the group and
	“world” write permission on
	FILE, and adds the execute
	permissions for everyone:
% chmod go-w,a+x FILE
3.4.2. FreeBSD File Flags
Contributed by Tom Rhodes. In addition to file permissions, FreeBSD supports the use of
	“file flags”. These flags add an additional
	level of security and control over files, but not directories.
	With file flags, even
	root can be
	prevented from removing or altering files.
File flags are modified using chflags(1). For
	example, to enable the system undeletable flag on the file
	file1, issue the following
	command:
chflags sunlink file1
To disable the system undeletable flag, put a
	“no” in front of the
	sunlink:
chflags nosunlink file1
To view the flags of a file, use -lo with
	ls(1):
ls -lo file1
-rw-r--r-- 1 trhodes trhodes sunlnk 0 Mar 1 05:54 file1
Several file flags may only be added or removed by the
	root user. In other
	cases, the file owner may set its file flags. Refer to
	chflags(1) and chflags(2) for more
	information.
3.4.3. The setuid,
	 setgid, and sticky
	 Permissions
Contributed by Tom Rhodes. Other than the permissions already discussed, there are
	three other specific settings that all administrators should
	know about. They are the setuid,
	setgid, and sticky
	permissions.
These settings are important for some UNIX® operations
	as they provide functionality not normally granted to normal
	users. To understand them, the difference between the real
	user ID and effective user ID must be noted.
The real user ID is the UID who owns
	or starts the process. The effective UID
	is the user ID the process runs as. As an example,
	passwd(1) runs with the real user ID when a user changes
	their password. However, in order to update the password
	database, the command runs as the effective ID of the
	root user. This
	allows users to change their passwords without seeing a
	Permission Denied error.
The setuid permission may be set by prefixing a permission
	set with the number four (4) as shown in the following
	example:
chmod 4755 suidexample.sh
The permissions on
	suidexample.sh
	now look like the following:
-rwsr-xr-x 1 trhodes trhodes 63 Aug 29 06:36 suidexample.sh
Note that a s is now part of the
	permission set designated for the file owner, replacing the
	executable bit. This allows utilities which need elevated
	permissions, such as passwd(1).
Note:
The nosuid mount(8) option will
	 cause such binaries to silently fail without alerting
	 the user. That option is not completely reliable as a
	 nosuid wrapper may be able to circumvent
	 it.

To view this in real time, open two terminals. On
	one, type passwd as a normal user.
	While it waits for a new password, check the process
	table and look at the user information for
	passwd(1):
In terminal A:
Changing local password for trhodes
Old Password:
In terminal B:
ps aux | grep passwd
trhodes 5232 0.0 0.2 3420 1608 0 R+ 2:10AM 0:00.00 grep passwd
root 5211 0.0 0.2 3620 1724 2 I+ 2:09AM 0:00.01 passwd
Although passwd(1) is run as a normal user, it is
	using the effective UID of
	root.
The setgid permission performs the
	same function as the setuid permission;
	except that it alters the group settings. When an application
	or utility executes with this setting, it will be granted the
	permissions based on the group that owns the file, not the
	user who started the process.
To set the setgid permission on a
	file, provide chmod(1) with a leading two (2):
chmod 2755 sgidexample.sh
In the following listing, notice that the
	s is now in the field designated for the
	group permission settings:
-rwxr-sr-x 1 trhodes trhodes 44 Aug 31 01:49 sgidexample.sh
Note:
In these examples, even though the shell script in
	 question is an executable file, it will not run with
	 a different EUID or effective user ID.
	 This is because shell scripts may not access the
	 setuid(2) system calls.

The setuid and
	setgid permission bits may lower system
	security, by allowing for elevated permissions. The third
	special permission, the sticky bit, can
	strengthen the security of a system.
When the sticky bit is set on a
	directory, it allows file deletion only by the file owner.
	This is useful to prevent file deletion in public directories,
	such as /tmp, by users
	who do not own the file. To utilize this permission, prefix
	the permission set with a one (1):
chmod 1777 /tmp
The sticky bit permission will display
	as a t at the very end of the permission
	set:
ls -al / | grep tmp
drwxrwxrwt 10 root wheel 512 Aug 31 01:49 tmp
3.5. Directory Structure
The FreeBSD directory hierarchy is fundamental to obtaining
 an overall understanding of the system. The most important
 directory is root or, “/”. This directory is the
 first one mounted at boot time and it contains the base system
 necessary to prepare the operating system for multi-user
 operation. The root directory also contains mount points for
 other file systems that are mounted during the transition to
 multi-user operation.
A mount point is a directory where additional file systems
 can be grafted onto a parent file system (usually the root file
 system). This is further described in
 Section 3.6, “Disk Organization”. Standard mount points
 include /usr/, /var/,
 /tmp/, /mnt/, and
 /cdrom/. These directories are usually
 referenced to entries in /etc/fstab. This
 file is a table of various file systems and mount points and is
 read by the system. Most of the file systems in
 /etc/fstab are mounted automatically at
 boot time from the script rc(8) unless their entry includes
 noauto. Details can be found in
 Section 3.7.1, “The fstab File”.
A complete description of the file system hierarchy is
 available in hier(7). The following table provides a brief
 overview of the most common directories.

	Directory	Description
	/	Root directory of the file system.
	/bin/	User utilities fundamental to both single-user
		and multi-user environments.
	/boot/	Programs and configuration files used during
		operating system bootstrap.
	/boot/defaults/	Default boot configuration files. Refer to
		loader.conf(5) for details.
	/dev/	Device nodes. Refer to intro(4) for
		details.
	/etc/	System configuration files and scripts.
	/etc/defaults/	Default system configuration files. Refer to
		rc(8) for details.
	/etc/mail/	Configuration files for mail transport agents
		such as sendmail(8).
	/etc/periodic/	Scripts that run daily, weekly, and monthly,
		via cron(8). Refer to periodic(8) for
		details.
	/etc/ppp/	ppp(8) configuration files.
	/mnt/	Empty directory commonly used by system
		administrators as a temporary mount point.
	/proc/	Process file system. Refer to procfs(5),
		mount_procfs(8) for details.
	/rescue/	Statically linked programs for emergency
		recovery as described in rescue(8).
	/root/	Home directory for the
		root
		account.
	/sbin/	System programs and administration utilities
		fundamental to both single-user and multi-user
		environments.
	/tmp/	Temporary files which are usually
		not preserved across a system
		reboot. A memory-based file system is often mounted
		at /tmp. This can be automated
		using the tmpmfs-related variables of rc.conf(5)
		or with an entry in /etc/fstab;
		refer to mdmfs(8) for details.
	/usr/	The majority of user utilities and
		applications.
	/usr/bin/	Common utilities, programming tools, and
		applications.
	/usr/include/	Standard C include files.
	/usr/lib/	Archive libraries.
	/usr/libdata/	Miscellaneous utility data files.
	/usr/libexec/	System daemons and system utilities executed
		by other programs.
	/usr/local/	Local executables and libraries. Also used as
		the default destination for the FreeBSD ports framework.
		Within
		/usr/local, the
		general layout sketched out by hier(7) for
		/usr should be
		used. Exceptions are the man directory, which is
		directly under /usr/local rather than
		under /usr/local/share, and
		the ports documentation is in share/doc/port.
	/usr/obj/	Architecture-specific target tree produced by
		building the /usr/src
		tree.
	/usr/ports/	The FreeBSD Ports Collection (optional).
	/usr/sbin/	System daemons and system utilities executed
		by users.
	/usr/share/	Architecture-independent files.
	/usr/src/	BSD and/or local source files.
	/var/	Multi-purpose log, temporary, transient, and
		spool files. A memory-based file system is sometimes
		mounted at
		/var. This can
		be automated using the varmfs-related variables in
		rc.conf(5) or with an entry in
		/etc/fstab; refer to
		mdmfs(8) for details.
	/var/log/	Miscellaneous system log files.
	/var/mail/	User mailbox files.
	/var/spool/	Miscellaneous printer and mail system spooling
		directories.
	/var/tmp/	Temporary files which are usually preserved
		across a system reboot, unless
		/var is a
		memory-based file system.
	/var/yp/	NIS maps.

3.7. Mounting and Unmounting File Systems
The file system is best visualized as a tree, rooted, as it
 were, at /.
 /dev,
 /usr, and the other
 directories in the root directory are branches, which may have
 their own branches, such as
 /usr/local, and so
 on.
There are various reasons to house some of these
 directories on separate file systems.
 /var contains the
 directories log/,
 spool/, and various types
 of temporary files, and as such, may get filled up. Filling up
 the root file system is not a good idea, so splitting
 /var from
 / is often
 favorable.
Another common reason to contain certain directory trees on
 other file systems is if they are to be housed on separate
 physical disks, or are separate virtual disks, such as Network
 File System mounts, described in Section 29.3, “Network File System (NFS)”,
 or CDROM drives.
3.7.1. The fstab File
During the boot process (Chapter 12, The FreeBSD Booting Process), file
	systems listed in /etc/fstab are
	automatically mounted except for the entries containing
	noauto. This file contains entries in the
	following format:
device /mount-point fstype options dumpfreq passno
	device
	An existing device name as explained in
	 Table 3.3, “Disk Device Names”.

	mount-point
	An existing directory on which to mount the file
	 system.

	fstype
	The file system type to pass to mount(8). The
	 default FreeBSD file system is
	 ufs.

	options
	Either rw for read-write file
	 systems, or ro for read-only file
	 systems, followed by any other options that may be
	 needed. A common option is noauto for
	 file systems not normally mounted during the boot
	 sequence. Other options are listed in
	 mount(8).

	dumpfreq
	Used by dump(8) to determine which file systems
	 require dumping. If the field is missing, a value of
	 zero is assumed.

	passno
	Determines the order in which file systems should be
	 checked. File systems that should be skipped should
	 have their passno set to zero. The
	 root file system needs to be checked before everything
	 else and should have its passno set
	 to one. The other file systems should be set to
	 values greater than one. If more than one file system
	 has the same passno, fsck(8)
	 will attempt to check file systems in parallel if
	 possible.

Refer to fstab(5) for more information on the format
	of /etc/fstab and its options.
3.7.2. Using mount(8)
File systems are mounted using mount(8). The most
	basic syntax is as follows:
mount device mountpoint

This command provides many options which are described in
	mount(8), The most commonly used options include:
Mount Options
	-a
	Mount all the file systems listed in
	 /etc/fstab, except those marked as
	 “noauto”, excluded by the
	 -t flag, or those that are already
	 mounted.

	-d
	Do everything except for the actual mount system
	 call. This option is useful in conjunction with the
	 -v flag to determine what mount(8)
	 is actually trying to do.

	-f
	Force the mount of an unclean file system
	 (dangerous), or the revocation of write access when
	 downgrading a file system's mount status from read-write
	 to read-only.

	-r
	Mount the file system read-only. This is identical
	 to using -o ro.

	-t
	 fstype
	Mount the specified file system type or mount only
	 file systems of the given type, if -a
	 is included. “ufs” is the default file
	 system type.

	-u
	Update mount options on the file system.

	-v
	Be verbose.

	-w
	Mount the file system read-write.

The following options can be passed to -o
	as a comma-separated list:
	nosuid
	Do not interpret setuid or setgid flags on the
	 file system. This is also a useful security
	 option.

3.7.3. Using umount(8)
To unmount a file system use umount(8). This command
	takes one parameter which can be a mountpoint, device name,
	-a or -A.
All forms take -f to force unmounting,
	and -v for verbosity. Be warned that
	-f is not generally a good idea as it might
	crash the computer or damage data on the file system.
To unmount all mounted file systems, or just the file
	system types listed after -t, use
	-a or -A. Note that
	-A does not attempt to unmount the root file
	system.
3.9. Shells
A shell provides a command line
 interface for interacting with the operating system. A shell
 receives commands from the input channel and executes them.
 Many shells provide built in functions to help with everyday
 tasks such as file management, file globbing, command line
 editing, command macros, and environment variables. FreeBSD comes
 with several shells, including the Bourne shell (sh(1)) and
 the extended C shell (tcsh(1)). Other shells are available
 from the FreeBSD Ports Collection, such as
 zsh and bash.
The shell that is used is really a matter of taste. A C
 programmer might feel more comfortable with a C-like shell such
 as tcsh(1). A Linux® user might prefer
 bash. Each shell has unique properties that
 may or may not work with a user's preferred working environment,
 which is why there is a choice of which shell to use.
One common shell feature is filename completion. After a
 user types the first few letters of a command or filename and
 presses Tab, the shell completes the rest of
 the command or filename. Consider two files called
 foobar and football.
 To delete foobar, the user might type
 rm foo and press Tab to
 complete the filename.
But the shell only shows rm foo. It was
 unable to complete the filename because both
 foobar and football
 start with foo. Some shells sound a beep or
 show all the choices if more than one name matches. The user
 must then type more characters to identify the desired filename.
 Typing a t and pressing Tab
 again is enough to let the shell determine which filename is
 desired and fill in the rest.
Another feature of the shell is the use of environment
 variables. Environment variables are a variable/key pair stored
 in the shell's environment. This environment can be read by any
 program invoked by the shell, and thus contains a lot of program
 configuration. Table 3.4, “Common Environment Variables” provides a list
 of common environment variables and their meanings. Note that
 the names of environment variables are always in
 uppercase.
Table 3.4. Common Environment Variables
	Variable	Description
	USER	Current logged in user's name.
	PATH	Colon-separated list of directories to search for
	 binaries.
	DISPLAY	Network name of the
	 Xorg
	 display to connect to, if available.
	SHELL	The current shell.
	TERM	The name of the user's type of terminal. Used to
	 determine the capabilities of the terminal.
	TERMCAP	Database entry of the terminal escape codes to
	 perform various terminal functions.
	OSTYPE	Type of operating system.
	MACHTYPE	The system's CPU architecture.
	EDITOR	The user's preferred text editor.
	PAGER	The user's preferred utility for viewing text one
	 page at a time.
	MANPATH	Colon-separated list of directories to search for
	 manual pages.

How to set an environment variable differs between shells.
 In tcsh(1) and csh(1), use
 setenv to set environment variables. In
 sh(1) and bash, use
 export to set the current environment
 variables. This example sets the default EDITOR
 to /usr/local/bin/emacs for the
 tcsh(1) shell:
% setenv EDITOR /usr/local/bin/emacs
The equivalent command for bash
 would be:
% export EDITOR="/usr/local/bin/emacs"
To expand an environment variable in order to see its
 current setting, type a $ character in front
 of its name on the command line. For example,
 echo $TERM displays the current
 $TERM setting.
Shells treat special characters, known as meta-characters,
 as special representations of data. The most common
 meta-character is *, which represents any
 number of characters in a filename. Meta-characters can be used
 to perform filename globbing. For example, echo
	* is equivalent to ls because
 the shell takes all the files that match *
 and echo lists them on the command
 line.
To prevent the shell from interpreting a special character,
 escape it from the shell by starting it with a backslash
 (\). For example, echo
	$TERM prints the terminal setting whereas
 echo \$TERM literally prints the string
 $TERM.
3.9.1. Changing the Shell
The easiest way to permanently change the default shell is
	to use chsh. Running this command will
	open the editor that is configured in the
	EDITOR environment variable, which by default
	is set to vi(1). Change the Shell:
	line to the full path of the new shell.
Alternately, use chsh -s which will set
	the specified shell without opening an editor. For example,
	to change the shell to bash:
% chsh -s /usr/local/bin/bash
Note:
The new shell must be present in
	 /etc/shells. If the shell was
	 installed from the FreeBSD Ports Collection as described in
	 Chapter 4, Installing Applications: Packages and Ports, it should be automatically added
	 to this file. If it is missing, add it using this command,
	 replacing the path with the path of the shell:
echo /usr/local/bin/bash >> /etc/shells
Then, rerun chsh(1).

3.9.2. Advanced Shell Techniques
Written by Tom Rhodes. The UNIX® shell is not just a command interpreter, it
	acts as a powerful tool which allows users to execute
	commands, redirect their output, redirect their input and
	chain commands together to improve the final command output.
	When this functionality is mixed with built in commands, the
	user is provided with an environment that can maximize
	efficiency.
Shell redirection is the action of sending the output or
	the input of a command into another command or into a file.
	To capture the output of the ls(1) command, for example,
	into a file, redirect the output:
% ls > directory_listing.txt
The directory contents will now be listed in
	directory_listing.txt. Some commands can
	be used to read input, such as sort(1). To sort this
	listing, redirect the input:
% sort < directory_listing.txt
The input will be sorted and placed on the screen. To
	redirect that input into another file, one could redirect the
	output of sort(1) by mixing the direction:
% sort < directory_listing.txt > sorted.txt
In all of the previous examples, the commands are
	performing redirection using file descriptors. Every UNIX®
	system has file descriptors, which include standard input
	(stdin), standard output (stdout), and standard error
	(stderr). Each one has a purpose, where input could be a
	keyboard or a mouse, something that provides input. Output
	could be a screen or paper in a printer. And error would be
	anything that is used for diagnostic or error messages. All
	three are considered I/O based file
	descriptors and sometimes considered streams.
Through the use of these descriptors, the shell allows
	output and input to be passed around through various commands
	and redirected to or from a file. Another method of
	redirection is the pipe operator.
The UNIX® pipe operator, “|” allows the
	output of one command to be directly passed or directed to
	another program. Basically, a pipe allows the standard
	output of a command to be passed as standard input to another
	command, for example:
% cat directory_listing.txt | sort | less
In that example, the contents of
	directory_listing.txt will be sorted and
	the output passed to less(1). This allows the user to
	scroll through the output at their own pace and prevent it
	from scrolling off the screen.
3.10. Text Editors
Most FreeBSD configuration is done by editing text files.
 Because of this, it is a good idea to become familiar with a
 text editor. FreeBSD comes with a few as part of the base system,
 and many more are available in the Ports Collection.
A simple editor to learn is ee(1), which stands for
 easy editor. To start this editor, type ee
	filename where
 filename is the name of the file to
 be edited. Once inside the editor, all of the commands for
 manipulating the editor's functions are listed at the top of the
 display. The caret (^) represents
 Ctrl, so ^e expands to
 Ctrl+e. To leave ee(1), press Esc,
 then choose the “leave editor” option from the main
 menu. The editor will prompt to save any changes if the file
 has been modified.
FreeBSD also comes with more powerful text editors, such as
 vi(1), as part of the base system. Other editors, like
 editors/emacs and
 editors/vim, are part of the
 FreeBSD Ports Collection. These editors offer more functionality
 at the expense of being more complicated to learn. Learning a
 more powerful editor such as vim or
 Emacs can save more time in the long
 run.
Many applications which modify files or require typed input
 will automatically open a text editor. To change the default
 editor, set the EDITOR environment
 variable as described in Section 3.9, “Shells”.
3.11. Devices and Device Nodes
A device is a term used mostly for hardware-related
 activities in a system, including disks, printers, graphics
 cards, and keyboards. When FreeBSD boots, the majority of the boot
 messages refer to devices being detected. A copy of the boot
 messages are saved to
 /var/run/dmesg.boot.
Each device has a device name and number. For example,
 ada0 is the first SATA hard drive,
 while kbd0 represents the
 keyboard.
Most devices in FreeBSD must be accessed through special
 files called device nodes, which are located in
 /dev.
3.12. Manual Pages
The most comprehensive documentation on FreeBSD is in the form
 of manual pages. Nearly every program on the system comes with
 a short reference manual explaining the basic operation and
 available arguments. These manuals can be viewed using
 man:
% man command
where command is the name of the
 command to learn about. For example, to learn more about
 ls(1), type:
% man ls
Manual pages are divided into sections which represent the
 type of topic. In FreeBSD, the following sections are
 available:
	User commands.

	System calls and error numbers.

	Functions in the C libraries.

	Device drivers.

	File formats.

	Games and other diversions.

	Miscellaneous information.

	System maintenance and operation commands.

	System kernel interfaces.

In some cases, the same topic may appear in more than one
 section of the online manual. For example, there is a
 chmod user command and a
 chmod() system call. To tell man(1)
 which section to display, specify the section number:
% man 1 chmod
This will display the manual page for the user command
 chmod(1). References to a particular section of the
 online manual are traditionally placed in parenthesis in
 written documentation, so chmod(1) refers to the user
 command and chmod(2) refers to the system call.
If the name of the manual page is unknown, use man
	-k to search for keywords in the manual page
 descriptions:
% man -k mail
This command displays a list of commands that have the
 keyword “mail” in their descriptions. This is
 equivalent to using apropos(1).
To read the descriptions for all of the commands in
 /usr/bin, type:
% cd /usr/bin
% man -f * | more
or
% cd /usr/bin
% whatis * |more
3.12.1. GNU Info Files
FreeBSD includes several applications and utilities produced
	by the Free Software Foundation (FSF). In addition to manual
	pages, these programs may include hypertext documents called
	info files. These can be viewed using
	info(1) or, if editors/emacs is
	installed, the info mode of
	emacs.
To use info(1), type:
% info
For a brief introduction, type h. For
	a quick command reference, type ?.
Chapter 4. Installing Applications: Packages and Ports
4.1. Synopsis
FreeBSD is bundled with a rich collection of system tools as
 part of the base system. In addition, FreeBSD provides two
 complementary technologies for installing third-party software:
 the FreeBSD Ports Collection, for installing from source, and
 packages, for installing from pre-built binaries. Either
 method may be used to install software from local media or
 from the network.
After reading this chapter, you will know:
	The difference between binary packages and ports.

	How to find third-party software that has been ported
	 to FreeBSD.

	How to manage binary packages using
	 pkg.

	How to build third-party software from source using the
	 Ports Collection.

	How to find the files installed with the application
	 for post-installation configuration.

	What to do if a software installation fails.

4.2. Overview of Software Installation
The typical steps for installing third-party software on a
 UNIX® system include:
	Find and download the software, which might be
	 distributed in source code format or as a binary.

	Unpack the software from its distribution format. This
	 is typically a tarball compressed with a program such as
	 compress(1), gzip(1), bzip2(1) or
	 xz(1).

	Locate the documentation in
	 INSTALL, README
	 or some file in a doc/ subdirectory and
	 read up on how to install the software.

	If the software was distributed in source format,
	 compile it. This may involve editing a
	 Makefile or running a
	 configure script.

	Test and install the software.

A FreeBSD port is a collection of files
 designed to automate
 the process of compiling an application from source code. The
 files that comprise a port contain all the necessary information
 to automatically download, extract, patch, compile, and install
 the application.
If the software has not already been adapted and tested
 on FreeBSD, the source code might need editing in
 order for it to install and run properly.
However, over 24,000
 third-party applications have already been ported to FreeBSD. When
 feasible, these applications are made available for download as
 pre-compiled packages.
Packages
 can be manipulated with the FreeBSD package management
 commands.
Both packages and ports understand dependencies. If a
 package or port is used to install an application and a
 dependent library is not already installed, the library will
 automatically be installed first.
A FreeBSD package contains pre-compiled copies of all the
 commands for an application, as well as any configuration files
 and documentation. A package can be manipulated with the
 pkg(8) commands, such as
 pkg install.
While the two technologies are similar, packages and
 ports each have their own strengths. Select the technology that
 meets your requirements for installing a particular
 application.
Package Benefits
	A compressed package tarball is typically smaller than
	 the compressed tarball containing the source code for the
	 application.

	Packages do not require compilation time. For large
	 applications, such as Mozilla,
	 KDE, or
	 GNOME, this can be important
	 on a slow system.

	Packages do not require any understanding of the process
	 involved in compiling software on FreeBSD.

Port Benefits
	Packages are normally compiled with conservative
	 options because they have to run on the maximum number of
	 systems. By compiling from the port, one can change the
	 compilation options.

	Some applications have compile-time options relating to
	 which features are installed. For example,
	 Apache can be configured with a
	 wide variety of different built-in options.
In some cases, multiple packages will exist for the same
	 application to specify certain settings. For example,
	 Ghostscript is available as a
	 ghostscript package and a
	 ghostscript-nox11 package, depending on
	 whether or not Xorg is installed.
	 Creating multiple packages rapidly becomes impossible if an
	 application has more than one or two different compile-time
	 options.

	The licensing conditions of some software forbid binary
	 distribution. Such software must be distributed as source
	 code which must be compiled by the end-user.

	Some people do not trust binary distributions or prefer
	 to read through source code in order to look for potential
	 problems.

	Source code is needed in
	 order to apply custom patches.

To keep track of updated ports, subscribe to the
 FreeBSD ports mailing list and the FreeBSD ports bugs mailing list.
Warning:
Before installing any application, check https://vuxml.freebsd.org/
	for security issues related to the application or type
	pkg audit -F to check all installed
	applications for known vulnerabilities.

The remainder of this chapter explains how to use packages
 and ports to install and manage third-party software on
 FreeBSD.
4.3. Finding Software
FreeBSD's list of available applications is growing all the
 time. There are a number of ways to find software to
 install:
	The FreeBSD web site maintains an up-to-date searchable
	 list of all the available applications, at https://www.FreeBSD.org/ports/.
	 The ports can be searched by application name or by
	 software category.

	Dan Langille maintains FreshPorts.org
	 which provides a comprehensive search utility and also
	 tracks changes to the applications in the Ports Collection.
	 Registered users can create a customized watch list in order
	 to receive an automated email when their watched ports are
	 updated.

	If finding a particular application becomes challenging,
	 try searching a site like SourceForge.net
	 or GitHub.com then
	 check back at the FreeBSD site
	 to see if the application has been ported.

	To search the binary package
	 repository for an application:
pkg search subversion
git-subversion-1.9.2
java-subversion-1.8.8_2
p5-subversion-1.8.8_2
py27-hgsubversion-1.6
py27-subversion-1.8.8_2
ruby-subversion-1.8.8_2
subversion-1.8.8_2
subversion-book-4515
subversion-static-1.8.8_2
subversion16-1.6.23_4
subversion17-1.7.16_2
Package names include the version number and, in the
	 case of ports based on python, the version number of the
	 version of python the package was built with. Some ports
	 also have multiple versions available. In the case of
	 Subversion, there are different
	 versions available, as well as different compile options.
	 In this case, the statically linked version of
	 Subversion. When indicating
	 which package to install, it is best to specify the
	 application by the port origin, which is the path in the
	 ports tree. Repeat the pkg search with
	 -o to list the origin of each
	 package:
pkg search -o subversion
devel/git-subversion
java/java-subversion
devel/p5-subversion
devel/py-hgsubversion
devel/py-subversion
devel/ruby-subversion
devel/subversion16
devel/subversion17
devel/subversion
devel/subversion-book
devel/subversion-static
Searching by shell globs, regular expressions, exact
	 match, by description, or any other field in the repository
	 database is also supported by pkg search.
	 After installing ports-mgmt/pkg or
	 ports-mgmt/pkg-devel, see
	 pkg-search(8) for more details.

	If the Ports Collection is already installed, there are
	 several methods to query the local version of the ports
	 tree. To find out which category a port is in, type
	 whereis file,
	 where file is the program to be
	 installed:
whereis lsof
lsof: /usr/ports/sysutils/lsof
Alternately, an echo(1) statement can be
	 used:
echo /usr/ports/*/*lsof*
/usr/ports/sysutils/lsof
Note that this will also return any matched files
	 downloaded into the
	 /usr/ports/distfiles directory.

	Another way to find software is by using the Ports
	 Collection's built-in search mechanism. To use the search
	 feature, cd to
	 /usr/ports then run make
	 search name=program-name where
	 program-name is the name of the
	 software. For example, to search for
	 lsof:
cd /usr/ports
make search name=lsof
Port: lsof-4.88.d,8
Path: /usr/ports/sysutils/lsof
Info: Lists information about open files (similar to fstat(1))
Maint: ler@lerctr.org
Index: sysutils
B-deps:
R-deps:
Tip:
The built-in search mechanism uses a file
	 of index information. If a message indicates that the
	 INDEX is required, run
	 make fetchindex to download the current
	 index file. With the INDEX present,
	 make search will be able to perform the
	 requested search.

The “Path:” line indicates where to find
	 the port.
To receive less information, use the
	 quicksearch feature:
cd /usr/ports
make quicksearch name=lsof
Port: lsof-4.88.d,8
Path: /usr/ports/sysutils/lsof
Info: Lists information about open files (similar to fstat(1))
For more in-depth searching, use
	 make search
	 key=string or
	 make quicksearch
	 key=string, where
	 string is some text to search
	 for. The text can be in comments, descriptions, or
	 dependencies in order to find ports which relate to a
	 particular subject when the name of the program is
	 unknown.
When using search or
	 quicksearch, the search string
	 is case-insensitive. Searching for “LSOF” will
	 yield the same results as searching for
	 “lsof”.

4.5. Using the Ports Collection
The Ports Collection is a set of
 Makefiles, patches, and description files.
 Each set of these files is used to compile and install an
 individual application on FreeBSD, and is called a
 port.
By default, the Ports Collection itself is stored as a
 subdirectory of /usr/ports.
Before an application can be compiled using a port, the
 Ports Collection must first be installed. If it was not
 installed during the installation of FreeBSD, use one of the
 following methods to install it:
Procedure 4.1. Portsnap Method
The base system of FreeBSD includes
	Portsnap. This is a fast and
	user-friendly tool for retrieving the Ports Collection and
	is the recommended choice for most users. This utility
	connects to a FreeBSD site, verifies the secure key, and
	downloads a new copy of the Ports Collection. The key is used
	to verify the integrity of all downloaded files.
	To download a compressed snapshot of the Ports
	 Collection into
	 /var/db/portsnap:
portsnap fetch

	When running Portsnap for the
	 first time, extract the snapshot into
	 /usr/ports:
portsnap extract

	After the first use of
	 Portsnap has been completed as
	 shown above, /usr/ports can be updated
	 as needed by running:
portsnap fetch
portsnap update
When using fetch, the
	 extract or the update
	 operation may be run consecutively, like so:
portsnap fetch update

Procedure 4.2. Subversion Method
If more control over the ports tree is needed or if local
	changes need to be maintained,
	Subversion can be used to obtain
	the Ports Collection. Refer to the
	 Subversion Primer for a detailed description of
	Subversion.
	Subversion must be installed
	 before it can be used to check out the ports tree. If a
	 copy of the ports tree is already present, install
	 Subversion like this:
cd /usr/ports/devel/subversion
make install clean
If the ports tree is not available, or
	 pkg is being used to manage
	 packages, Subversion can be
	 installed as a package:
pkg install subversion

	Check out a copy of the ports tree:
svn checkout https://svn.FreeBSD.org/ports/head /usr/ports

	As needed, update /usr/ports after
	 the initial Subversion
	 checkout:
svn update /usr/ports

The Ports Collection contains directories
 for software categories. Inside each category are
 subdirectories for individual applications. Each application
 subdirectory contains a set of files that
 tells FreeBSD how to compile and install that program,
 called a ports skeleton. Each port
 skeleton includes these files and directories:
	Makefile: contains statements that
	 specify how the application should be compiled and where
	 its components should be installed.

	distinfo: contains the names and
	 checksums of the files that must be downloaded to build the
	 port.

	files/: this directory contains
	 any patches needed for the program to compile and install
	 on FreeBSD. This directory may also contain other files used
	 to build the port.

	pkg-descr: provides a more detailed
	 description of the program.

	pkg-plist: a list of all the
	 files that will be installed by the port. It also tells
	 the ports system which files to remove upon
	 deinstallation.

Some ports include pkg-message or
 other files to handle special situations. For more details
 on these files, and on ports in general, refer to the FreeBSD
	Porter's Handbook.
The port does not include the actual source code, also
 known as a distfile. The extract portion
 of building a port will automatically save the downloaded
 source to /usr/ports/distfiles.
4.5.1. Installing Ports
This section provides basic instructions on using the
	Ports Collection to install or remove software. The detailed
	description of available make targets and
	environment variables is available in ports(7).
Warning:
Before compiling any port, be sure to update the Ports
	 Collection as described in the previous section. Since
	 the installation of any third-party software can introduce
	 security vulnerabilities, it is recommended to first check
	 https://vuxml.freebsd.org/
	 for known security issues related to the port. Alternately,
	 run pkg audit -F before installing a new
	 port. This command can be configured to automatically
	 perform a security audit and an update of the vulnerability
	 database during the daily security system check. For more
	 information, refer to pkg-audit(8) and
	 periodic(8).

Using the Ports Collection assumes a working Internet
	connection. It also requires superuser privilege.
To compile and install the port, change to the directory
	of the port to be installed, then type make
	 install at the prompt. Messages will indicate
	the progress:
cd /usr/ports/sysutils/lsof
make install
>> lsof_4.88D.freebsd.tar.gz doesn't seem to exist in /usr/ports/distfiles/.
>> Attempting to fetch from ftp://lsof.itap.purdue.edu/pub/tools/unix/lsof/.
===> Extracting for lsof-4.88
...
[extraction output snipped]
...
>> Checksum OK for lsof_4.88D.freebsd.tar.gz.
===> Patching for lsof-4.88.d,8
===> Applying FreeBSD patches for lsof-4.88.d,8
===> Configuring for lsof-4.88.d,8
...
[configure output snipped]
...
===> Building for lsof-4.88.d,8
...
[compilation output snipped]
...

===> Installing for lsof-4.88.d,8
...
[installation output snipped]
...
===> Generating temporary packing list
===> Compressing manual pages for lsof-4.88.d,8
===> Registering installation for lsof-4.88.d,8
===> SECURITY NOTE:
 This port has installed the following binaries which execute with
 increased privileges.
/usr/local/sbin/lsof
#
Since lsof is a program that runs
	with increased privileges, a security warning is displayed
	as it is installed. Once the installation is complete, the
	prompt will be returned.
Some shells keep a cache of the commands that are
	available in the directories listed in the
	PATH environment variable, to speed up lookup
	operations for the executable file of these commands. Users
	of the tcsh shell should type
	rehash so that a newly installed command
	can be used without specifying its full path. Use
	hash -r instead for the
	sh shell. Refer to the documentation
	for the shell for more information.
During installation, a working subdirectory is created
	which contains all the temporary files used during
	compilation. Removing this directory saves disk space and
	minimizes the chance of problems later when upgrading to the
	newer version of the port:
make clean
===> Cleaning for lsof-88.d,8
#
Note:
To save this extra step, instead use make
	 install clean when compiling the port.

4.5.1.1. Customizing Ports Installation
Some ports provide build options which can be used to
	 enable or disable application components, provide security
	 options, or allow for other customizations. Examples
	 include www/firefox,
	 security/gpgme, and
	 mail/sylpheed-claws. If the port depends
	 upon other ports which have configurable options, it may
	 pause several times for user interaction as the default
	 behavior is to prompt the user to select options from a
	 menu. To avoid this and do all of the configuration in one
	 batch, run make config-recursive within
	 the port skeleton. Then, run make install
	 [clean] to compile and install the port.
Tip:
When using
	 config-recursive, the list of
	 ports to configure are gathered by the
	 all-depends-list target. It is
	 recommended to run make
	 config-recursive until all dependent ports
	 options have been defined, and ports options screens no
	 longer appear, to be certain that all dependency options
	 have been configured.

There are several ways to revisit a port's build options
	 menu in order to add, remove, or change these options after
	 a port has been built. One method is to
	 cd into the directory containing the
	 port and type make config. Another
	 option is to use make showconfig.
	 Another option is to execute make
	 rmconfig which will remove all selected options
	 and allow you to start over. All of these options, and
	 others, are explained in great detail in
	 ports(7).
The ports system uses fetch(1) to download the
	 source files, which supports various environment variables.
	 The FTP_PASSIVE_MODE,
	 FTP_PROXY, and FTP_PASSWORD
	 variables may need to be set if the FreeBSD system is behind
	 a firewall or FTP/HTTP proxy. See fetch(3) for the
	 complete list of supported variables.
For users who cannot be connected to the Internet all
	 the time, make fetch can be run within
	 /usr/ports, to fetch all distfiles, or
	 within a category, such as
	 /usr/ports/net, or within the specific
	 port skeleton. Note that if a port has any dependencies,
	 running this command in a category or ports skeleton will
	 not fetch the distfiles of ports from
	 another category. Instead, use make
	 fetch-recursive to also fetch the distfiles for
	 all the dependencies of a port.
In rare cases, such as when an organization has a local
	 distfiles repository, the MASTER_SITES
	 variable can be used to override the download locations
	 specified in the Makefile. When using,
	 specify the alternate location:
cd /usr/ports/directory
make MASTER_SITE_OVERRIDE= \
ftp://ftp.organization.org/pub/FreeBSD/ports/distfiles/ fetch
The WRKDIRPREFIX and
	 PREFIX variables can override the default
	 working and target directories. For example:
make WRKDIRPREFIX=/usr/home/example/ports install
will compile the port in
	 /usr/home/example/ports and install
	 everything under /usr/local.
make PREFIX=/usr/home/example/local install
will compile the port in /usr/ports
	 and install it in
	 /usr/home/example/local. And:
make WRKDIRPREFIX=../ports PREFIX=../local install
will combine the two.
These can also be set as environmental variables. Refer
	 to the manual page for your shell for instructions on how to
	 set an environmental variable.
4.5.2. Removing Installed Ports
Installed ports can be uninstalled using pkg
	 delete. Examples for using this command can be
	found in the pkg-delete(8) manual page.
Alternately, make deinstall can be
	run in the port's directory:
cd /usr/ports/sysutils/lsof
make deinstall
===> Deinstalling for sysutils/lsof
===> Deinstalling
Deinstallation has been requested for the following 1 packages:

	lsof-4.88.d,8

The deinstallation will free 229 kB
[1/1] Deleting lsof-4.88.d,8... done
It is recommended to read the messages as the port is
	uninstalled. If the port has any applications that depend
	upon it, this information will be displayed but the
	uninstallation will proceed. In such cases, it may be better
	to reinstall the application in order to prevent broken
	dependencies.
4.5.3. Upgrading Ports
Over time, newer versions of software become available
	in the Ports Collection. This section describes how to
	determine which software can be upgraded and how to perform
	the upgrade.
To determine if newer versions of installed ports are
	available, ensure that the latest version of the ports tree is
	installed, using the updating command described in either
	Procedure 4.1, “Portsnap Method” or
	Procedure 4.2, “Subversion Method”. On FreeBSD 10
	and later, or if the system has been converted to
	pkg, the following command will
	list the installed ports which are out of date:
pkg version -l "<"
For FreeBSD 9.X and lower, the
	following command will list the installed ports that are out
	of date:
pkg_version -l "<"
Important:
Before
	 attempting an upgrade, read
	 /usr/ports/UPDATING from the top of
	 the file to the date closest to the last time ports were
	 upgraded or the system was installed. This file describes
	 various issues and additional steps users may encounter and
	 need to perform when updating a port, including such things
	 as file format changes, changes in locations of
	 configuration files, or any incompatibilities with previous
	 versions. Make note of any instructions which match any of
	 the ports that need upgrading and follow these instructions
	 when performing the upgrade.

4.5.3.1. Tools to Upgrade and Manage Ports
The Ports Collection contains several utilities to
	 perform the actual upgrade. Each has its strengths and
	 weaknesses.
Historically, most installations used either
	 Portmaster or
	 Portupgrade.
	 Synth is a newer
	 alternative.
Note:
The choice of which tool is best for a particular
	 system is up to the system administrator. It is
	 recommended practice to back up your data before using any
	 of these tools.

4.5.3.2. Upgrading Ports Using
	 Portmaster
ports-mgmt/portmaster is a very
	 small utility for upgrading installed ports.
	 It is designed to use the tools installed with the FreeBSD
	 base system
	 without depending on other ports or databases.
	 To install this utility
	 as a port:
cd /usr/ports/ports-mgmt/portmaster
make install clean
Portmaster defines four
	 categories of ports:
	Root port: has no dependencies and is not a
	 dependency of any other ports.

	Trunk port: has no dependencies, but other ports
	 depend upon it.

	Branch port: has dependencies and other ports
	 depend upon it.

	Leaf port: has dependencies but no other ports
	 depend upon it.

To list these categories and search for updates:
portmaster -L
===>>> Root ports (No dependencies, not depended on)
===>>> ispell-3.2.06_18
===>>> screen-4.0.3
 ===>>> New version available: screen-4.0.3_1
===>>> tcpflow-0.21_1
===>>> 7 root ports
...
===>>> Branch ports (Have dependencies, are depended on)
===>>> apache22-2.2.3
 ===>>> New version available: apache22-2.2.8
...
===>>> Leaf ports (Have dependencies, not depended on)
===>>> automake-1.9.6_2
===>>> bash-3.1.17
 ===>>> New version available: bash-3.2.33
...
===>>> 32 leaf ports

===>>> 137 total installed ports
 ===>>> 83 have new versions available
This command is used to upgrade all outdated
	 ports:
portmaster -a
Note:
By default, Portmaster
	 makes a backup package before deleting the existing port.
	 If the installation of the new version is successful,
	 Portmaster deletes the
	 backup. Using -b instructs
	 Portmaster not to automatically
	 delete the backup. Adding -i starts
	 Portmaster in interactive mode,
	 prompting for confirmation before upgrading each port.
	 Many other options are available. Read through the
	 manual page for portmaster(8) for details regarding
	 their usage.

If errors are encountered during the upgrade process,
	 add -f to upgrade and rebuild all
	 ports:
portmaster -af
Portmaster can also be used
	 to install new ports on the system, upgrading all
	 dependencies before building and installing the new
	 port. To use this function, specify the location of the
	 port in the Ports Collection:
portmaster shells/bash
More information about
	 ports-mgmt/portmaster may be found in its
	 pkg-descr.
4.5.3.3. Upgrading Ports Using Portupgrade
ports-mgmt/portupgrade is another
	 utility that can be used to upgrade ports. It installs a
	 suite of applications which can be used to manage ports.
	 However, it is dependent upon Ruby. To install the
	 port:
cd /usr/ports/ports-mgmt/portupgrade
make install clean
Before performing an upgrade using this utility, it is
	 recommended to scan the list of installed ports using
	 pkgdb -F and to fix all the
	 inconsistencies it reports.
To upgrade all the outdated ports installed on the
	 system, use portupgrade -a. Alternately,
	 include -i to be asked for confirmation
	 of every individual upgrade:
portupgrade -ai
To upgrade only a specified application instead of all
	 available ports, use portupgrade
	 pkgname. It is very
	 important to include -R to first upgrade
	 all the ports required by the given application:
portupgrade -R firefox
If
	 -P is included,
	 Portupgrade searches for
	 available packages in the local directories listed in
	 PKG_PATH. If none are available locally, it
	 then fetches packages from a remote site. If packages can
	 not be found locally or fetched remotely,
	 Portupgrade will use ports. To
	 avoid using ports entirely, specify -PP.
	 This last set of options tells
	 Portupgrade to abort if no
	 packages are available:
portupgrade -PP gnome3
To just fetch the port distfiles, or packages, if
	 -P is specified, without building or
	 installing anything, use -F. For further
	 information on all of the available switches, refer to the
	 manual page for portupgrade.
More information about
	 ports-mgmt/portupgrade may be found in
	 its pkg-descr.
4.5.4. Ports and Disk Space
Using the Ports Collection will use up disk space over
	time. After building and installing a port, running
	make clean within the ports skeleton will
	clean up the temporary work directory.
	If Portmaster is used to install a
	port, it will automatically remove this directory unless
	-K is specified. If
	Portupgrade is installed, this
	command will remove all work directories
	found within the local copy of the Ports Collection:
portsclean -C
In addition, outdated source distribution files
	accumulate in /usr/ports/distfiles over
	time. To use Portupgrade to
	delete all the distfiles that are no longer
	referenced by any ports:
portsclean -D
Portupgrade can remove
	all distfiles not referenced by any port currently installed
	on the system:
portsclean -DD
If Portmaster is installed,
	use:
portmaster --clean-distfiles
By default, this command is interactive and prompts
	the user to confirm if a distfile should be deleted.
In addition to these commands,
	ports-mgmt/pkg_cutleaves
	automates the task of removing installed ports that are no
	longer needed.
4.6. Building Packages with
 Poudriere
Poudriere is a
 BSD-licensed utility for creating and testing
 FreeBSD packages. It uses FreeBSD jails to set up isolated
 compilation environments. These jails can be used to build
 packages for versions of FreeBSD that are different from the system
 on which it is installed, and also to build packages for i386 if
 the host is an amd64 system. Once the packages are
 built, they are in a layout identical to the official mirrors.
 These packages are usable by pkg(8) and other package
 management tools.
Poudriere is installed using
 the ports-mgmt/poudriere package
 or port. The installation includes a sample configuration
 file /usr/local/etc/poudriere.conf.sample.
 Copy this file to
 /usr/local/etc/poudriere.conf. Edit the
 copied file to suit the local configuration.
While ZFS is not required on the system
 running poudriere, it is beneficial.
 When ZFS is used,
 ZPOOL must be specified in
 /usr/local/etc/poudriere.conf and
 FREEBSD_HOST should be set to a nearby
 mirror. Defining CCACHE_DIR enables the use
 of devel/ccache to cache
 compilation and reduce build times for frequently-compiled code.
 It may be convenient to put
 poudriere datasets in an isolated
 tree mounted at /poudriere. Defaults for the
 other configuration values are adequate.
The number of processor cores detected is used to define how
 many builds will run in parallel. Supply enough virtual memory,
 either with RAM or swap space. If virtual
 memory runs out, the compilation jails will stop and be torn
 down, resulting in weird error messages.
4.6.1. Initialize Jails and Port Trees
After configuration, initialize
	poudriere so that it installs a
	jail with the required FreeBSD tree and a ports tree. Specify a
	name for the jail using -j and the FreeBSD
	version with -v. On systems running
	FreeBSD/amd64, the architecture can be set with
	-a to either i386 or
	amd64. The default is the
	architecture shown by uname.
poudriere jail -c -j 10amd64 -v 10.0-RELEASE
====>> Creating 10amd64 fs... done
====>> Fetching base.txz for FreeBSD 10.0-RELEASE amd64
/poudriere/jails/10amd64/fromftp/base.txz 100% of 59 MB 1470 kBps 00m42s
====>> Extracting base.txz... done
====>> Fetching src.txz for FreeBSD 10.0-RELEASE amd64
/poudriere/jails/10amd64/fromftp/src.txz 100% of 107 MB 1476 kBps 01m14s
====>> Extracting src.txz... done
====>> Fetching games.txz for FreeBSD 10.0-RELEASE amd64
/poudriere/jails/10amd64/fromftp/games.txz 100% of 865 kB 734 kBps 00m01s
====>> Extracting games.txz... done
====>> Fetching lib32.txz for FreeBSD 10.0-RELEASE amd64
/poudriere/jails/10amd64/fromftp/lib32.txz 100% of 14 MB 1316 kBps 00m12s
====>> Extracting lib32.txz... done
====>> Cleaning up... done
====>> Jail 10amd64 10.0-RELEASE amd64 is ready to be used
poudriere ports -c -p local
====>> Creating local fs... done
====>> Extracting portstree "local"...
Looking up portsnap.FreeBSD.org mirrors... 7 mirrors found.
Fetching public key from ec2-eu-west-1.portsnap.freebsd.org... done.
Fetching snapshot tag from ec2-eu-west-1.portsnap.freebsd.org... done.
Fetching snapshot metadata... done.
Fetching snapshot generated at Tue Feb 11 01:07:15 CET 2014:
94a3431f0ce567f6452ffde4fd3d7d3c6e1da143efec76100% of 69 MB 1246 kBps 00m57s
Extracting snapshot... done.
Verifying snapshot integrity... done.
Fetching snapshot tag from ec2-eu-west-1.portsnap.freebsd.org... done.
Fetching snapshot metadata... done.
Updating from Tue Feb 11 01:07:15 CET 2014 to Tue Feb 11 16:05:20 CET 2014.
Fetching 4 metadata patches... done.
Applying metadata patches... done.
Fetching 0 metadata files... done.
Fetching 48 patches.
(48/48) 100.00% done.
done.
Applying patches...
done.
Fetching 1 new ports or files... done.
/poudriere/ports/tester/CHANGES
/poudriere/ports/tester/COPYRIGHT

[...]

Building new INDEX files... done.
On a single computer, poudriere
	can build ports with multiple configurations, in multiple
	jails, and from different port trees. Custom configurations
	for these combinations are called sets.
	See the CUSTOMIZATION section of poudriere(8) for details
	after ports-mgmt/poudriere or
	ports-mgmt/poudriere-devel is
	installed.
The basic configuration shown here puts a single jail-,
	port-, and set-specific make.conf in
	/usr/local/etc/poudriere.d.
	The filename in this example is created by combining the jail
	name, port name, and set name:
	10amd64-local-workstation-make.conf.
	The system make.conf and this new file
	are combined at build time to create the
	make.conf used by the build jail.
Packages to be built are entered in
	10amd64-local-workstation-pkglist:
editors/emacs
devel/git
ports-mgmt/pkg
...
Options and dependencies for the specified ports are
	configured:
poudriere options -j 10amd64 -p local -z workstation -f 10amd64-local-workstation-pkglist
Finally, packages are built and a package
	repository is created:
poudriere bulk -j 10amd64 -p local -z workstation -f 10amd64-local-workstation-pkglist
While running, pressing Ctrl+t
	displays the current state of the build.
	Poudriere also builds files in
	/poudriere/logs/bulk/jailname
	that can be used with a web server to display build
	information.
After completion, the new packages are now available for
	installation from the poudriere
	repository.
For more information on using
	poudriere, see poudriere(8)
	and the main web site, https://github.com/freebsd/poudriere/wiki.
4.6.2. Configuring pkg Clients to Use a Poudriere
	Repository
While it is possible to use both a custom repository along
	side of the official repository, sometimes it is useful to
	disable the official repository. This is done by creating a
	configuration file that overrides and disables the official
	configuration file. Create
	/usr/local/etc/pkg/repos/FreeBSD.conf
	that contains the following:
FreeBSD: {
	enabled: no
}
Usually it is easiest to serve a poudriere repository to
	the client machines via HTTP. Set up a webserver to serve up
	the package directory, for instance:
	/usr/local/poudriere/data/packages/10amd64,
	where 10amd64
	is the name of the build.
If the URL to the package repository is:
	http://pkg.example.com/10amd64, then the
	repository configuration file in
	/usr/local/etc/pkg/repos/custom.conf
	would look like:
custom: {
	url: "http://pkg.example.com/10amd64",
	enabled: yes,
}
4.7. Post-Installation Considerations
Regardless of whether the software was installed from a
 binary package or port, most third-party applications require
 some level of configuration after installation. The following
 commands and locations can be used to help determine what was
 installed with the application.
	Most applications install at least one default
	 configuration file in /usr/local/etc.
	 In cases where an application has a large number of
	 configuration files, a subdirectory will be created to hold
	 them. Often, sample configuration files are installed which
	 end with a suffix such as .sample. The
	 configuration files should be reviewed and possibly
	 edited to meet the system's needs. To edit a sample file,
	 first copy it without the .sample
	 extension.

	Applications which provide documentation will install
	 it into /usr/local/share/doc and many
	 applications also install manual pages. This documentation
	 should be consulted before continuing.

	Some applications run services which must be added
	 to /etc/rc.conf before starting the
	 application. These applications usually install a startup
	 script in /usr/local/etc/rc.d. See
	 Starting
	 Services for more information.
Note:
By design, applications do not run their startup
	 script upon installation, nor do they run their stop
	 script upon deinstallation or upgrade. This decision
	 is left to the individual system administrator.

	Users of csh(1) should run
	 rehash to rebuild the known binary list
	 in the shells PATH.

	Use pkg info to determine which
	 files, man pages, and binaries were installed with the
	 application.

4.8. Dealing with Broken Ports
When a port does not build or
 install, try the following:
	Search to see if there is a fix pending for the port in
	 the Problem
	 Report database. If so, implementing the proposed
	 fix may fix the issue.

	Ask the maintainer of the port for help. Type
	 make maintainer
	 in the ports skeleton or read the port's
	 Makefile to find the maintainer's
	 email address. Remember to include the
	 $FreeBSD: line from the port's
	 Makefile and the output leading up to
	 the error in the email to the maintainer.
Note:
Some ports are not maintained by an individual but
	 instead by a group maintainer represented by a mailing
	 list. Many, but not all, of these addresses look
	 like <freebsd-listname@FreeBSD.org>.
	 Please take this into account when sending an
	 email.
In particular, ports maintained by
	 <ports@FreeBSD.org> are not
	 maintained by a specific individual. Instead, any fixes
	 and support come from the general community who subscribe
	 to that mailing list. More volunteers are always
	 needed!

If there is no response to the email, use
	 Bugzilla to submit a bug report using the
	 instructions in Writing
	 FreeBSD Problem Reports.

	Fix it! The Porter's
	 Handbook includes detailed information on the
	 ports infrastructure so that you can fix the occasional
	 broken port or even submit your own!

	Install the package instead of the port using the
	 instructions in Section 4.4, “Using pkg for Binary Package
 Management”.

Chapter 5. The X Window System
5.1. Synopsis
An installation of FreeBSD using
 bsdinstall does not automatically
 install a graphical user interface. This chapter describes how
 to install and configure Xorg,
 which provides the open source X Window System used to provide a
 graphical environment. It then describes how to find and
 install a desktop environment or window manager.
Note:
Users who prefer an installation method that automatically
	configures the Xorg and offers a
	choice of window managers during installation should refer to
	the http://www.trueos.org/
	website.

For more information on the video hardware that
 Xorg supports, refer to the x.org website.
After reading this chapter, you will know:
	The various components of the X Window System, and how
	 they interoperate.

	How to install and configure
	 Xorg.

	How to install and configure several window managers
	 and desktop environments.

	How to use TrueType® fonts in
	 Xorg.

	How to set up your system for graphical logins
	 (XDM).

Before reading this chapter, you should:
	Know how to install additional third-party
	 software as described in Chapter 4, Installing Applications: Packages and Ports.

5.2. Terminology
While it is not necessary to understand all of the details
 of the various components in the X Window System and how they
 interact, some basic knowledge of these components can be
 useful.
	X server
	X was designed from the beginning to be
	 network-centric, and adopts a “client-server”
	 model. In this model, the “X server” runs on
	 the computer that has the keyboard, monitor, and mouse
	 attached. The server's responsibility includes tasks such
	 as managing the display, handling input from the keyboard
	 and mouse, and handling input or output from other devices
	 such as a tablet or a video projector. This confuses some
	 people, because the X terminology is exactly backward to
	 what they expect. They expect the “X server”
	 to be the big powerful machine down the hall, and the
	 “X client” to be the machine on their
	 desk.

	X client
	Each X application, such as
	 XTerm or
	 Firefox, is a
	 “client”. A client sends messages to the
	 server such as “Please draw a window at these
	 coordinates”, and the server sends back messages
	 such as “The user just clicked on the OK
	 button”.
In a home or small office environment, the X server
	 and the X clients commonly run on the same computer. It
	 is also possible to run the X server on a less powerful
	 computer and to run the X applications on a more powerful
	 system. In this scenario, the communication between the X
	 client and server takes place over the network.

	window manager
	X does not dictate what windows should look like
	 on-screen, how to move them around with the mouse, which
	 keystrokes should be used to move between windows, what
	 the title bars on each window should look like, whether or
	 not they have close buttons on them, and so on. Instead,
	 X delegates this responsibility to a separate window
	 manager application. There are dozens of window
	 managers available. Each window manager provides
	 a different look and feel: some support virtual desktops,
	 some allow customized keystrokes to manage the desktop,
	 some have a “Start” button, and some are
	 themeable, allowing a complete change of the desktop's
	 look-and-feel. Window managers are available in the
	 x11-wm category of the Ports
	 Collection.
Each window manager uses a different configuration
	 mechanism. Some expect configuration file written by hand
	 while others provide graphical tools for most
	 configuration tasks.

	desktop environment
	KDE and
	 GNOME are considered to be
	 desktop environments as they include an entire suite of
	 applications for performing common desktop tasks. These
	 may include office suites, web browsers, and games.

	focus policy
	The window manager is responsible for the mouse focus
	 policy. This policy provides some means for choosing
	 which window is actively receiving keystrokes and it
	 should also visibly indicate which window is currently
	 active.
One focus policy is called
	 “click-to-focus”. In this model, a window
	 becomes active upon receiving a mouse click. In the
	 “focus-follows-mouse” policy, the window that
	 is under the mouse pointer has focus and the focus is
	 changed by pointing at another window. If the mouse is
	 over the root window, then this window is focused. In the
	 “sloppy-focus” model, if the mouse is moved
	 over the root window, the most recently used window still
	 has the focus. With sloppy-focus, focus is only changed
	 when the cursor enters a new window, and not when exiting
	 the current window. In the “click-to-focus”
	 policy, the active window is selected by mouse click. The
	 window may then be raised and appear in front of all other
	 windows. All keystrokes will now be directed to this
	 window, even if the cursor is moved to another
	 window.
Different window managers support different focus
	 models. All of them support click-to-focus, and the
	 majority of them also support other policies. Consult the
	 documentation for the window manager to determine which
	 focus models are available.

	widgets
	Widget is a term for all of the items in the user
	 interface that can be clicked or manipulated in some way.
	 This includes buttons, check boxes, radio buttons, icons,
	 and lists. A widget toolkit is a set of widgets used to
	 create graphical applications. There are several popular
	 widget toolkits, including Qt, used by
	 KDE, and GTK+, used by
	 GNOME. As a result,
	 applications will have a different look and feel,
	 depending upon which widget toolkit was used to create the
	 application.

5.3. Installing Xorg
On FreeBSD, Xorg can be installed
 as a package or port.
The binary package can be installed quickly but with
 fewer options for customization:
pkg install xorg
To build and install from the Ports Collection:
cd /usr/ports/x11/xorg
make install clean
Either of these installations results in the complete
 Xorg system being installed. Binary packages
 are the best option for most users.
A smaller version of the X system suitable for experienced
 users is available in x11/xorg-minimal. Most
 of the documents, libraries, and applications will not be
 installed. Some applications require these additional
 components to function.
5.4. Xorg Configuration
Warren Block5.4.1. Quick Start
Xorg supports most common
	video cards, keyboards, and pointing devices.
Tip:
Video cards, monitors, and input devices are
	 automatically detected and do not require any manual
	 configuration. Do not create xorg.conf
	 or run a -configure step unless automatic
	 configuration fails.

	If Xorg has been used on
	 this computer before, move or remove any existing
	 configuration files:
mv /etc/X11/xorg.conf ~/xorg.conf.etc
mv /usr/local/etc/X11/xorg.conf ~/xorg.conf.localetc

	Add the user who will run
	 Xorg to the
	 video or
	 wheel group to enable 3D acceleration
	 when available. To add user
	 jru to whichever group is
	 available:
pw groupmod video -m jru || pw groupmod wheel -m jru

	The TWM window manager is included
	 by default. It is started when
	 Xorg starts:
% startx

	On some older versions of FreeBSD, the system console
	 must be set to vt(4) before switching back to the
	 text console will work properly. See
	 Section 5.4.3, “Kernel Mode Setting (KMS)”.

5.4.2. User Group for Accelerated Video
Access to /dev/dri is needed to allow
	3D acceleration on video cards. It is usually simplest to add
	the user who will be running X to either the
	video or wheel group.
	Here, pw(8) is used to add user
	slurms to the
	video group, or to the
	wheel group if there is no
	video group:
pw groupmod video -m slurms || pw groupmod wheel -m slurms
5.4.3. Kernel Mode Setting (KMS)
When the computer switches from displaying the console to
	a higher screen resolution for X, it must set the video
	output mode. Recent versions of
	Xorg use a system inside the kernel to do
	these mode changes more efficiently. Older versions of FreeBSD
	use sc(4), which is not aware of the
	KMS system. The end result is that after
	closing X, the system console is blank, even though it is
	still working. The newer vt(4) console avoids this
	problem.
Add this line to /boot/loader.conf
	to enable vt(4):
kern.vty=vt
5.4.4. Configuration Files
Manual configuration is usually not necessary. Please do
	not manually create configuration files unless
	autoconfiguration does not work.
5.4.4.1. Directory
Xorg looks in several
	 directories for configuration files.
	 /usr/local/etc/X11/ is the recommended
	 directory for these files on FreeBSD. Using this directory
	 helps keep application files separate from operating system
	 files.
Storing configuration files in the legacy
	 /etc/X11/ still works. However, this
	 mixes application files with the base FreeBSD files and is not
	 recommended.
5.4.4.2. Single or Multiple Files
It is easier to use multiple files that each configure a
	 specific setting than the traditional single
	 xorg.conf. These files are stored in
	 the xorg.conf.d/ subdirectory of the
	 main configuration file directory. The full path is
	 typically
	 /usr/local/etc/X11/xorg.conf.d/.
Examples of these files are shown later in this
	 section.
The traditional single xorg.conf
	 still works, but is neither as clear nor as flexible as
	 multiple files in the xorg.conf.d/
	 subdirectory.
5.4.5. Video Cards
Because of changes made in recent versions of FreeBSD, it
	is now possible to use graphics drivers provided by the Ports
	framework or as packages. As such, users can use one of the
	following drivers available from
	graphics/drm-kmod.
	Intel KMS driver
Radeon KMS driver
AMD KMS driver
	2D and 3D acceleration is supported on most
	 Intel KMS driver graphics cards provided by Intel.
Driver name: i915kms
2D and 3D acceleration is supported on most older
	 Radeon KMS driver graphics cards provided by AMD.
Driver name: radeonkms
2D and 3D acceleration is supported on most newer
	 AMD KMS driver graphics cards provided by AMD.
Driver name: amdgpu
For reference, please see https://en.wikipedia.org/wiki/List_of_Intel_graphics_processing_units
	 or https://en.wikipedia.org/wiki/List_of_AMD_graphics_processing_units
	 for a list of supported GPUs.

	Intel®
	3D acceleration is supported on most Intel®
	 graphics up to Ivy Bridge (HD Graphics 2500, 4000, and
	 P4000), including Iron Lake (HD Graphics) and
	 Sandy Bridge (HD Graphics 2000).
Driver name: intel
For reference, see https://en.wikipedia.org/wiki/List_of_Intel_graphics_processing_units.

	AMD® Radeon
	2D and 3D acceleration is supported on Radeon
	 cards up to and including the HD6000 series.
Driver name: radeon
For reference, see https://en.wikipedia.org/wiki/List_of_AMD_graphics_processing_units.

	NVIDIA
	Several NVIDIA drivers are available in the
	 x11 category of the Ports
	 Collection. Install the driver that matches the video
	 card.
For reference, see https://en.wikipedia.org/wiki/List_of_Nvidia_graphics_processing_units.

	Hybrid Combination Graphics
	Some notebook computers add additional graphics
	 processing units to those built into the chipset or
	 processor. Optimus combines
	 Intel® and NVIDIA hardware.
	 Switchable Graphics or
	 Hybrid Graphics are a combination
	 of an Intel® or AMD® processor and an AMD® Radeon
	 GPU.
Implementations of these hybrid graphics systems
	 vary, and Xorg on FreeBSD is
	 not able to drive all versions of them.
Some computers provide a BIOS
	 option to disable one of the graphics adapters or select
	 a discrete mode which can be used
	 with one of the standard video card drivers. For
	 example, it is sometimes possible to disable the NVIDIA
	 GPU in an Optimus system. The
	 Intel® video can then be used with an Intel®
	 driver.
BIOS settings depend on the model
	 of computer. In some situations, both
	 GPUs can be left enabled, but
	 creating a configuration file that only uses the main
	 GPU in the Device
	 section is enough to make such a system
	 functional.

	Other Video Cards
	Drivers for some less-common video cards can be
	 found in the x11-drivers directory
	 of the Ports Collection.
Cards that are not supported by a specific driver
	 might still be usable with the
	 x11-drivers/xf86-video-vesa driver.
	 This driver is installed by x11/xorg.
	 It can also be installed manually as
	 x11-drivers/xf86-video-vesa.
	 Xorg attempts to use this
	 driver when a specific driver is not found for the video
	 card.
x11-drivers/xf86-video-scfb is a
	 similar nonspecialized video driver that works on many
	 UEFI and ARM® computers.

	Setting the Video Driver in a File
	To set the Intel® driver in a configuration
	 file:
Example 5.1. Select Intel® Video Driver in a File
/usr/local/etc/X11/xorg.conf.d/driver-intel.conf
Section "Device"
	Identifier "Card0"
	Driver "intel"
	# BusID "PCI:1:0:0"
EndSection
If more than one video card is present, the
		BusID identifier can be uncommented
		and set to select the desired card. A list of video
		card bus IDs can be displayed with
		pciconf -lv | grep -B3
		 display.

To set the Radeon driver in a configuration
	 file:
Example 5.2. Select Radeon Video Driver in a File
/usr/local/etc/X11/xorg.conf.d/driver-radeon.conf
Section "Device"
	Identifier "Card0"
	Driver "radeon"
EndSection

To set the VESA driver in a
	 configuration file:
Example 5.3. Select VESA Video Driver in a
		File
/usr/local/etc/X11/xorg.conf.d/driver-vesa.conf
Section "Device"
	Identifier "Card0"
	Driver "vesa"
EndSection

To set the scfb driver for use
	 with a UEFI or ARM® computer:
Example 5.4. Select scfb Video Driver in a
		File
/usr/local/etc/X11/xorg.conf.d/driver-scfb.conf
Section "Device"
	Identifier "Card0"
	Driver "scfb"
EndSection

5.4.6. Monitors
Almost all monitors support the Extended Display
	Identification Data standard (EDID).
	Xorg uses EDID
	to communicate with the monitor and detect the supported
	resolutions and refresh rates. Then it selects the most
	appropriate combination of settings to use with that
	monitor.
Other resolutions supported by the monitor can be
	chosen by setting the desired resolution in configuration
	files, or after the X server has been started with
	xrandr(1).
	Using xrandr(1)
	Run xrandr(1) without any parameters to see a
	 list of video outputs and detected monitor modes:
% xrandr
Screen 0: minimum 320 x 200, current 3000 x 1920, maximum 8192 x 8192
DVI-0 connected primary 1920x1200+1080+0 (normal left inverted right x axis y axis) 495mm x 310mm
 1920x1200 59.95*+
 1600x1200 60.00
 1280x1024 85.02 75.02 60.02
 1280x960 60.00
 1152x864 75.00
 1024x768 85.00 75.08 70.07 60.00
 832x624 74.55
 800x600 75.00 60.32
 640x480 75.00 60.00
 720x400 70.08
DisplayPort-0 disconnected (normal left inverted right x axis y axis)
HDMI-0 disconnected (normal left inverted right x axis y axis)
This shows that the DVI-0 output
	 is being used to display a screen resolution of
	 1920x1200 pixels at a refresh rate of about 60 Hz.
	 Monitors are not attached to the
	 DisplayPort-0 and
	 HDMI-0 connectors.
Any of the other display modes can be selected with
	 xrandr(1). For example, to switch to 1280x1024 at
	 60 Hz:
% xrandr --mode 1280x1024 --rate 60
A common task is using the external video output on
	 a notebook computer for a video projector.
The type and quantity of output connectors varies
	 between devices, and the name given to each output
	 varies from driver to driver. What one driver calls
	 HDMI-1, another might call
	 HDMI1. So the first step is to run
	 xrandr(1) to list all the available
	 outputs:
% xrandr
Screen 0: minimum 320 x 200, current 1366 x 768, maximum 8192 x 8192
LVDS1 connected 1366x768+0+0 (normal left inverted right x axis y axis) 344mm x 193mm
 1366x768 60.04*+
 1024x768 60.00
 800x600 60.32 56.25
 640x480 59.94
VGA1 connected (normal left inverted right x axis y axis)
 1280x1024 60.02 + 75.02
 1280x960 60.00
 1152x864 75.00
 1024x768 75.08 70.07 60.00
 832x624 74.55
 800x600 72.19 75.00 60.32 56.25
 640x480 75.00 72.81 66.67 60.00
 720x400 70.08
HDMI1 disconnected (normal left inverted right x axis y axis)
DP1 disconnected (normal left inverted right x axis y axis)
Four outputs were found: the built-in panel
	 LVDS1, and external
	 VGA1, HDMI1, and
	 DP1 connectors.
The projector has been connected to the
	 VGA1 output. xrandr(1) is now
	 used to set that output to the native resolution of the
	 projector and add the additional space to the right side
	 of the desktop:
% xrandr --output VGA1 --auto --right-of LVDS1
--auto chooses the resolution and
	 refresh rate detected by EDID. If
	 the resolution is not correctly detected, a fixed value
	 can be given with --mode instead of
	 the --auto statement. For example,
	 most projectors can be used with a 1024x768 resolution,
	 which is set with
	 --mode 1024x768.
xrandr(1) is often run from
	 .xinitrc to set the appropriate
	 mode when X starts.

	Setting Monitor Resolution in a File
	To set a screen resolution of 1024x768 in a
	 configuration file:
Example 5.5. Set Screen Resolution in a File
/usr/local/etc/X11/xorg.conf.d/screen-resolution.conf
Section "Screen"
	Identifier "Screen0"
	Device "Card0"
	SubSection "Display"
	Modes "1024x768"
	EndSubSection
EndSection

The few monitors that do not have
	 EDID can be configured by setting
	 HorizSync and
	 VertRefresh to the range of
	 frequencies supported by the monitor.
Example 5.6. Manually Setting Monitor Frequencies
/usr/local/etc/X11/xorg.conf.d/monitor0-freq.conf
Section "Monitor"
	Identifier "Monitor0"
	HorizSync 30-83 # kHz
	VertRefresh 50-76 # Hz
EndSection

5.4.7. Input Devices
5.4.7.1. Keyboards
	Keyboard Layout
	The standardized location of keys on a keyboard
		is called a layout. Layouts and
		other adjustable parameters are listed in
		xkeyboard-config(7).
A United States layout is the default. To select
		an alternate layout, set the
		XkbLayout and
		XkbVariant options in an
		InputClass. This will be applied
		to all input devices that match the class.
This example selects a French keyboard layout with
		the oss variant.
Example 5.7. Setting a Keyboard Layout
/usr/local/etc/X11/xorg.conf.d/keyboard-fr-oss.conf
Section	"InputClass"
	Identifier	"KeyboardDefaults"
	Driver		"keyboard"
	MatchIsKeyboard	"on"
	Option		"XkbLayout" "fr"
	Option		"XkbVariant" "oss"
EndSection

Example 5.8. Setting Multiple Keyboard Layouts
Set United States, Spanish, and Ukrainian
		 keyboard layouts. Cycle through these layouts by
		 pressing
		 Alt+Shift. x11/xxkb or
		 x11/sbxkb can be used for
		 improved layout switching control and
		 current layout indicators.
/usr/local/etc/X11/xorg.conf.d/kbd-layout-multi.conf
Section	"InputClass"
	Identifier	"All Keyboards"
	MatchIsKeyboard	"yes"
	Option		"XkbLayout" "us, es, ua"
EndSection

	Closing Xorg From the
	 Keyboard
	X can be closed with a combination of keys.
		By default, that key combination is not set because it
		conflicts with keyboard commands for some
		applications. Enabling this option requires changes
		to the keyboard InputDevice
		section:
Example 5.9. Enabling Keyboard Exit from X
/usr/local/etc/X11/xorg.conf.d/keyboard-zap.conf
Section	"InputClass"
	Identifier	"KeyboardDefaults"
	Driver		"keyboard"
	MatchIsKeyboard	"on"
	Option		"XkbOptions" "terminate:ctrl_alt_bksp"
EndSection

5.4.7.2. Mice and Pointing Devices
Many mouse parameters can be adjusted with configuration
	 options. See mousedrv(4) for a full list.
	Mouse Buttons
	The number of buttons on a mouse can be set in the
		mouse InputDevice section of
		xorg.conf. To set the number of
		buttons to 7:
Example 5.10. Setting the Number of Mouse Buttons
/usr/local/etc/X11/xorg.conf.d/mouse0-buttons.conf
Section "InputDevice"
	Identifier "Mouse0"
	Option "Buttons" "7"
EndSection

5.4.8. Manual Configuration
In some cases, Xorg
	autoconfiguration does not work with particular hardware, or a
	different configuration is desired. For these cases, a custom
	configuration file can be created.
Warning:
Do not create manual configuration files unless
	 required. Unnecessary manual configuration can prevent
	 proper operation.

A configuration file can be generated by
	Xorg based on the detected
	hardware. This file is often a useful starting point for
	custom configurations.
Generating an xorg.conf:
Xorg -configure
The configuration file is saved to
	/root/xorg.conf.new. Make any changes
	desired, then test that file with:
Xorg -config /root/xorg.conf.new
After the new configuration has been adjusted and tested,
	it can be split into smaller files in the normal location,
	/usr/local/etc/X11/xorg.conf.d/.
5.5. Using Fonts in Xorg
5.5.1. Type1 Fonts
The default fonts that ship with
	Xorg are less than ideal for
	typical desktop publishing applications. Large presentation
	fonts show up jagged and unprofessional looking, and small
	fonts are almost completely unintelligible. However, there
	are several free, high quality Type1 (PostScript®) fonts
	available which can be readily used with
	Xorg. For instance, the URW font
	collection (x11-fonts/urwfonts) includes
	high quality versions of standard type1 fonts (Times Roman®, Helvetica®, Palatino® and others). The
	Freefonts collection (x11-fonts/freefonts)
	includes many more fonts, but most of them are intended for
	use in graphics software such as the
	Gimp, and are not complete enough
	to serve as screen fonts. In addition,
	Xorg can be configured to use
	TrueType® fonts with a minimum of effort. For more details
	on this, see the X(7) manual page or Section 5.5.2, “TrueType® Fonts”.
To install the above Type1 font collections from binary packages,
	run the following commands:
pkg install urwfonts
Alternatively, to build from the Ports Collection, run the following
	commands:
cd /usr/ports/x11-fonts/urwfonts
make install clean
And likewise with the freefont or other collections. To
	have the X server detect these fonts, add an appropriate line
	to the X server configuration file
	(/etc/X11/xorg.conf), which reads:
FontPath "/usr/local/share/fonts/urwfonts/"
Alternatively, at the command line in the X session
	run:
% xset fp+ /usr/local/share/fonts/urwfonts
% xset fp rehash
This will work but will be lost when the X session is
	closed, unless it is added to the startup file
	(~/.xinitrc for a normal
	startx session, or
	~/.xsession when logging in through a
	graphical login manager like XDM).
	A third way is to use the new
	/usr/local/etc/fonts/local.conf as
	demonstrated in Section 5.5.3, “Anti-Aliased Fonts”.
5.5.2. TrueType® Fonts
Xorg has built in support for
	rendering TrueType® fonts. There are two different modules
	that can enable this functionality. The freetype module is
	used in this example because it is more consistent with the
	other font rendering back-ends. To enable the freetype module
	just add the following line to the "Module"
	section of /etc/X11/xorg.conf.
Load "freetype"
Now make a directory for the TrueType® fonts (for
	example, /usr/local/share/fonts/TrueType)
	and copy all of the TrueType® fonts into this directory.
	Keep in mind that TrueType® fonts cannot be directly taken
	from an Apple® Mac®; they must be in
	UNIX®/MS-DOS®/Windows® format for use by
	Xorg. Once the files have been
	copied into this directory, use
	mkfontscale to create a
	fonts.dir, so that the X font renderer
	knows that these new files have been installed.
	mkfontscale can be installed as a
	package:
pkg install mkfontscale
Then create an index of X font files in a
	directory:
cd /usr/local/share/fonts/TrueType
mkfontscale
Now add the TrueType® directory to the font path. This
	is just the same as described in Section 5.5.1, “Type1 Fonts”:
% xset fp+ /usr/local/share/fonts/TrueType
% xset fp rehash
or add a FontPath line to
	xorg.conf.
Now Gimp,
	Apache OpenOffice, and all of the
	other X applications should now recognize the installed
	TrueType® fonts. Extremely small fonts (as with text in a
	high resolution display on a web page) and extremely large
	fonts (within StarOffice™) will
	look much better now.
5.5.3. Anti-Aliased Fonts
All fonts in Xorg that are
	found in /usr/local/share/fonts/ and
	~/.fonts/ are automatically made
	available for anti-aliasing to Xft-aware applications. Most
	recent applications are Xft-aware, including
	KDE,
	GNOME, and
	Firefox.
To control which fonts are anti-aliased, or to
	configure anti-aliasing properties, create (or edit, if it
	already exists) the file
	/usr/local/etc/fonts/local.conf. Several
	advanced features of the Xft font system can be tuned using
	this file; this section describes only some simple
	possibilities. For more details, please see
	fonts-conf(5).
This file must be in XML format. Pay careful attention to
	case, and make sure all tags are properly closed. The file
	begins with the usual XML header followed by a DOCTYPE
	definition, and then the <fontconfig>
	tag:
<?xml version="1.0"?>
 <!DOCTYPE fontconfig SYSTEM "fonts.dtd">
 <fontconfig>
As previously stated, all fonts in
	/usr/local/share/fonts/ as well as
	~/.fonts/ are already made available to
	Xft-aware applications. To add another directory
	outside of these two directory trees, add a line like
	this to
	/usr/local/etc/fonts/local.conf:
<dir>/path/to/my/fonts</dir>
After adding new fonts, and especially new font
	directories, rebuild
	the font caches:
fc-cache -f
Anti-aliasing makes borders slightly fuzzy, which makes
	very small text more readable and removes
	“staircases” from large text, but can cause
	eyestrain if applied to normal text. To exclude font sizes
	smaller than 14 point from anti-aliasing, include these
	lines:
 <match target="font">
	 <test name="size" compare="less">
		<double>14</double>
	 </test>
	 <edit name="antialias" mode="assign">
		<bool>false</bool>
	 </edit>
	</match>
	<match target="font">
	 <test name="pixelsize" compare="less" qual="any">
		<double>14</double>
	 </test>
	 <edit mode="assign" name="antialias">
		<bool>false</bool>
	 </edit>
	</match>
Spacing for some monospaced fonts might also be
	inappropriate with anti-aliasing. This seems to be an issue
	with KDE, in particular. One
	possible fix is to force the spacing for such fonts
	to be 100. Add these lines:
	<match target="pattern" name="family">
	 <test qual="any" name="family">
	 <string>fixed</string>
	 </test>
	 <edit name="family" mode="assign">
	 <string>mono</string>
	 </edit>
	</match>
	<match target="pattern" name="family">
	 <test qual="any" name="family">
		<string>console</string>
	 </test>
	 <edit name="family" mode="assign">
		<string>mono</string>
	 </edit>
	</match>
(this aliases the other common names for fixed fonts as
	"mono"), and then add:
 <match target="pattern" name="family">
	 <test qual="any" name="family">
		 <string>mono</string>
	 </test>
	 <edit name="spacing" mode="assign">
		 <int>100</int>
	 </edit>
	 </match>
Certain fonts, such as Helvetica, may have a problem when
	anti-aliased. Usually this manifests itself as a font that
	seems cut in half vertically. At worst, it may cause
	applications to crash. To avoid this, consider adding the
	following to local.conf:
 <match target="pattern" name="family">
	 <test qual="any" name="family">
		 <string>Helvetica</string>
	 </test>
	 <edit name="family" mode="assign">
		 <string>sans-serif</string>
	 </edit>
	 </match>
After editing
	local.conf, make certain to end the file
	with the </fontconfig> tag. Not
	doing this will cause changes to be ignored.
Users can add personalized settings by creating their own
	~/.config/fontconfig/fonts.conf. This
	file uses the same XML format described
	above.
One last point: with an LCD screen, sub-pixel sampling may
	be desired. This basically treats the (horizontally
	separated) red, green and blue components separately to
	improve the horizontal resolution; the results can be
	dramatic. To enable this, add the line somewhere in
	local.conf:
	 <match target="font">
	 <test qual="all" name="rgba">
		 <const>unknown</const>
	 </test>
	 <edit name="rgba" mode="assign">
		 <const>rgb</const>
	 </edit>
	 </match>
Note:
Depending on the sort of display,
	 rgb may need to be changed to
	 bgr, vrgb or
	 vbgr: experiment and see which works
	 best.

5.6. The X Display Manager
Originally contributed by Seth Kingsley. Xorg provides an X Display
 Manager, XDM, which can be used for
 login session management. XDM
 provides a graphical interface for choosing which display server
 to connect to and for entering authorization information such as
 a login and password combination.
This section demonstrates how to configure the X Display
 Manager on FreeBSD. Some desktop environments provide their own
 graphical login manager. Refer to Section 5.7.1, “GNOME” for instructions on how to configure
 the GNOME Display Manager and Section 5.7.2, “KDE” for
 instructions on how to configure the KDE Display Manager.
5.6.1. Configuring XDM
To install XDM, use the
	x11/xdm package or port. Once installed,
	XDM can be configured to run when
	the machine boots up by editing this entry in
	/etc/ttys:
ttyv8 "/usr/local/bin/xdm -nodaemon" xterm off secure
Change the off to on
	and save the edit. The ttyv8 in this entry
	indicates that XDM will run on the
	ninth virtual terminal.
The XDM configuration directory
	is located in /usr/local/etc/X11/xdm.
	This directory contains several files used to change the
	behavior and appearance of XDM, as
	well as a few scripts and programs used to set up the desktop
	when XDM is running. Table 5.1, “XDM Configuration Files” summarizes the function of each
	of these files. The exact syntax and usage of these files is
	described in xdm(1).
Table 5.1. XDM Configuration Files
	File	Description
	Xaccess	The protocol for connecting to
		XDM is called the X Display
		Manager Connection Protocol (XDMCP)
		This file is a client authorization ruleset for
		controlling XDMCP connections from
		remote machines. By default, this file does not allow
		any remote clients to connect.
	Xresources	This file controls the look and feel of the
		XDM display chooser and
		login screens. The default configuration is a simple
		rectangular login window with the hostname of the
		machine displayed at the top in a large font and
		“Login:” and “Password:”
		prompts below. The format of this file is identical
		to the app-defaults file described in the
		Xorg
		documentation.
	Xservers	The list of local and remote displays the chooser
		should provide as login choices.
	Xsession	Default session script for logins which is run by
		XDM after a user has logged
		in. This points to a customized session
		script in ~/.xsession.
	Xsetup_*	Script to automatically launch applications
		before displaying the chooser or login interfaces.
		There is a script for each display being used, named
		Xsetup_*, where
		* is the local display number.
		Typically these scripts run one or two programs in the
		background such as
		xconsole.
	xdm-config	Global configuration for all displays running
		on this machine.
	xdm-errors	Contains errors generated by the server program.
		If a display that XDM is
		trying to start hangs, look at this file for error
		messages. These messages are also written to the
		user's ~/.xsession-errors on a
		per-session basis.
	xdm-pid	The running process ID of
		XDM.

5.6.2. Configuring Remote Access
By default, only users on the same system can login using
	XDM. To enable users on other
	systems to connect to the display server, edit the access
	control rules and enable the connection listener.
To configure XDM to listen for
	any remote connection, comment out the
	DisplayManager.requestPort line in
	/usr/local/etc/X11/xdm/xdm-config by
	putting a ! in front of it:
! SECURITY: do not listen for XDMCP or Chooser requests
! Comment out this line if you want to manage X terminals with xdm
DisplayManager.requestPort: 0
Save the edits and restart XDM.
	To restrict remote access, look at the example entries in
	/usr/local/etc/X11/xdm/Xaccess and refer
	to xdm(1) for further information.
5.7. Desktop Environments
Contributed by Valentino Vaschetto. This section describes how to install three popular desktop
 environments on a FreeBSD system. A desktop environment can range
 from a simple window manager to a complete suite of desktop
 applications. Over a hundred desktop environments are available
 in the x11-wm category of the Ports
 Collection.
5.7.1. GNOME
GNOME is a user-friendly
	desktop environment. It includes a panel for starting
	applications and displaying status, a desktop, a set of tools
	and applications, and a set of conventions that make it easy
	for applications to cooperate and be consistent with each
	other. More information regarding
	GNOME on FreeBSD can be found at https://www.FreeBSD.org/gnome.
	That web site contains additional documentation about
	installing, configuring, and managing
	GNOME on FreeBSD.
This desktop environment can be installed from a
	package:
pkg install gnome3
To instead build GNOME from
	ports, use the following command.
	GNOME is a large application and
	will take some time to compile, even on a fast
	computer.
cd /usr/ports/x11/gnome3
make install clean
GNOME
	requires /proc to be mounted. Add this
	line to /etc/fstab to mount this file
	system automatically during system startup:
proc /proc procfs rw 0 0
GNOME uses
	D-Bus and
	HAL for a message bus and hardware
	abstraction. These applications are automatically installed
	as dependencies of GNOME. Enable
	them in /etc/rc.conf so they will be
	started when the system boots:
dbus_enable="YES"
hald_enable="YES"
After installation,
	configure Xorg to start
	GNOME. The easiest way to do this
	is to enable the GNOME Display Manager,
	GDM, which is installed as part of
	the GNOME package or port. It can
	be enabled by adding this line to
	/etc/rc.conf:
gdm_enable="YES"
It is often desirable to also start all
	GNOME services. To achieve this,
	add a second line to /etc/rc.conf:
gnome_enable="YES"
GDM will start
	automatically when the system boots.
A second method for starting
	GNOME is to type
	startx from the command-line after
	configuring ~/.xinitrc. If this file
	already exists, replace the line that starts the current
	window manager with one that starts
	/usr/local/bin/gnome-session. If this
	file does not exist, create it with this command:
% echo "exec /usr/local/bin/gnome-session" > ~/.xinitrc
A third method is to use XDM as
	the display manager. In this case, create an executable
	~/.xsession:
% echo "exec /usr/local/bin/gnome-session" > ~/.xsession
5.7.2. KDE
KDE is another easy-to-use
	desktop environment. This desktop provides a suite of
	applications with a consistent look and feel, a standardized
	menu and toolbars, keybindings, color-schemes,
	internationalization, and a centralized, dialog-driven desktop
	configuration. More information on
	KDE can be found at http://www.kde.org/.
	For FreeBSD-specific information, consult http://freebsd.kde.org.
To install the KDE package,
	type:
pkg install x11/kde5
To instead build the KDE port,
	use the following command. Installing the port will provide a
	menu for selecting which components to install.
	KDE is a large application and will
	take some time to compile, even on a fast computer.
cd /usr/ports/x11/kde5
make install clean
KDE requires
	/proc to be mounted. Add this line to
	/etc/fstab to mount this file system
	automatically during system startup:
proc /proc procfs rw 0 0
KDE uses
	D-Bus and
	HAL for a message bus and hardware
	abstraction. These applications are automatically installed
	as dependencies of KDE. Enable
	them in /etc/rc.conf so they will be
	started when the system boots:
dbus_enable="YES"
hald_enable="YES"
Since KDE Plasma 5, the KDE Display Manager,
	KDM is no longer developed.
	A possible replacement is SDDM.
	To install it, type:
pkg install x11/sddm
Add this line to
	/etc/rc.conf:
sddm_enable="YES"
A second method for launching
	KDE is to type
	startx from the command line. For this to
	work, the following line is needed in
	~/.xinitrc:
exec ck-launch-session startkde
A third method for starting KDE
	is through XDM. To do so, create
	an executable ~/.xsession as
	follows:
% echo "exec ck-launch-session startkde" > ~/.xsession
Once KDE is started, refer to
	its built-in help system for more information on how to use
	its various menus and applications.
5.7.3. Xfce
Xfce is a desktop environment
	based on the GTK+ toolkit used by
	GNOME. However, it is more
	lightweight and provides a simple, efficient, easy-to-use
	desktop. It is fully configurable, has a main panel with
	menus, applets, and application launchers, provides a file
	manager and sound manager, and is themeable. Since it is
	fast, light, and efficient, it is ideal for older or slower
	machines with memory limitations. More information on
	Xfce can be found at http://www.xfce.org.
To install the Xfce
	package:
pkg install xfce
Alternatively, to build the port:
cd /usr/ports/x11-wm/xfce4
make install clean
Xfce uses
	D-Bus for a message bus. This
	application is automatically installed as dependency of
	Xfce. Enable it in
	/etc/rc.conf so it will be started when
	the system boots:
dbus_enable="YES"
Unlike GNOME or
	KDE,
	Xfce does not provide its own login
	manager. In order to start Xfce
	from the command line by typing startx,
	first create ~/.xinitrc with this
	command:
% echo ". /usr/local/etc/xdg/xfce4/xinitrc" > ~/.xinitrc
An alternate method is to use
	XDM. To configure this method,
	create an executable ~/.xsession:
% echo ". /usr/local/etc/xdg/xfce4/xinitrc" > ~/.xsession
5.9. Troubleshooting
If the mouse does not work, you will need to first configure
 it before proceeding.
 In recent Xorg
 versions, the InputDevice sections in
 xorg.conf are ignored in favor of the
 autodetected devices. To restore the old behavior, add the
 following line to the ServerLayout or
 ServerFlags section of this file:
Option "AutoAddDevices" "false"
Input devices may then be configured as in previous
	versions, along with any other options needed (e.g., keyboard
	layout switching).
Note:
As previously explained the
	 hald daemon will, by default,
	 automatically detect your keyboard. There are chances that
	 your keyboard layout or model will not be correct, desktop
	 environments like GNOME,
	 KDE or
	 Xfce provide tools to configure
	 the keyboard. However, it is possible to set the keyboard
	 properties directly either with the help of the
	 setxkbmap(1) utility or with a
	 hald's configuration rule.
For example if, one wants to use a PC 102 keys keyboard
	 coming with a french layout, we have to create a keyboard
	 configuration file for hald
	 called x11-input.fdi and saved in the
	 /usr/local/etc/hal/fdi/policy
	 directory. This file should contain the following
	 lines:
<?xml version="1.0" encoding="iso-8859-1"?>
<deviceinfo version="0.2">
 <device>
 <match key="info.capabilities" contains="input.keyboard">
	 <merge key="input.x11_options.XkbModel" type="string">pc102</merge>
	 <merge key="input.x11_options.XkbLayout" type="string">fr</merge>
 </match>
 </device>
</deviceinfo>
If this file already exists, just copy and add to your
	 file the lines regarding the keyboard configuration.
You will have to reboot your machine to force
	 hald to read this file.
It is possible to do the same configuration from an X
	 terminal or a script with this command line:
% setxkbmap -model pc102 -layout fr
/usr/local/share/X11/xkb/rules/base.lst
	 lists the various keyboard, layouts and options
	 available.

The xorg.conf.new configuration file
	may now be tuned to taste. Open the file in a text editor
	such as emacs(1) or ee(1). If the monitor is an
	older or unusual model that does not support autodetection of
	sync frequencies, those settings can be added to
	xorg.conf.new under the
	"Monitor" section:
Section "Monitor"
	Identifier "Monitor0"
	VendorName "Monitor Vendor"
	ModelName "Monitor Model"
	HorizSync 30-107
	VertRefresh 48-120
EndSection
Most monitors support sync frequency autodetection, making
	manual entry of these values unnecessary. For the few
	monitors that do not support autodetection, avoid potential
	damage by only entering values provided by the
	manufacturer.
X allows DPMS (Energy Star) features to be used with
	capable monitors. The xset(1) program controls the
	time-outs and can force standby, suspend, or off modes. If
	you wish to enable DPMS features for your monitor, you must
	add the following line to the monitor section:
Option "DPMS"
While the xorg.conf.new configuration
	file is still open in an editor, select the default resolution
	and color depth desired. This is defined in the
	"Screen" section:
Section "Screen"
	Identifier "Screen0"
	Device "Card0"
	Monitor "Monitor0"
	DefaultDepth 24
	SubSection "Display"
		Viewport 0 0
		Depth 24
		Modes "1024x768"
	EndSubSection
EndSection
The DefaultDepth keyword describes the
	color depth to run at by default. This can be overridden with
	the -depth command line switch to
	Xorg(1). The Modes keyword describes
	the resolution to run at for the given color depth. Note that
	only VESA standard modes are supported as defined by the
	target system's graphics hardware. In the example above, the
	default color depth is twenty-four bits per pixel. At this
	color depth, the accepted resolution is 1024 by 768
	pixels.
Finally, write the configuration file and test it using
	the test mode given above.
Note:
One of the tools available to assist you during
	 troubleshooting process are the
	 Xorg log files, which contain
	 information on each device that the
	 Xorg server attaches to.
	 Xorg log file names are in the
	 format of /var/log/Xorg.0.log. The
	 exact name of the log can vary from
	 Xorg.0.log to
	 Xorg.8.log and so forth.

If all is well, the configuration file needs to be
	installed in a common location where Xorg(1) can find it.
	This is typically /etc/X11/xorg.conf or
	/usr/local/etc/X11/xorg.conf.
cp xorg.conf.new /etc/X11/xorg.conf
The Xorg configuration
	process is now complete. Xorg
	may be now started with the startx(1) utility. The
	Xorg server may also be started
	with the use of xdm(1).
5.9.1. Configuration with Intel® i810
	 Graphics Chipsets
Configuration with Intel® i810 integrated chipsets
	 requires the agpgart AGP programming
	 interface for Xorg to drive the
	 card. See the agp(4) driver manual page for more
	 information.
This will allow configuration of the hardware as any
	 other graphics board. Note on systems without the
	 agp(4) driver compiled in the kernel, trying to load
	 the module with kldload(8) will not work. This driver
	 has to be in the kernel at boot time through being compiled
	 in or using /boot/loader.conf.
5.9.2. Adding a Widescreen Flatpanel to the Mix
This section assumes a bit of advanced configuration
	 knowledge. If attempts to use the standard configuration
	 tools above have not resulted in a working configuration,
	 there is information enough in the log files to be of use in
	 getting the setup working. Use of a text editor will be
	 necessary.
Current widescreen (WSXGA, WSXGA+, WUXGA, WXGA, WXGA+,
	 et.al.) formats support 16:10 and 10:9 formats or aspect
	 ratios that can be problematic. Examples of some common
	 screen resolutions for 16:10 aspect ratios are:
	2560x1600

	1920x1200

	1680x1050

	1440x900

	1280x800

At some point, it will be as easy as adding one of these
	 resolutions as a possible Mode in the
	 Section "Screen" as such:
Section "Screen"
Identifier "Screen0"
Device "Card0"
Monitor "Monitor0"
DefaultDepth 24
SubSection "Display"
	Viewport 0 0
	Depth 24
	Modes "1680x1050"
EndSubSection
EndSection
Xorg is smart enough to
	 pull the resolution information from the widescreen via
	 I2C/DDC information so it knows what the monitor can handle
	 as far as frequencies and resolutions.
If those ModeLines do not exist in
	 the drivers, one might need to give
	 Xorg a little hint. Using
	 /var/log/Xorg.0.log one can extract
	 enough information to manually create a
	 ModeLine that will work. Simply look for
	 information resembling this:
(II) MGA(0): Supported additional Video Mode:
(II) MGA(0): clock: 146.2 MHz Image Size: 433 x 271 mm
(II) MGA(0): h_active: 1680 h_sync: 1784 h_sync_end 1960 h_blank_end 2240 h_border: 0
(II) MGA(0): v_active: 1050 v_sync: 1053 v_sync_end 1059 v_blanking: 1089 v_border: 0
(II) MGA(0): Ranges: V min: 48 V max: 85 Hz, H min: 30 H max: 94 kHz, PixClock max 170 MHz
This information is called EDID information. Creating a
	 ModeLine from this is just a matter of
	 putting the numbers in the correct order:
ModeLine <name> <clock> <4 horiz. timings> <4 vert. timings>
So that the ModeLine in
	 Section "Monitor" for this example would
	 look like this:
Section "Monitor"
Identifier "Monitor1"
VendorName "Bigname"
ModelName "BestModel"
ModeLine "1680x1050" 146.2 1680 1784 1960 2240 1050 1053 1059 1089
Option "DPMS"
EndSection
Now having completed these simple editing steps, X
	 should start on your new widescreen monitor.
5.9.3. Troubleshooting Compiz Fusion
	5.9.3.1.
	I have installed
		Compiz Fusion, and
		after running the commands you mention, my windows are
		left without title bars and buttons. What is
		wrong?

		You are probably missing a setting in
		/etc/X11/xorg.conf. Review this
		file carefully and check especially the
		DefaultDepth and
		AddARGBGLXVisuals
		directives.

	5.9.3.2.
	When I run the command to start
		Compiz Fusion, the X
		server crashes and I am back at the console. What is
		wrong?

		If you check
		/var/log/Xorg.0.log, you
		will probably find error messages during the X
		startup. The most common would be:
(EE) NVIDIA(0): Failed to initialize the GLX module; please check in your X
(EE) NVIDIA(0): log file that the GLX module has been loaded in your X
(EE) NVIDIA(0): server, and that the module is the NVIDIA GLX module. If
(EE) NVIDIA(0): you continue to encounter problems, Please try
(EE) NVIDIA(0): reinstalling the NVIDIA driver.
This is usually the case when you upgrade
	 Xorg. You will need to
	 reinstall the x11/nvidia-driver
	 package so glx is built again.

Part II. Common Tasks
Now that the basics have been covered, this part of the
	book discusses some frequently used features of FreeBSD. These
	chapters:
	Introduce popular and useful desktop applications:
	 browsers, productivity tools, document viewers, and
	 more.

	Introduce a number of multimedia tools available for
	 FreeBSD.

	Explain the process of building a customized FreeBSD
	 kernel to enable extra functionality.

	Describe the print system in detail, both for desktop
	 and network-connected printer setups.

	Show how to run Linux applications on the FreeBSD
	 system.

Some of these chapters recommend prior reading, and this
	is noted in the synopsis at the beginning of each
	chapter.

Chapter 6. Desktop Applications
6.1. Synopsis
While FreeBSD is popular as a server for its performance and
 stability, it is also suited for day-to-day use as a desktop.
 With over 24,000 applications available as FreeBSD packages
 or ports, it is easy to build a customized desktop that runs
 a wide variety of desktop applications. This chapter
 demonstrates how to install numerous desktop applications,
 including web browsers, productivity software, document viewers,
 and financial software.
Note:
Users who prefer to install a pre-built desktop version
	of FreeBSD rather than configuring one from scratch should
	refer to the
	trueos.org
	 website.

Readers of this chapter should know how to:
	Install additional software using packages or
	 ports as described in Chapter 4, Installing Applications: Packages and Ports.

	Install X and a window manager as described in
	 Chapter 5, The X Window System.

For information on how to configure a multimedia
 environment, refer to Chapter 7, Multimedia.
6.2. Browsers
FreeBSD does not come with a pre-installed web browser.
 Instead, the www
 category of the Ports Collection contains many browsers which
 can be installed as a package or compiled from the Ports
 Collection.
The KDE and
 GNOME desktop environments include
 their own HTML browser. Refer to Section 5.7, “Desktop Environments”
 for more information on how to set up these complete
 desktops.
Some lightweight browsers include
 www/dillo2, www/links, and
 www/w3m.
This section demonstrates how to install the following
 popular web browsers and indicates if the application is
 resource-heavy, takes time to compile from ports, or has any
 major dependencies.
	Application Name	Resources Needed	Installation from Ports	Notes
	Firefox	medium	heavy	FreeBSD, Linux®, and localized versions are
	 available
	Opera	light	light	FreeBSD and Linux® versions are available
	Konqueror	medium	heavy	Requires KDE
	 libraries
	Chromium	medium	heavy	Requires Gtk+

6.2.1. Firefox
Firefox is an open source
	browser that features a
	standards-compliant HTML display engine, tabbed browsing,
	popup blocking, extensions, improved security, and more.
	Firefox is based on the
	Mozilla codebase.
To install the package of the latest release version of
	Firefox, type:
pkg install firefox
To instead install Firefox
	Extended Support Release (ESR) version, use:
pkg install firefox-esr
Localized versions are available in
	www/firefox-i18n and
	www/firefox-esr-i18n.
The Ports Collection can instead be used to compile the
	desired version of Firefox from
	source code. This example builds
	www/firefox, where
	firefox can be replaced with the ESR or
	localized version to install.
cd /usr/ports/www/firefox
make install clean
6.2.2. Opera
Opera is a full-featured and
	standards-compliant browser which is still lightweight and
	fast. It comes with a built-in mail and news reader, an IRC
	client, an RSS/Atom feeds reader, and more. It is available
	as a native FreeBSD version and as a version that runs under
	Linux® emulation.
This command installs the package of the FreeBSD version of
	Opera. Replace
	opera with linux-opera
	to instead install the Linux® version.
pkg install opera
Alternately, install either version through the Ports
	Collection. This example compiles the native version:
cd /usr/ports/www/opera
make install clean
To install the Linux® version, substitute
	linux-opera in place of
	opera.
To install Adobe® Flash® plugin support, first compile
	the www/linux-flashplayer
	port. Licensing restrictions prevent making a package
	available. Then install www/opera-linuxplugins. This example
	compiles both applications from ports:
cd /usr/ports/www/linux-flashplayer
make install clean
cd /usr/ports/www/opera-linuxplugins
make install clean
Once installed, check the presence of the plugin by
	starting the browser, entering
	opera:plugins in the location bar and
	pressing Enter. A list should appear with
	all the currently available plugins.
To add the Java™ plugin,
	follow install
	java/icedtea-web.
6.2.3. Konqueror
Konqueror is more than a web
	browser as it is also a file manager and a multimedia
	viewer. It is included in the
	x11/kde4-baseapps package or port.
Konqueror supports WebKit as
	well as its own KHTML. WebKit is a rendering engine used by
	many modern browsers including Chromium. To use WebKit with
	Konqueror on FreeBSD, install the
	www/kwebkitpart package
	or port. This example installs the package:
pkg install kwebkitpart
To install from the Ports Collection:
cd /usr/ports/www/kwebkitpart
make install clean
To enable WebKit within
	Konqueror, click
	“Settings”, “Configure Konqueror”.
	In the “General” settings page, click the
	drop-down menu next to “Default web browser
	engine” and change “KHTML” to
	“WebKit”.
Konqueror also supports
	Flash®. A “How To”
	guide for getting Flash® support
	on Konqueror is available at http://freebsd.kde.org/howtos/konqueror-flash.php.
6.2.4. Chromium
Chromium is an open source
	browser project that aims to build a safer, faster, and more
	stable web browsing experience.
	Chromium features tabbed browsing,
	popup blocking, extensions, and much more.
	Chromium is the open source project
	upon which the Google Chrome web browser is based.
Chromium can be installed as a
	package by typing:
pkg install chromium
Alternatively, Chromium can be
	compiled from source using the Ports Collection:
cd /usr/ports/www/chromium
make install clean
Note:
The executable for Chromium
	 is /usr/local/bin/chrome, not
	 /usr/local/bin/chromium.

6.4. Document Viewers
Some new document formats have gained popularity since
 the advent of UNIX® and the viewers they require may not be
 available in the base system. This section demonstrates how to
 install the following document viewers:
	Application Name	Resources Needed	Installation from Ports	Major Dependencies
	Xpdf	light	light	FreeType
	gv	light	light	Xaw3d
	Geeqie	light	light	Gtk+ or
	 GNOME
	ePDFView	light	light	Gtk+
	Okular	light	heavy	KDE

6.4.1. Xpdf
For users that prefer a small FreeBSD PDF viewer,
	Xpdf provides a light-weight and
	efficient viewer which requires few resources. It uses the
	standard X fonts and does not require any additional
	toolkits.
To install the Xpdf
	package:
pkg install xpdf
If the package is not available, use the Ports
	Collection:
cd /usr/ports/graphics/xpdf
make install clean
Once the installation is complete, launch
	xpdf and use the right mouse button to
	activate the menu.
6.4.2. gv
gv is a PostScript® and PDF
	viewer. It is based on ghostview,
	but has a nicer look as it is based on the
	Xaw3d widget toolkit.
	gv has many configurable features,
	such as orientation, paper size, scale, and anti-aliasing.
	Almost any operation can be performed with either the
	keyboard or the mouse.
To install gv as a
	package:
pkg install gv
If a package is unavailable, use the Ports
	Collection:
cd /usr/ports/print/gv
make install clean
6.4.3. Geeqie
Geeqie is a fork from the
	unmaintained GQView project, in an
	effort to move development forward and integrate the existing
	patches. Geeqie is an image
	manager which supports viewing a file with a single click,
	launching an external editor, and thumbnail previews. It also
	features a slideshow mode and some basic file operations,
	making it easy to manage image collections and to find
	duplicate files. Geeqie supports
	full screen viewing and internationalization.
To install the Geeqie
	package:
pkg install geeqie
If the package is not available, use the Ports
	Collection:
cd /usr/ports/graphics/geeqie
make install clean
6.4.4. ePDFView
ePDFView is a lightweight
	PDF document viewer that only uses the
	Gtk+ and
	Poppler libraries. It is currently
	under development, but already opens most
	PDF files (even encrypted), save copies of
	documents, and has support for printing using
	CUPS.
To install ePDFView as a
	package:
pkg install epdfview
If a package is unavailable, use the Ports
	Collection:
cd /usr/ports/graphics/epdfview
make install clean
6.4.5. Okular
Okular is a universal document
	viewer based on KPDF for
	KDE. It can open many document
	formats, including PDF, PostScript®, DjVu,
	CHM, XPS, and
	ePub.
To install Okular as a
	package:
pkg install okular
If a package is unavailable, use the Ports
	Collection:
cd /usr/ports/graphics/okular
make install clean
7.2. Setting Up the Sound Card
Contributed by Moses Moore. Enhanced by Marc Fonvieille. Before beginning the configuration, determine the model of
 the sound card and the chip it uses. FreeBSD supports a wide
 variety of sound cards. Check the supported audio devices
 list of the Hardware
	Notes to see if the card is supported and which FreeBSD
 driver it uses.
In order to use the sound device, its device driver must be
 loaded. The easiest way is to load a kernel module for the
 sound card with kldload(8). This example loads the driver
 for a built-in audio chipset based on the Intel
 specification:
kldload snd_hda
To automate the loading of this driver at boot time, add the
 driver to /boot/loader.conf. The line for
 this driver is:
snd_hda_load="YES"
Other available sound modules are listed in
 /boot/defaults/loader.conf. When unsure
 which driver to use, load the snd_driver
 module:
kldload snd_driver
This is a metadriver which loads all of the most common
 sound drivers and can be used to speed up the search for the
 correct driver. It is also possible to load all sound drivers
 by adding the metadriver to
 /boot/loader.conf.
To determine which driver was selected for the sound card
 after loading the snd_driver metadriver,
 type cat /dev/sndstat.
7.2.1. Configuring a Custom Kernel with Sound Support
This section is for users who prefer to statically compile
	in support for the sound card in a custom kernel. For more
	information about recompiling a kernel, refer to Chapter 8, Configuring the FreeBSD Kernel.
When using a custom kernel to provide sound support, make
	sure that the audio framework driver exists in the custom
	kernel configuration file:
device sound
Next, add support for the sound card. To continue the
	example of the built-in audio chipset based on the Intel
	specification from the previous section, use the following
	line in the custom kernel configuration file:
device snd_hda
Be sure to read the manual page of the driver for the
	device name to use for the driver.
Non-PnP ISA sound cards may require the IRQ and I/O port
	settings of the card to be added to
	/boot/device.hints. During the boot
	process, loader(8) reads this file and passes the
	settings to the kernel. For example, an old Creative
	SoundBlaster® 16 ISA non-PnP card will use the
	snd_sbc(4) driver in conjunction with
	snd_sb16. For this card, the following
	lines must be added to the kernel configuration file:
device snd_sbc
device snd_sb16
If the card uses the 0x220 I/O port and
	IRQ 5, these lines must also be added to
	/boot/device.hints:
hint.sbc.0.at="isa"
hint.sbc.0.port="0x220"
hint.sbc.0.irq="5"
hint.sbc.0.drq="1"
hint.sbc.0.flags="0x15"
The syntax used in /boot/device.hints
	is described in sound(4) and the manual page for the
	driver of the sound card.
The settings shown above are the defaults. In some
	cases, the IRQ or other settings may need to be changed to
	match the card. Refer to snd_sbc(4) for more information
	about this card.
7.2.2. Testing Sound
After loading the required module or rebooting into the
	custom kernel, the sound card should be detected. To confirm,
	run dmesg | grep pcm. This example is
	from a system with a built-in Conexant CX20590 chipset:
pcm0: <NVIDIA (0x001c) (HDMI/DP 8ch)> at nid 5 on hdaa0
pcm1: <NVIDIA (0x001c) (HDMI/DP 8ch)> at nid 6 on hdaa0
pcm2: <Conexant CX20590 (Analog 2.0+HP/2.0)> at nid 31,25 and 35,27 on hdaa1
The status of the sound card may also be checked using
	this command:
cat /dev/sndstat
FreeBSD Audio Driver (newpcm: 64bit 2009061500/amd64)
Installed devices:
pcm0: <NVIDIA (0x001c) (HDMI/DP 8ch)> (play)
pcm1: <NVIDIA (0x001c) (HDMI/DP 8ch)> (play)
pcm2: <Conexant CX20590 (Analog 2.0+HP/2.0)> (play/rec) default
The output will vary depending upon the sound card. If no
	pcm devices are listed, double-check
	that the correct device driver was loaded or compiled into the
	kernel. The next section lists some common problems and their
	solutions.
If all goes well, the sound card should now work in FreeBSD.
	If the CD or DVD drive
	is properly connected to the sound card, one can insert an
	audio CD in the drive and play it with
	cdcontrol(1):
% cdcontrol -f /dev/acd0 play 1
Warning:
Audio CDs have specialized encodings
	 which means that they should not be mounted using
	 mount(8).

Various applications, such as
	audio/workman, provide a friendlier
	interface. The audio/mpg123 port can be
	installed to listen to MP3 audio files.
Another quick way to test the card is to send data to
	/dev/dsp:
% cat filename > /dev/dsp
where
	filename can
	be any type of file. This command should produce some noise,
	confirming that the sound card is working.
Note:
The /dev/dsp* device nodes will
	 be created automatically as needed. When not in use, they
	 do not exist and will not appear in the output of
	 ls(1).

7.2.3. Setting up Bluetooth Sound Devices
Connecting to a Bluetooth device is out of scope for this
	chapter. Refer to Section 31.5, “Bluetooth” for more information.
To get Bluetooth sound sink working with FreeBSD's sound
	system, users have to install
	audio/virtual_oss first:
pkg install virtual_oss
audio/virtual_oss requires
	cuse to be loaded into the kernel:
kldload cuse
To load cuse during system startup, run
	this command:
sysrc -f /boot/loader.conf cuse_load=yes
To use headphones as a sound sink with
	audio/virtual_oss, users need to create a
	virtual device after connecting to a Bluetooth audio
	device:
virtual_oss -C 2 -c 2 -r 48000 -b 16 -s 768 -R /dev/null -P /dev/bluetooth/headphones -d dsp
Note:
headphones in this example is
	 a hostname from /etc/bluetooth/hosts.
	 BT_ADDR could be used instead.

Refer to virtual_oss(8) for more information.
7.2.4. Troubleshooting Sound
Table 7.1, “Common Error Messages”
	lists some common error messages and their solutions:
Table 7.1. Common Error Messages
	Error	Solution
	sb_dspwr(XX) timed
		 out	The I/O port is not set
		correctly.

	bad irq XX	The IRQ is set incorrectly. Make sure
		that the set IRQ and the sound IRQ are the
		same.

	xxx: gus pcm not attached, out of
		 memory	There is not enough available memory to
		use the device.

	xxx: can't open
		 /dev/dsp!	Type fstat | grep
		 dsp to check if another application is
		holding the device open. Noteworthy troublemakers are
		esound and
		KDE's sound
		support.

Modern graphics cards often come with their own sound
	driver for use with HDMI. This sound
	device is sometimes enumerated before the sound card meaning
	that the sound card will not be used as the default playback
	device. To check if this is the case, run
	dmesg and look for
	pcm. The output looks something like
	this:
...
hdac0: HDA Driver Revision: 20100226_0142
hdac1: HDA Driver Revision: 20100226_0142
hdac0: HDA Codec #0: NVidia (Unknown)
hdac0: HDA Codec #1: NVidia (Unknown)
hdac0: HDA Codec #2: NVidia (Unknown)
hdac0: HDA Codec #3: NVidia (Unknown)
pcm0: <HDA NVidia (Unknown) PCM #0 DisplayPort> at cad 0 nid 1 on hdac0
pcm1: <HDA NVidia (Unknown) PCM #0 DisplayPort> at cad 1 nid 1 on hdac0
pcm2: <HDA NVidia (Unknown) PCM #0 DisplayPort> at cad 2 nid 1 on hdac0
pcm3: <HDA NVidia (Unknown) PCM #0 DisplayPort> at cad 3 nid 1 on hdac0
hdac1: HDA Codec #2: Realtek ALC889
pcm4: <HDA Realtek ALC889 PCM #0 Analog> at cad 2 nid 1 on hdac1
pcm5: <HDA Realtek ALC889 PCM #1 Analog> at cad 2 nid 1 on hdac1
pcm6: <HDA Realtek ALC889 PCM #2 Digital> at cad 2 nid 1 on hdac1
pcm7: <HDA Realtek ALC889 PCM #3 Digital> at cad 2 nid 1 on hdac1
...
In this example, the graphics card
	(NVidia) has been enumerated before the
	sound card (Realtek ALC889). To use the
	sound card as the default playback device, change
	hw.snd.default_unit to the unit that should
	be used for playback:
sysctl hw.snd.default_unit=n
where n is the number of the sound
	device to use. In this example, it should be
	4. Make this change permanent by adding
	the following line to
	/etc/sysctl.conf:
hw.snd.default_unit=4
7.2.5. Utilizing Multiple Sound Sources
Contributed by Munish Chopra. It is often desirable to have multiple sources of sound
	that are able to play simultaneously. FreeBSD uses
	“Virtual Sound Channels” to multiplex the sound
	card's playback by mixing sound in the kernel.
Three sysctl(8) knobs are available for configuring
	virtual channels:
sysctl dev.pcm.0.play.vchans=4
sysctl dev.pcm.0.rec.vchans=4
sysctl hw.snd.maxautovchans=4
This example allocates four virtual channels, which is a
	practical number for everyday use. Both
	dev.pcm.0.play.vchans=4 and
	dev.pcm.0.rec.vchans=4 are configurable
	after a device has been attached and represent the number of
	virtual channels pcm0 has for playback
	and recording. Since the pcm module can
	be loaded independently of the hardware drivers,
	hw.snd.maxautovchans indicates how many
	virtual channels will be given to an audio device when it is
	attached. Refer to pcm(4) for more information.
Note:
The number of virtual channels for a device cannot be
	 changed while it is in use. First, close any programs using
	 the device, such as music players or sound daemons.

The correct pcm device will
	automatically be allocated transparently to a program that
	requests /dev/dsp0.
7.2.6. Setting Default Values for Mixer Channels
Contributed by Josef El-Rayes. The default values for the different mixer channels are
	hardcoded in the source code of the pcm(4) driver. While
	sound card mixer levels can be changed using mixer(8) or
	third-party applications and daemons, this is not a permanent
	solution. To instead set default mixer values at the driver
	level, define the appropriate values in
	/boot/device.hints, as seen in this
	example:
hint.pcm.0.vol="50"
This will set the volume channel to a default value of
	50 when the pcm(4) module is
	loaded.
7.3. MP3 Audio
Contributed by Chern Lee. This section describes some MP3
 players available for FreeBSD, how to rip audio
 CD tracks, and how to encode and decode
 MP3s.
7.3.1. MP3 Players
A popular graphical MP3 player is
	Audacious. It supports
	Winamp skins and additional
	plugins. The interface is intuitive, with a playlist, graphic
	equalizer, and more. Those familiar with
	Winamp will find
	Audacious simple to use. On FreeBSD,
	Audacious can be installed from the
	multimedia/audacious port or package.
	Audacious is a descendant of XMMS.
The audio/mpg123 package or port
	provides an alternative, command-line MP3
	player. Once installed, specify the MP3
	file to play on the command line. If the system has multiple
	audio devices, the sound device can also be specified:
mpg123 -a /dev/dsp1.0 Foobar-GreatestHits.mp3
High Performance MPEG 1.0/2.0/2.5 Audio Player for Layers 1, 2 and 3
 version 1.18.1; written and copyright by Michael Hipp and others
 free software (LGPL) without any warranty but with best wishes

Playing MPEG stream from Foobar-GreatestHits.mp3 ...
MPEG 1.0 layer III, 128 kbit/s, 44100 Hz joint-stereo
Additional MP3 players are available in
	the FreeBSD Ports Collection.
7.3.2. Ripping CD Audio Tracks
Before encoding a CD or
	CD track to MP3, the
	audio data on the CD must be ripped to the
	hard drive. This is done by copying the raw
	CD Digital Audio (CDDA)
	data to WAV files.
The cdda2wav tool, which is installed
	with the sysutils/cdrtools suite, can be
	used to rip audio information from
	CDs.
With the audio CD in the drive, the
	following command can be issued as
	root to rip an
	entire CD into individual, per track,
	WAV files:
cdda2wav -D 0,1,0 -B
In this example, the
	-D 0,1,0 indicates
	the SCSI device 0,1,0
	containing the CD to rip. Use
	cdrecord -scanbus to determine the correct
	device parameters for the system.
To rip individual tracks, use -t to
	specify the track:
cdda2wav -D 0,1,0 -t 7
To rip a range of tracks, such as track one to seven,
	specify a range:
cdda2wav -D 0,1,0 -t 1+7
To rip from an ATAPI
	(IDE) CDROM drive,
	specify the device name in place of the
	SCSI unit numbers. For example, to rip
	track 7 from an IDE drive:
cdda2wav -D /dev/acd0 -t 7
Alternately, dd can be used to extract
	audio tracks on ATAPI drives, as described
	in Section 17.5.5, “Duplicating Audio CDs”.
7.3.3. Encoding and Decoding MP3s
Lame is a popular
	MP3 encoder which can be installed from the
	audio/lame port. Due to patent issues, a
	package is not available.
The following command will convert the ripped
	WAV file
	audio01.wav to
	audio01.mp3:
lame -h -b 128 --tt "Foo Song Title" --ta "FooBar Artist" --tl "FooBar Album" \
--ty "2014" --tc "Ripped and encoded by Foo" --tg "Genre" audio01.wav audio01.mp3
The specified 128 kbits is a standard
	MP3 bitrate while the 160 and 192 bitrates
	provide higher quality. The higher the bitrate, the larger
	the size of the resulting MP3. The
	-h turns on the
	“higher quality but a little slower”
	mode. The options beginning with --t
	indicate ID3 tags, which usually contain
	song information, to be embedded within the
	MP3 file. Additional encoding options can
	be found in the lame manual
	page.
In order to burn an audio CD from
	MP3s, they must first be converted to a
	non-compressed file format. XMMS
	can be used to convert to the WAV format,
	while mpg123 can be used to convert
	to the raw Pulse-Code Modulation (PCM)
	audio data format.
To convert audio01.mp3 using
	mpg123, specify the name of the
	PCM file:
mpg123 -s audio01.mp3 > audio01.pcm
To use XMMS to convert a
	MP3 to WAV format, use
	these steps:
Procedure 7.1. Converting to WAV Format in
	 XMMS
	Launch XMMS.

	Right-click the window to bring up the
	 XMMS menu.

	Select Preferences under
	 Options.

	Change the Output Plugin to “Disk Writer
	 Plugin”.

	Press Configure.

	Enter or browse to a directory to write the
	 uncompressed files to.

	Load the MP3 file into
	 XMMS as usual, with volume at
	 100% and EQ settings turned off.

	Press Play. The
	 XMMS will appear as if it is
	 playing the MP3, but no music will be
	 heard. It is actually playing the MP3
	 to a file.

	When finished, be sure to set the default Output
	 Plugin back to what it was before in order to listen to
	 MP3s again.

Both the WAV and PCM
	formats can be used with cdrecord.
	When using WAV files, there will be a small
	tick sound at the beginning of each track. This sound is the
	header of the WAV file. The
	audio/sox port or package can be used to
	remove the header:
% sox -t wav -r 44100 -s -w -c 2 track.wav track.raw
Refer to Section 17.5, “Creating and Using CD Media” for more
	information on using a CD burner in
	FreeBSD.
7.5. TV Cards
Original contribution by Josef El-Rayes. Enhanced and adapted by Marc Fonvieille. TV cards can be used to watch broadcast or cable TV on a
 computer. Most cards accept composite video via an
 RCA or S-video input and some cards include a
 FM radio tuner.
FreeBSD provides support for PCI-based TV cards using a
 Brooktree Bt848/849/878/879 video capture chip with the
 bktr(4) driver. This driver supports most Pinnacle PCTV
 video cards. Before purchasing a TV card, consult bktr(4)
 for a list of supported tuners.
7.5.1. Loading the Driver
In order to use the card, the bktr(4) driver must be
	loaded. To automate this at boot time, add the following line
	to /boot/loader.conf:
bktr_load="YES"
Alternatively, one can statically compile support for
	the TV card into a custom kernel. In that case, add the
	following lines to the custom kernel configuration
	file:
device	 bktr
device	iicbus
device	iicbb
device	smbus
These additional devices are necessary as the card
	components are interconnected via an I2C bus. Then, build and
	install a new kernel.
To test that the tuner is correctly detected, reboot the
	system. The TV card should appear in the boot messages, as
	seen in this example:
bktr0: <BrookTree 848A> mem 0xd7000000-0xd7000fff irq 10 at device 10.0 on pci0
iicbb0: <I2C bit-banging driver> on bti2c0
iicbus0: <Philips I2C bus> on iicbb0 master-only
iicbus1: <Philips I2C bus> on iicbb0 master-only
smbus0: <System Management Bus> on bti2c0
bktr0: Pinnacle/Miro TV, Philips SECAM tuner.
The messages will differ according to the hardware. If
	necessary, it is possible to override some of the detected
	parameters using sysctl(8) or custom kernel configuration
	options. For example, to force the tuner to a Philips SECAM
	tuner, add the following line to a custom kernel configuration
	file:
options OVERRIDE_TUNER=6
or, use sysctl(8):
sysctl hw.bt848.tuner=6
Refer to bktr(4) for a description of the available
	sysctl(8) parameters and kernel options.
7.5.2. Useful Applications
To use the TV card, install one of the following
	applications:
	multimedia/fxtv
	 provides TV-in-a-window and image/audio/video capture
	 capabilities.

	multimedia/xawtv
	 is another TV application with similar features.

	audio/xmradio
	 provides an application for using the FM radio tuner of a
	 TV card.

More applications are available in the FreeBSD Ports
	Collection.
7.5.3. Troubleshooting
If any problems are encountered with the TV card, check
	that the video capture chip and the tuner are supported by
	bktr(4) and that the right configuration options were
	used. For more support or to ask questions about supported TV
	cards, refer to the freebsd-multimedia mailing list.
7.7. Image Scanners
Written by Marc Fonvieille. In FreeBSD, access to image scanners is provided by
 SANE (Scanner Access Now Easy), which
 is available in the FreeBSD Ports Collection.
 SANE will also use some FreeBSD device
 drivers to provide access to the scanner hardware.
FreeBSD supports both SCSI and
 USB scanners. Depending upon the scanner
 interface, different device drivers are required. Be sure the
 scanner is supported by SANE prior
 to performing any configuration. Refer to
 http://www.sane-project.org/sane-supported-devices.html
 for more information about supported scanners.
This chapter describes how to determine if the scanner has
 been detected by FreeBSD. It then provides an overview of how to
 configure and use SANE on a FreeBSD
 system.
7.7.1. Checking the Scanner
The GENERIC kernel includes the
	device drivers needed to support USB
	scanners. Users with a custom kernel should ensure that the
	following lines are present in the custom kernel configuration
	file:
device usb
device uhci
device ohci
device ehci
To determine if the USB scanner is
	detected, plug it in and use dmesg to
	determine whether the scanner appears in the system message
	buffer. If it does, it should display a message similar to
	this:
ugen0.2: <EPSON> at usbus0
In this example, an EPSON
 Perfection® 1650
	USB scanner was detected on
	/dev/ugen0.2.
If the scanner uses a SCSI interface,
	it is important to know which SCSI
	controller board it will use. Depending upon the
	SCSI chipset, a custom kernel configuration
	file may be needed. The GENERIC kernel
	supports the most common SCSI controllers.
	Refer to /usr/src/sys/conf/NOTES to
	determine the correct line to add to a custom kernel
	configuration file. In addition to the
	SCSI adapter driver, the following lines
	are needed in a custom kernel configuration file:
device scbus
device pass
Verify that the device is displayed in the system message
	buffer:
pass2 at aic0 bus 0 target 2 lun 0
pass2: <AGFA SNAPSCAN 600 1.10> Fixed Scanner SCSI-2 device
pass2: 3.300MB/s transfers
If the scanner was not powered-on at system boot, it is
	still possible to manually force detection by performing a
	SCSI bus scan with
	camcontrol:
camcontrol rescan all
Re-scan of bus 0 was successful
Re-scan of bus 1 was successful
Re-scan of bus 2 was successful
Re-scan of bus 3 was successful
The scanner should now appear in the
	SCSI devices list:
camcontrol devlist
<IBM DDRS-34560 S97B> at scbus0 target 5 lun 0 (pass0,da0)
<IBM DDRS-34560 S97B> at scbus0 target 6 lun 0 (pass1,da1)
<AGFA SNAPSCAN 600 1.10> at scbus1 target 2 lun 0 (pass3)
<PHILIPS CDD3610 CD-R/RW 1.00> at scbus2 target 0 lun 0 (pass2,cd0)
Refer to scsi(4) and camcontrol(8) for more
	details about SCSI devices on FreeBSD.
7.7.2. SANE Configuration
The SANE system is split in two
	parts: the backends
	(graphics/sane-backends) and the frontends
	(graphics/sane-frontends or
	graphics/xsane). The backends provide
	access to the scanner. Refer to http://www.sane-project.org/sane-supported-devices.html
	to determine which backend supports the scanner. The
	frontends provide the graphical scanning interface.
	graphics/sane-frontends installs
	xscanimage while
	graphics/xsane installs
	xsane.
To install the two parts from binary packages:
pkg install xsane sane-frontends
Alternatively, to install from the Ports Collection
cd /usr/ports/graphics/sane-frontends
make install clean
cd /usr/ports/graphics/xsane
make install clean
After installing the
	graphics/sane-backends port or package, use
	sane-find-scanner to check the scanner
	detection by the SANE
	system:
sane-find-scanner -q
found SCSI scanner "AGFA SNAPSCAN 600 1.10" at /dev/pass3
The output should show the interface type of the scanner
	and the device node used to attach the scanner to the system.
	The vendor and the product model may or may not appear.
Note:
Some USB scanners require firmware to
	 be loaded. Refer to sane-find-scanner(1) and sane(7) for
	 details.

Next, check if the scanner will be identified by a
	scanning frontend. The SANE
	backends include scanimage which can be
	used to list the devices and perform an image acquisition.
	Use -L to list the scanner devices. The
	first example is for a SCSI scanner and the
	second is for a USB scanner:
scanimage -L
device `snapscan:/dev/pass3' is a AGFA SNAPSCAN 600 flatbed scanner
scanimage -L
device 'epson2:libusb:/dev/usb:/dev/ugen0.2' is a Epson GT-8200 flatbed scanner
In this second example,
	'epson2:libusb:/dev/usb:/dev/ugen0.2' is
	the backend name (epson2) and
	/dev/ugen0.2 is the device node used by the
	scanner.
If scanimage is unable to identify the
	scanner, this message will appear:
scanimage -L

No scanners were identified. If you were expecting something different,
check that the scanner is plugged in, turned on and detected by the
sane-find-scanner tool (if appropriate). Please read the documentation
which came with this software (README, FAQ, manpages).
If this happens, edit the backend configuration file in
	/usr/local/etc/sane.d/ and define the
	scanner device used. For example, if the undetected scanner
	model is an EPSON
 Perfection® 1650 and it uses the
	epson2 backend, edit
	/usr/local/etc/sane.d/epson2.conf. When
	editing, add a line specifying the interface and the device
	node used. In this case, add the following line:
usb /dev/ugen0.2
Save the edits and verify that the scanner is identified
	with the right backend name and the device node:
scanimage -L
device 'epson2:libusb:/dev/usb:/dev/ugen0.2' is a Epson GT-8200 flatbed scanner
Once scanimage -L sees the scanner, the
	configuration is complete and the scanner is now ready to
	use.
While scanimage can be used to perform
	an image acquisition from the command line, it is often
	preferable to use a graphical interface to perform image
	scanning. The graphics/sane-frontends
	package or port installs a simple but efficient graphical
	interface, xscanimage.
Alternately, xsane, which is
	installed with the graphics/xsane package
	or port, is another popular graphical scanning frontend. It
	offers advanced features such as various scanning modes, color
	correction, and batch scans. Both of these applications are
	usable as a GIMP plugin.
7.7.3. Scanner Permissions
In order to have access to the scanner, a user needs read
	and write permissions to the device node used by the scanner.
	In the previous example, the USB scanner
	uses the device node /dev/ugen0.2 which
	is really a symlink to the real device node
	/dev/usb/0.2.0. The symlink and the
	device node are owned, respectively, by the wheel and operator groups. While
	adding the user to these groups will allow access to the
	scanner, it is considered insecure to add a user to
	wheel. A better
	solution is to create a group and make the scanner device
	accessible to members of this group.
This example creates a group called usb:
pw groupadd usb
Then, make the /dev/ugen0.2 symlink
	and the /dev/usb/0.2.0 device node
	accessible to the usb group with write
	permissions of 0660 or
	0664 by adding the following lines to
	/etc/devfs.rules:
[system=5]
add path ugen0.2 mode 0660 group usb
add path usb/0.2.0 mode 0666 group usb
Finally, add the users to usb
	in order to allow access to the scanner:
pw groupmod usb -m joe
For more details refer to pw(8).
Chapter 8. Configuring the FreeBSD Kernel
8.1. Synopsis
The kernel is the core of the FreeBSD operating system. It
 is responsible for managing memory, enforcing security controls,
 networking, disk access, and much more. While much of FreeBSD is
 dynamically configurable, it is still occasionally necessary to
 configure and compile a custom kernel.
After reading this chapter, you will know:
	When to build a custom kernel.

	How to take a hardware inventory.

	How to customize a kernel configuration file.

	How to use the kernel configuration file to create and
	 build a new kernel.

	How to install the new kernel.

	How to troubleshoot if things go wrong.

All of the commands listed in the examples in this chapter
 should be executed as root.
8.3. Finding the System Hardware
Before editing the kernel configuration file, it is
 recommended to perform an inventory of the machine's hardware.
 On a dual-boot system, the inventory can be created from the
 other operating system. For example, Microsoft®'s
 Device Manager contains information
 about installed devices.
Note:
Some versions of Microsoft® Windows® have a
	System icon which can be used to
	access Device Manager.

If FreeBSD is the only installed operating system, use
 dmesg(8) to determine the hardware that was found and
 listed during the boot probe. Most device drivers on FreeBSD have
 a manual page which lists the hardware supported by that driver.
 For example, the following lines indicate that the psm(4)
 driver found a mouse:
psm0: <PS/2 Mouse> irq 12 on atkbdc0
psm0: [GIANT-LOCKED]
psm0: [ITHREAD]
psm0: model Generic PS/2 mouse, device ID 0
Since this hardware exists, this driver should not be
 removed from a custom kernel configuration file.
If the output of dmesg does not display
 the results of the boot probe output, instead read the contents
 of /var/run/dmesg.boot.
Another tool for finding hardware is pciconf(8), which
 provides more verbose output. For example:
% pciconf -lv
ath0@pci0:3:0:0: class=0x020000 card=0x058a1014 chip=0x1014168c rev=0x01 hdr=0x00
 vendor = 'Atheros Communications Inc.'
 device = 'AR5212 Atheros AR5212 802.11abg wireless'
 class = network
 subclass = ethernet
This output shows that the ath driver
 located a wireless Ethernet device.
The -k flag of man(1) can be used to
 provide useful information. For example, it can be
 used to display a list of manual pages which contain a
 particular device brand or name:
man -k Atheros
ath(4) - Atheros IEEE 802.11 wireless network driver
ath_hal(4) - Atheros Hardware Access Layer (HAL)
Once the hardware inventory list is created, refer to it
 to ensure that drivers for installed hardware are not removed
 as the custom kernel configuration is edited.
8.5. Building and Installing a Custom Kernel
Once the edits to the custom configuration file have been
 saved, the source code for the kernel can be compiled using the
 following steps:
Procedure 8.1. Building a Kernel
	Change to this directory:
cd /usr/src

	Compile the new kernel by specifying the name of the
	 custom kernel configuration file:
make buildkernel KERNCONF=MYKERNEL

	Install the new kernel associated with the specified
	 kernel configuration file. This command will copy the new
	 kernel to /boot/kernel/kernel and save
	 the old kernel to
	 /boot/kernel.old/kernel:
make installkernel KERNCONF=MYKERNEL

	Shutdown the system and reboot into the new kernel.
	 If something goes wrong, refer to The kernel does not boot.

By default, when a custom kernel is compiled, all kernel
 modules are rebuilt. To update a kernel faster or to build
 only custom modules, edit /etc/make.conf
 before starting to build the kernel.
For example, this variable specifies the list of modules to
 build instead of using the default of building all
 modules:
MODULES_OVERRIDE = linux acpi
Alternately, this variable lists which modules to exclude
 from the build process:
WITHOUT_MODULES = linux acpi sound
Additional variables are available. Refer to
 make.conf(5) for details.
8.6. If Something Goes Wrong
There are four categories of trouble that can occur when
 building a custom kernel:
	config fails
	If config fails, it will print the
	 line number that is incorrect. As an example, for the
	 following message, make sure that line 17 is typed
	 correctly by comparing it to GENERIC
	 or NOTES:
config: line 17: syntax error

	make fails
	If make fails, it is usually due to
	 an error in the kernel configuration file which is not
	 severe enough for config to catch.
	 Review the configuration, and if the problem is not
	 apparent, send an email to the FreeBSD general questions mailing list which
	 contains the kernel configuration file.

	The kernel does not boot
	If the new kernel does not boot or fails to recognize
	 devices, do not panic! Fortunately, FreeBSD has an excellent
	 mechanism for recovering from incompatible kernels.
	 Simply choose the kernel to boot from at the FreeBSD boot
	 loader. This can be accessed when the system boot menu
	 appears by selecting the “Escape to a loader
	 prompt” option. At the prompt, type
	 boot
	 kernel.old, or the
	 name of any other kernel that is known to boot
	 properly.
After booting with a good kernel, check over the
	 configuration file and try to build it again. One helpful
	 resource is /var/log/messages which
	 records the kernel messages from every successful boot.
	 Also, dmesg(8) will print the kernel messages from
	 the current boot.
Note:
When troubleshooting a kernel, make sure to keep
	 a copy of GENERIC, or some other
	 kernel that is known to work, as a different name that
	 will not get erased on the next build. This is
	 important because every time a new kernel is installed,
	 kernel.old is overwritten with the
	 last installed kernel, which may or may not be bootable.
	 As soon as possible, move the working kernel by renaming
	 the directory containing the good kernel:
mv /boot/kernel /boot/kernel.bad
mv /boot/kernel.good /boot/kernel

	The kernel works, but ps(1) does not
	If the kernel version differs from the one that the
	 system utilities have been built with, for example, a
	 kernel built from -CURRENT sources is installed on a
	 -RELEASE system, many system status commands like
	 ps(1) and vmstat(8) will not work. To fix this,
	 recompile and install a
	 world built with the same version of the source
	 tree as the kernel. It is never a good idea to use a
	 different version of the kernel than the rest of the
	 operating system.

Chapter 9. Printing
Originally contributed by Warren Block. Putting information on paper is a vital function, despite many
 attempts to eliminate it. Printing has two basic components. The
 data must be delivered to the printer, and must be in a form that
 the printer can understand.
9.1. Quick Start
Basic printing can be set up quickly. The printer must be
 capable of printing plain ASCII text. For
 printing to other types of files, see
 Section 9.5.3, “Filters”.
	Create a directory to store files while they are being
	 printed:
mkdir -p /var/spool/lpd/lp
chown daemon:daemon /var/spool/lpd/lp
chmod 770 /var/spool/lpd/lp

	As root,
	 create /etc/printcap with these
	 contents:
lp:\
	:lp=/dev/unlpt0:\ [image: 1]
	:sh:\
	:mx#0:\
	:sd=/var/spool/lpd/lp:\
	:lf=/var/log/lpd-errs:
	[image: 1]
	This line is for a printer connected to a
	 USB port.
For a printer connected to a parallel or
	 “printer” port, use:
:lp=/dev/lpt0:\
For a printer connected directly to a network,
	 use:
:lp=:rm=network-printer-name:rp=raw:\
Replace
	 network-printer-name with the
	 DNS host name of the network
	 printer.

	Enable lpd by editing
	 /etc/rc.conf, adding this line:
lpd_enable="YES"
Start the service:
service lpd start
Starting lpd.

	Print a test:
printf "1. This printer can print.\n2. This is the second line.\n" | lpr
Tip:
If both lines do not start at the left border, but
	 “stairstep” instead, see
	 Section 9.5.3.1, “Preventing Stairstepping on Plain Text Printers”.

Text files can now be printed with
	 lpr. Give the filename on the command
	 line, or pipe output directly into
	 lpr.
% lpr textfile.txt
% ls -lh | lpr

9.2. Printer Connections
Printers are connected to computer systems in a variety of
 ways. Small desktop printers are usually connected directly to
 a computer's USB port. Older printers are
 connected to a parallel or “printer” port. Some
 printers are directly connected to a network, making it easy for
 multiple computers to share them. A few printers use a rare
 serial port connection.
FreeBSD can communicate with all of these types of
 printers.
	USB
	USB printers can be connected to
	 any available USB port on the
	 computer.
When FreeBSD detects a USB printer,
	 two device entries are created:
	 /dev/ulpt0 and
	 /dev/unlpt0. Data sent to either
	 device will be relayed to the printer. After each print
	 job, ulpt0 resets the
	 USB port. Resetting the port can cause
	 problems with some printers, so the
	 unlpt0 device is usually used
	 instead. unlpt0 does not reset the
	 USB port at all.

	Parallel (IEEE-1284)
	The parallel port device is
	 /dev/lpt0. This device appears
	 whether a printer is attached or not, it is not
	 autodetected.
Vendors have largely moved away from these
	 “legacy” ports, and many computers no longer
	 have them. Adapters can be used to connect a parallel
	 printer to a USB port. With such an
	 adapter, the printer can be treated as if it were actually
	 a USB printer. Devices called
	 print servers can also be used to
	 connect parallel printers directly to a network.

	Serial (RS-232)
	Serial ports are another legacy port, rarely used for
	 printers except in certain niche applications. Cables,
	 connectors, and required wiring vary widely.
For serial ports built into a motherboard, the serial
	 device name is /dev/cuau0 or
	 /dev/cuau1. Serial
	 USB adapters can also be used, and
	 these will appear as
	 /dev/cuaU0.
Several communication parameters must be known to
	 communicate with a serial printer. The most important are
	 baud rate or BPS
	 (Bits Per Second) and parity. Values
	 vary, but typical serial printers use a baud rate of 9600
	 and no parity.

	Network
	Network printers are connected directly to the local
	 computer network.
The DNS hostname of the printer
	 must be known. If the printer is assigned a dynamic
	 address by DHCP, DNS
	 should be dynamically updated so that the host name always
	 has the correct IP address. Network
	 printers are often given static IP
	 addresses to avoid this problem.
Most network printers understand print jobs sent with
	 the LPD protocol. A print queue name
	 can also be specified. Some printers process data
	 differently depending on which queue is used. For
	 example, a raw queue prints the data
	 unchanged, while the text queue adds
	 carriage returns to plain text.
Many network printers can also print data sent
	 directly to port 9100.

9.2.1. Summary
Wired network connections are usually the easiest to
	set up and give the fastest printing. For direct connection
	to the computer, USB is preferred for speed
	and simplicity. Parallel connections work but have
	limitations on cable length and speed. Serial connections are
	more difficult to configure. Cable wiring differs between
	models, and communication parameters like baud rate and parity
	bits must add to the complexity. Fortunately, serial printers
	are rare.
9.3. Common Page Description Languages
Data sent to a printer must be in a language that the
 printer can understand. These languages are called Page
 Description Languages, or PDLs.
	ASCII
	Plain ASCII text is the simplest
	 way to send data to a printer. Characters correspond one
	 to one with what will be printed: an A
	 in the data prints an A on the page.
	 Very little formatting is available. There is no way to
	 select a font or proportional spacing. The forced
	 simplicity of plain ASCII means that
	 text can be printed straight from the computer with little
	 or no encoding or translation. The printed output
	 corresponds directly with what was sent.
Some inexpensive printers cannot print plain
	 ASCII text. This makes them more
	 difficult to set up, but it is usually still
	 possible.

	PostScript®
	PostScript® is almost the opposite of
	 ASCII. Rather than simple text, a
	 PostScript® program is a set of instructions that draw
	 the final document. Different fonts and graphics can be
	 used. However, this power comes at a price. The program
	 that draws the page must be written. Usually this program
	 is generated by application software, so the process is
	 invisible to the user.
Inexpensive printers sometimes leave out PostScript®
	 compatibility as a cost-saving measure.

	PCL (Printer Command Language)
	PCL is an extension of
	 ASCII, adding escape sequences for
	 formatting, font selection, and printing graphics. Many
	 printers provide PCL5 support. Some
	 support the newer PCL6 or
	 PCLXL. These later versions are
	 supersets of PCL5 and can provide
	 faster printing.

	Host-Based
	Manufacturers can reduce the cost of a printer by
	 giving it a simple processor and very little memory.
	 These printers are not capable of printing plain text.
	 Instead, bitmaps of text and graphics are drawn by a
	 driver on the host computer and then sent to the printer.
	 These are called host-based
	 printers.
Communication between the driver and a host-based
	 printer is often through proprietary or undocumented
	 protocols, making them functional only on the most common
	 operating systems.

9.3.1. Converting PostScript® to Other
	PDLs
Many applications from the Ports Collection and FreeBSD
	utilities produce PostScript® output. This table shows
	the utilities available to convert that into other common
	PDLs:
Table 9.1. Output PDLs
	Output
		PDL	Generated By	Notes
	PCL or
		PCL5	print/ghostscript9-base	-sDEVICE=ljet4 for monochrome,
		-sDEVICE=cljet5 for color
	PCLXL or
		PCL6	print/ghostscript9-base	-sDEVICE=pxlmono for
		monochrome, -sDEVICE=pxlcolor for
		color
	ESC/P2	print/ghostscript9--base	-sDEVICE=uniprint
	XQX	print/foo2zjs	

9.3.2. Summary
For the easiest printing, choose a printer that supports
	PostScript®. Printers that support PCL
	are the next preferred. With
	print/ghostscript9-base, these
	printers can be used as if they understood PostScript®
	natively. Printers that support PostScript® or
	PCL directly almost always support direct
	printing of plain ASCII text files
	also.
Line-based printers like typical inkjets usually do not
	support PostScript® or PCL. They often
	can print plain ASCII text files.
	print/ghostscript9-base
	supports the PDLs used by some of these
	printers. However, printing an entire graphic-based page on
	these printers is often very slow due to the large amount of
	data to be transferred and printed.
Host-based printers are often more difficult to set up.
	Some cannot be used at all because of proprietary
	PDLs. Avoid these printers when
	possible.
Descriptions of many PDLs can be found
	at http://www.undocprint.org/formats/page_description_languages.
	The particular PDL used by various models
	of printers can be found at http://www.openprinting.org/printers.
9.4. Direct Printing
For occasional printing, files can be sent directly to a
 printer device without any setup. For example, a file called
 sample.txt can be sent to a
 USB printer:
cp sample.txt /dev/unlpt0
Direct printing to network printers depends on the
 abilities of the printer, but most accept print jobs on port
 9100, and nc(1) can be used with them. To print the
 same file to a printer with the DNS
 hostname of netlaser:
nc netlaser 9100 < sample.txt
9.5. LPD (Line Printer Daemon)
Printing a file in the background is called
 spooling. A spooler allows the user to
 continue with other programs on the computer without waiting for
 the printer to slowly complete the print job.
FreeBSD includes a spooler called lpd(8). Print jobs are
 submitted with lpr(1).
9.5.1. Initial Setup
A directory for storing print jobs is created, ownership
	is set, and the permissions are set to prevent other users
	from viewing the contents of those files:
mkdir -p /var/spool/lpd/lp
chown daemon:daemon /var/spool/lpd/lp
chmod 770 /var/spool/lpd/lp
Printers are defined in
	/etc/printcap. An entry for each printer
	includes details like a name, the port where it is attached,
	and various other settings. Create
	/etc/printcap with these contents:
lp:\				[image: 1]
	:lp=/dev/unlpt0:\	[image: 2]
	:sh:\			[image: 3]
	:mx#0:\			[image: 4]
	:sd=/var/spool/lpd/lp:\	[image: 5]
	:lf=/var/log/lpd-errs:	[image: 6]
	[image: 1]
	The name of this printer. lpr(1) sends print
	 jobs to the lp printer unless another
	 printer is specified with -P, so the
	 default printer should be named
	 lp.

	[image: 2]
	The device where the printer is connected. Replace
	 this line with the appropriate one for the connection type
	 shown here.
	Connection Type	Device Entry in
		 /etc/printcap
	USB	:lp=/dev/unlpt0:\

		 This is the
		 non-resetting
		 USB printer device. If
		 problems are experienced, use
		 ulpt0 instead, which resets
		 the USB port on each
		 use.

	Parallel	:lp=/dev/lpt0:\

	Network	For a printer supporting the
		 LPD protocol:

		 :lp=:rm=network-printer-name:rp=raw:\

		 For printers supporting port 9100
		 printing:

		 :lp=9100@network-printer-name:\

		 For both types, replace
		 network-printer-name
		 with the DNS host name of the
		 network printer.

	Serial	:lp=/dev/cuau0:br=9600:pa=none:\

		 These values are for a typical serial
		 printer connected to a motherboard serial port.
		 The baud rate is 9600, and no parity is
		 used.

	[image: 3]
	Suppress the printing of a header page at the start of
	 a print job.

	[image: 4]
	Do not limit the maximum size of a print job.

	[image: 5]
	The path to the spooling directory for this printer.
	 Each printer uses its own spooling directory.

	[image: 6]
	The log file where errors on this printer will be
	 reported.

After creating /etc/printcap, use
	chkprintcap(8) to test it for errors:
chkprintcap
Fix any reported problems before continuing.
Enable lpd(8) in
	/etc/rc.conf:
lpd_enable="YES"
Start the service:
service lpd start
9.5.2. Printing with lpr(1)
Documents are sent to the printer with
	lpr. A file to be printed can be named on
	the command line or piped into lpr. These
	two commands are equivalent, sending the contents of
	doc.txt to the default printer:
% lpr doc.txt
% cat doc.txt | lpr
Printers can be selected with -P. To
	print to a printer called
	laser:
% lpr -Plaser doc.txt
9.5.3. Filters
The examples shown so far have sent the contents of a text
	file directly to the printer. As long as the printer
	understands the content of those files, output will be printed
	correctly.
Some printers are not capable of printing plain text, and
	the input file might not even be plain text.
Filters allow files to be
	translated or processed. The typical use is to translate one
	type of input, like plain text, into a form that the printer
	can understand, like PostScript® or PCL.
	Filters can also be used to provide additional features, like
	adding page numbers or highlighting source code to make it
	easier to read.
The filters discussed here are
	input filters or
	text filters. These filters convert the
	incoming file into different forms. Use su(1) to become
	root before
	creating the files.
Filters are specified in
	/etc/printcap with the
	if= identifier. To use
	/usr/local/libexec/lf2crlf as a filter,
	modify /etc/printcap like this:
lp:\
	:lp=/dev/unlpt0:\
	:sh:\
	:mx#0:\
	:sd=/var/spool/lpd/lp:\
	:if=/usr/local/libexec/lf2crlf:\ [image: 1]
	:lf=/var/log/lpd-errs:
	[image: 1]
	if= identifies the
	 input filter that will be used on
	 incoming text.

Tip:
The backslash line continuation
	 characters at the end of the lines in
	 printcap entries reveal that an entry
	 for a printer is really just one long line with entries
	 delimited by colon characters. An earlier example can be
	 rewritten as a single less-readable line:
lp:lp=/dev/unlpt0:sh:mx#0:sd=/var/spool/lpd/lp:if=/usr/local/libexec/lf2crlf:lf=/var/log/lpd-errs:

9.5.3.1. Preventing Stairstepping on Plain Text Printers
Typical FreeBSD text files contain only a single line feed
	 character at the end of each line. These lines will
	 “stairstep” on a standard printer:
A printed file looks
 like the steps of a staircase
 scattered by the wind
A filter can convert the newline characters into
	 carriage returns and newlines. The carriage returns make
	 the printer return to the left after each line. Create
	 /usr/local/libexec/lf2crlf with these
	 contents:
#!/bin/sh
CR=$'\r'
/usr/bin/sed -e "s/$/${CR}/g"
Set the permissions and make it executable:
chmod 555 /usr/local/libexec/lf2crlf
Modify /etc/printcap to use the
	 new filter:
:if=/usr/local/libexec/lf2crlf:\
Test the filter by printing the same plain text file.
	 The carriage returns will cause each line to start at the
	 left side of the page.
9.5.3.2. Fancy Plain Text on PostScript® Printers with
	 print/enscript
GNU
	 Enscript converts plain text
	 files into nicely-formatted PostScript® for printing on
	 PostScript® printers. It adds page numbers, wraps long
	 lines, and provides numerous other features to make printed
	 text files easier to read. Depending on the local paper
	 size, install either
	 print/enscript-letter or
	 print/enscript-a4 from the
	 Ports Collection.
Create /usr/local/libexec/enscript
	 with these contents:
#!/bin/sh
/usr/local/bin/enscript -o -
Set the permissions and make it executable:
chmod 555 /usr/local/libexec/enscript
Modify /etc/printcap to use the
	 new filter:
:if=/usr/local/libexec/enscript:\
Test the filter by printing a plain text file.
9.5.3.3. Printing PostScript® to
	 PCL Printers
Many programs produce PostScript® documents.
	 However, inexpensive printers often only understand plain
	 text or PCL. This filter converts
	 PostScript® files to PCL before sending
	 them to the printer.
Install the Ghostscript PostScript® interpreter,
	 print/ghostscript9-base,
	 from the Ports Collection.
Create /usr/local/libexec/ps2pcl
	 with these contents:
#!/bin/sh
/usr/local/bin/gs -dSAFER -dNOPAUSE -dBATCH -q -sDEVICE=ljet4 -sOutputFile=- -
Set the permissions and make it executable:
chmod 555 /usr/local/libexec/ps2pcl
PostScript® input sent to this script will be rendered
	 and converted to PCL before being sent on
	 to the printer.
Modify /etc/printcap to use this
	 new input filter:
:if=/usr/local/libexec/ps2pcl:\
Test the filter by sending a small PostScript® program
	 to it:
% printf "%%\!PS \n /Helvetica findfont 18 scalefont setfont \
72 432 moveto (PostScript printing successful.) show showpage \004" | lpr
9.5.3.4. Smart Filters
A filter that detects the type of input and
	 automatically converts it to the correct format for the
	 printer can be very convenient. The first two characters of
	 a PostScript® file are usually %!. A
	 filter can detect those two characters. PostScript® files
	 can be sent on to a PostScript® printer unchanged. Text
	 files can be converted to PostScript® with
	 Enscript as shown earlier.
	 Create /usr/local/libexec/psif with
	 these contents:
#!/bin/sh
#
psif - Print PostScript or plain text on a PostScript printer
#
IFS="" read -r first_line
first_two_chars=`expr "$first_line" : '\(..\)'`

case "$first_two_chars" in
%!)
 # %! : PostScript job, print it.
 echo "$first_line" && cat && exit 0
 exit 2
 ;;
*)
 # otherwise, format with enscript
 (echo "$first_line"; cat) | /usr/local/bin/enscript -o - && exit 0
 exit 2
 ;;
esac
Set the permissions and make it executable:
chmod 555 /usr/local/libexec/psif
Modify /etc/printcap to use this
	 new input filter:
:if=/usr/local/libexec/psif:\
Test the filter by printing PostScript® and plain text
	 files.
9.5.3.5. Other Smart Filters
Writing a filter that detects many different types of
	 input and formats them correctly is challenging.
	 print/apsfilter from the
	 Ports Collection is a smart “magic” filter that
	 detects dozens of file types and automatically converts them
	 to the PDL understood by the printer.
	 See http://www.apsfilter.org for
	 more details.
9.5.4. Multiple Queues
The entries in /etc/printcap are
	really definitions of queues. There can
	be more than one queue for a single printer. When combined
	with filters, multiple queues provide users more control over
	how their jobs are printed.
As an example, consider a networked PostScript® laser
	printer in an office. Most users want to print plain text,
	but a few advanced users want to be able to print PostScript®
	files directly. Two entries can be created for the same
	printer in /etc/printcap:
textprinter:\
	:lp=9100@officelaser:\
	:sh:\
	:mx#0:\
	:sd=/var/spool/lpd/textprinter:\
	:if=/usr/local/libexec/enscript:\
	:lf=/var/log/lpd-errs:

psprinter:\
	:lp=9100@officelaser:\
	:sh:\
	:mx#0:\
	:sd=/var/spool/lpd/psprinter:\
	:lf=/var/log/lpd-errs:
Documents sent to textprinter will be
	formatted by the
	/usr/local/libexec/enscript filter shown
	in an earlier example. Advanced users can print PostScript®
	files on psprinter, where no filtering is
	done.
This multiple queue technique can be used to provide
	direct access to all kinds of printer features. A printer
	with a duplexer could use two queues, one for ordinary
	single-sided printing, and one with a filter that sends the
	command sequence to enable double-sided printing and then
	sends the incoming file.
9.5.5. Monitoring and Controlling Printing
Several utilities are available to monitor print jobs and
	check and control printer operation.
9.5.5.1. lpq(1)
lpq(1) shows the status of a user's print
	 jobs. Print jobs from other users are not shown.
Show the current user's pending jobs on a single
	 printer:
% lpq -Plp
Rank Owner Job Files Total Size
1st jsmith 0 (standard input) 12792 bytes
Show the current user's pending jobs on all
	 printers:
% lpq -a
lp:
Rank Owner Job Files Total Size
1st jsmith 1 (standard input) 27320 bytes

laser:
Rank Owner Job Files Total Size
1st jsmith 287 (standard input) 22443 bytes
9.5.5.2. lprm(1)
lprm(1) is used to remove print jobs. Normal users
	 are only allowed to remove their own jobs.
	 root can remove
	 any or all jobs.
Remove all pending jobs from a printer:
lprm -Plp -
dfA002smithy dequeued
cfA002smithy dequeued
dfA003smithy dequeued
cfA003smithy dequeued
dfA004smithy dequeued
cfA004smithy dequeued
Remove a single job from a
	 printer. lpq(1) is used to find the job number.
% lpq
Rank Owner Job Files Total Size
1st jsmith 5 (standard input) 12188 bytes
% lprm -Plp 5
dfA005smithy dequeued
cfA005smithy dequeued
9.5.5.3. lpc(8)
lpc(8) is used to check and modify printer status.
	 lpc is followed by a command and an
	 optional printer name. all can be used
	 instead of a specific printer name, and the command will be
	 applied to all printers. Normal users can view status with
	 lpc(8). Only
	 class="username">root can use
	 commands which modify printer status.
Show the status of all printers:
% lpc status all
lp:
	queuing is enabled
	printing is enabled
	1 entry in spool area
	printer idle
laser:
	queuing is enabled
	printing is enabled
	1 entry in spool area
	waiting for laser to come up
Prevent a printer from accepting new jobs, then begin
	 accepting new jobs again:
lpc disable lp
lp:
	queuing disabled
lpc enable lp
lp:
	queuing enabled
Stop printing, but continue to accept new jobs. Then
	 begin printing again:
lpc stop lp
lp:
	printing disabled
lpc start lp
lp:
	printing enabled
	daemon started
Restart a printer after some error condition:
lpc restart lp
lp:
	no daemon to abort
	printing enabled
	daemon restarted
Turn the print queue off and disable printing, with a
	 message to explain the problem to users:
lpc down lp Repair parts will arrive on Monday
lp:
	printer and queuing disabled
	status message is now: Repair parts will arrive on Monday
Re-enable a printer that is down:
lpc up lp
lp:
	printing enabled
	daemon started
See lpc(8) for more commands and options.
9.5.6. Shared Printers
Printers are often shared by multiple users in businesses
	and schools. Additional features are provided to make sharing
	printers more convenient.
9.5.6.1. Aliases
The printer name is set in the first line of the
	 entry in /etc/printcap. Additional
	 names, or aliases, can be added after
	 that name. Aliases are separated from the name and each
	 other by vertical bars:
lp|repairsprinter|salesprinter:\
Aliases can be used in place of the printer name. For
	 example, users in the Sales department print to their
	 printer with
% lpr -Psalesprinter sales-report.txt
Users in the Repairs department print to
	 their printer with
% lpr -Prepairsprinter repairs-report.txt
All of the documents print on that single printer. When
	 the Sales department grows enough to need their own printer,
	 the alias can be removed from the shared printer entry and
	 used as the name of a new printer. Users in both
	 departments continue to use the same commands, but the Sales
	 documents are sent to the new printer.
9.5.6.2. Header Pages
It can be difficult for users to locate their documents
	 in the stack of pages produced by a busy shared printer.
	 Header pages were created to solve this
	 problem. A header page with the user name and document name
	 is printed before each print job. These pages are also
	 sometimes called banner or
	 separator pages.
Enabling header pages differs depending on whether the
	 printer is connected directly to the computer with a
	 USB, parallel, or serial cable, or
	 is connected remotely over a network.
Header pages on directly-connected printers are enabled
	 by removing the :sh:\ (Suppress Header)
	 line from the entry in /etc/printcap.
	 These header pages only use line feed characters for new
	 lines. Some printers will need the
	 /usr/share/examples/printing/hpif
	 filter to prevent stairstepped text. The filter configures
	 PCL printers to print both carriage
	 returns and line feeds when a line feed is received.
Header pages for network printers must be configured on
	 the printer itself. Header page entries in
	 /etc/printcap are ignored. Settings
	 are usually available from the printer front panel or a
	 configuration web page accessible with a web browser.
9.5.7. References
Example files: /usr/share/examples/printing/.
The 4.3BSD Line Printer Spooler
	 Manual,
	/usr/share/doc/smm/07.lpd/paper.ascii.gz.
Manual pages: printcap(5), lpd(8), lpr(1),
	lpc(8), lprm(1), lpq(1).
9.6. Other Printing Systems
Several other printing systems are available in
 addition to the built-in lpd(8). These systems
 offer support for other protocols or additional features.
9.6.1. CUPS (Common UNIX® Printing
	System)
CUPS is a popular printing system
	available on many operating systems. Using
	CUPS on FreeBSD is documented in a separate
	article:../../../../doc/en_US.ISO8859-1/articles/cups
9.6.2. HPLIP
Hewlett Packard provides a printing system that supports
	many of their inkjet and laser printers. The port is
	print/hplip. The main web page
	is at http://hplipopensource.com/hplip-web/index.html.
	The port handles all the installation details on FreeBSD.
	Configuration information is shown at http://hplipopensource.com/hplip-web/install/manual/hp_setup.html.
9.6.3. LPRng
LPRng was developed as an
	enhanced alternative to lpd(8). The port is
	sysutils/LPRng. For details
	and documentation, see
	http://www.lprng.com/.
10.2. Configuring Linux® Binary Compatibility
By default, Linux® libraries are not installed and Linux®
 binary compatibility is not enabled. Linux® libraries can
 either be installed manually or from the FreeBSD Ports
 Collection.
Before attempting to build the port, load the Linux® kernel
 module, otherwise the build will fail:
kldload linux
For 64-bit compatibility:
kldload linux64
To verify that the module is loaded:
% kldstat
 Id Refs Address Size Name
 1 2 0xc0100000 16bdb8 kernel
 7 1 0xc24db000 d000 linux.ko
The emulators/linux_base-c6 package or
 port is the easiest way to install a base set of Linux®
 libraries and binaries on a FreeBSD system. To install the
 port:
pkg install emulators/linux_base-c6
For Linux® compatibility to be enabled at boot time,
 add this line to /etc/rc.conf:
linux_enable="YES"
On 64-bit machines, /etc/rc.d/abi will
 automatically load the module for 64-bit emulation.
Since the Linux® binary compatibility layer has gained support
 for running both 32- and 64-bit Linux® binaries (on 64-bit x86 hosts),
 it is no longer possible to link the emulation functionality statically
 into a custom kernel.
10.2.1. Installing Additional Libraries Manually
If a Linux® application complains about missing shared
	libraries after configuring Linux® binary compatibility,
	determine which shared libraries the Linux® binary needs and
	install them manually.
From a Linux® system, ldd can be used
	to determine which shared libraries the application needs.
	For example, to check which shared libraries
	linuxdoom needs, run this command from a
	Linux® system that has Doom
	installed:
% ldd linuxdoom
libXt.so.3 (DLL Jump 3.1) => /usr/X11/lib/libXt.so.3.1.0
libX11.so.3 (DLL Jump 3.1) => /usr/X11/lib/libX11.so.3.1.0
libc.so.4 (DLL Jump 4.5pl26) => /lib/libc.so.4.6.29
Then, copy all the files in the last column of the output
	from the Linux® system into
	/compat/linux on the FreeBSD system. Once
	copied, create symbolic links to the names in the first
	column. This example will result in the following files on
	the FreeBSD system:
/compat/linux/usr/X11/lib/libXt.so.3.1.0
/compat/linux/usr/X11/lib/libXt.so.3 -> libXt.so.3.1.0
/compat/linux/usr/X11/lib/libX11.so.3.1.0
/compat/linux/usr/X11/lib/libX11.so.3 -> libX11.so.3.1.0
/compat/linux/lib/libc.so.4.6.29
/compat/linux/lib/libc.so.4 -> libc.so.4.6.29
If a Linux® shared library already exists with a
	matching major revision number to the first column of the
	ldd output, it does not need to be copied
	to the file named in the last column, as the existing library
	should work. It is advisable to copy the shared library if it
	is a newer version, though. The old one can be removed, as
	long as the symbolic link points to the new one.
For example, these libraries already exist on the FreeBSD
	system:
/compat/linux/lib/libc.so.4.6.27
/compat/linux/lib/libc.so.4 -> libc.so.4.6.27
and ldd indicates that a binary
	requires a later version:
libc.so.4 (DLL Jump 4.5pl26) -> libc.so.4.6.29
Since the existing library is only one or two versions out
	of date in the last digit, the program should still work with
	the slightly older version. However, it is safe to replace
	the existing libc.so with the newer
	version:
/compat/linux/lib/libc.so.4.6.29
/compat/linux/lib/libc.so.4 -> libc.so.4.6.29
Generally, one will need to look for the shared libraries
	that Linux® binaries depend on only the first few times that
	a Linux® program is installed on FreeBSD. After a while, there
	will be a sufficient set of Linux® shared libraries on the
	system to be able to run newly installed Linux® binaries
	without any extra work.
10.2.2. Installing Linux® ELF
	Binaries
ELF binaries sometimes require an extra
	step. When an unbranded ELF binary is
	executed, it will generate an error message:
% ./my-linux-elf-binary
ELF binary type not known
Abort
To help the FreeBSD kernel distinguish between a FreeBSD
	ELF binary and a Linux® binary, use
	brandelf(1):
% brandelf -t Linux my-linux-elf-binary
Since the GNU toolchain places the appropriate branding
	information into ELF binaries
	automatically, this step is usually not necessary.
10.2.3. Installing a Linux® RPM Based
	Application
To install a Linux® RPM-based
	application, first install the
	archivers/rpm4 package or port. Once
	installed, root can
	use this command to install a
	.rpm:
cd /compat/linux
rpm2cpio < /path/to/linux.archive.rpm | cpio -id
If necessary, brandelf the installed
	ELF binaries. Note that this will prevent
	a clean uninstall.
10.2.4. Configuring the Hostname Resolver
If DNS does not work or this error
	appears:
resolv+: "bind" is an invalid keyword resolv+:
"hosts" is an invalid keyword
configure /compat/linux/etc/host.conf
	as follows:
order hosts, bind
multi on
This specifies that /etc/hosts is
	searched first and DNS is searched second.
	When /compat/linux/etc/host.conf does not
	exist, Linux® applications use
	/etc/host.conf and complain about the
	incompatible FreeBSD syntax. Remove bind if a
	name server is not configured using
	/etc/resolv.conf.
10.3. Advanced Topics
This section describes how Linux® binary compatibility
 works and is based on an email written to FreeBSD chat mailing list by
 Terry Lambert <tlambert@primenet.com> (Message ID:
 <199906020108.SAA07001@usr09.primenet.com>).
FreeBSD has an abstraction called an
 “execution class loader”. This is a wedge into the
 execve(2) system call.
Historically, the UNIX® loader examined the magic number
 (generally the first 4 or 8 bytes of the file) to see if it was
 a binary known to the system, and if so, invoked the binary
 loader.
If it was not the binary type for the system, the
 execve(2) call returned a failure, and the shell
 attempted to start executing it as shell commands. The
 assumption was a default of
 “whatever the current shell is”.
Later, a hack was made for sh(1) to examine the first
 two characters, and if they were :\n, it
 invoked the csh(1) shell instead.
FreeBSD has a list of loaders, instead of a single loader, with
 a fallback to the #! loader for running shell
 interpreters or shell scripts.
For the Linux® ABI support, FreeBSD sees
 the magic number as an ELF binary. The ELF loader looks for a
 specialized brand, which is a comment
 section in the ELF image, and which is not present on
 SVR4/Solaris™ ELF binaries.
For Linux® binaries to function, they must be
 branded as type Linux
 using brandelf(1):
brandelf -t Linux file
When the ELF loader sees the Linux
 brand, the loader replaces a pointer in the
 proc structure. All system calls are indexed
 through this pointer. In addition, the process is flagged for
 special handling of the trap vector for the signal trampoline
 code, and several other (minor) fix-ups that are handled by the
 Linux® kernel module.
The Linux® system call vector contains, among other things,
 a list of sysent[] entries whose addresses
 reside in the kernel module.
When a system call is called by the Linux® binary, the trap
 code dereferences the system call function pointer off the
 proc structure, and gets the Linux®, not the
 FreeBSD, system call entry points.
Linux® mode dynamically reroots
 lookups. This is, in effect, equivalent to the
 union option to file system mounts. First, an
 attempt is made to lookup the file in
 /compat/linux/original-path.
 If that fails, the lookup is done in
 /original-path.
 This makes sure that binaries that require other binaries can
 run. For example, the Linux® toolchain can all run under
 Linux® ABI support. It also means that the
 Linux® binaries can load and execute FreeBSD binaries, if there
 are no corresponding Linux® binaries present, and that a
 uname(1) command can be placed in the
 /compat/linux directory tree to ensure that
 the Linux® binaries cannot tell they are not running on
 Linux®.
In effect, there is a Linux® kernel in the FreeBSD kernel.
 The various underlying functions that implement all of the
 services provided by the kernel are identical to both the FreeBSD
 system call table entries, and the Linux® system call table
 entries: file system operations, virtual memory operations,
 signal delivery, and System V IPC. The only difference is that
 FreeBSD binaries get the FreeBSD glue functions,
 and Linux® binaries get the Linux® glue
 functions. The FreeBSD glue functions are
 statically linked into the kernel, and the Linux®
 glue functions can be statically linked, or
 they can be accessed via a kernel module.
Technically, this is not really emulation, it is an
 ABI implementation. It is sometimes called
 “Linux® emulation” because the implementation was
 done at a time when there was no other word to describe what was
 going on. Saying that FreeBSD ran Linux® binaries was not true,
 since the code was not compiled in.
Chapter 11. Configuration and Tuning
Written by Chern Lee. Based on a tutorial written by Mike Smith. Also based on tuning(7) written by Matt Dillon. 11.1. Synopsis
One of the important aspects of FreeBSD is proper system
 configuration. This chapter explains much of the FreeBSD
 configuration process, including some of the parameters which
 can be set to tune a FreeBSD system.
After reading this chapter, you will know:
	The basics of rc.conf configuration
	 and /usr/local/etc/rc.d startup
	 scripts.

	How to configure and test a network card.

	How to configure virtual hosts on network
	 devices.

	How to use the various configuration files in
	 /etc.

	How to tune FreeBSD using sysctl(8) variables.

	How to tune disk performance and modify kernel
	 limitations.

Before reading this chapter, you should:
	Understand UNIX® and FreeBSD basics
	 (Chapter 3, FreeBSD Basics).

	Be familiar with the basics of kernel configuration and
	 compilation (Chapter 8, Configuring the FreeBSD Kernel).

11.2. Starting Services
Contributed by Tom Rhodes. Many users install third party software on FreeBSD from the
 Ports Collection and require the installed services to be
 started upon system initialization. Services, such as
 mail/postfix or
 www/apache22 are just two of the many
 software packages which may be started during system
 initialization. This section explains the procedures available
 for starting third party software.
In FreeBSD, most included services, such as cron(8), are
 started through the system startup scripts.
11.2.1. Extended Application Configuration
Now that FreeBSD includes rc.d,
	configuration of application startup is easier and provides
	more features. Using the key words discussed in
	Section 11.4, “Managing Services in FreeBSD”, applications can be set to
	start after certain other services and extra flags can be
	passed through /etc/rc.conf in place of
	hard coded flags in the startup script. A basic script may
	look similar to the following:
#!/bin/sh
#
PROVIDE: utility
REQUIRE: DAEMON
KEYWORD: shutdown

. /etc/rc.subr

name=utility
rcvar=utility_enable

command="/usr/local/sbin/utility"

load_rc_config $name

#
DO NOT CHANGE THESE DEFAULT VALUES HERE
SET THEM IN THE /etc/rc.conf FILE
#
utility_enable=${utility_enable-"NO"}
pidfile=${utility_pidfile-"/var/run/utility.pid"}

run_rc_command "$1"
This script will ensure that the provided
	utility will be started after the
	DAEMON pseudo-service. It also provides a
	method for setting and tracking the process ID
	(PID).
This application could then have the following line placed
	in /etc/rc.conf:
utility_enable="YES"
This method allows for easier manipulation of command
	line arguments, inclusion of the default functions provided
	in /etc/rc.subr, compatibility with
	rcorder(8), and provides for easier configuration via
	rc.conf.
11.2.2. Using Services to Start Services
Other services can be started using inetd(8).
	Working with inetd(8) and its configuration is
	described in depth in
	Section 29.2, “The inetd
 Super-Server”.
In some cases, it may make more sense to use
	cron(8) to start system services. This approach
	has a number of advantages as cron(8) runs these
	processes as the owner of the crontab(5). This allows
	regular users to start and maintain their own
	applications.
The @reboot feature of cron(8),
	may be used in place of the time specification. This causes
	the job to run when cron(8) is started, normally during
	system initialization.
11.3. Configuring cron(8)
Contributed by Tom Rhodes. One of the most useful utilities in FreeBSD is
 cron. This utility runs in the
 background and regularly checks
 /etc/crontab for tasks to execute and
 searches /var/cron/tabs for custom crontab
 files. These files are used to schedule tasks which
 cron runs at the specified times.
 Each entry in a crontab defines a task to run and is known as a
 cron job.
Two different types of configuration files are used: the
 system crontab, which should not be modified, and user crontabs,
 which can be created and edited as needed. The format used by
 these files is documented in crontab(5). The format of the
 system crontab, /etc/crontab includes a
 who column which does not exist in user
 crontabs. In the system crontab,
 cron runs the command as the user
 specified in this column. In a user crontab, all commands run
 as the user who created the crontab.
User crontabs allow individual users to schedule their own
 tasks. The root user
 can also have a user crontab which can be
 used to schedule tasks that do not exist in the system
 crontab.
Here is a sample entry from the system crontab,
 /etc/crontab:
/etc/crontab - root's crontab for FreeBSD
#
$FreeBSD$
[image: 1]
SHELL=/bin/sh
PATH=/etc:/bin:/sbin:/usr/bin:/usr/sbin [image: 2]
#
#minute	hour	mday	month	wday	who	command [image: 3]
#
*/5	*	*	*	*	root	/usr/libexec/atrun [image: 4]
	[image: 1]
	Lines that begin with the # character
	 are comments. A comment can be placed in the file as a
	 reminder of what and why a desired action is performed.
	 Comments cannot be on the same line as a command or else
	 they will be interpreted as part of the command; they must
	 be on a new line. Blank lines are ignored.

	[image: 2]
	The equals (=) character is used to
	 define any environment settings. In this example, it is
	 used to define the SHELL and
	 PATH. If the SHELL is
	 omitted, cron will use the
	 default Bourne shell. If the PATH is
	 omitted, the full path must be given to the command or
	 script to run.

	[image: 3]
	This line defines the seven fields used in a system
	 crontab: minute, hour,
	 mday, month,
	 wday, who, and
	 command. The minute
	 field is the time in minutes when the specified command will
	 be run, the hour is the hour when the
	 specified command will be run, the mday
	 is the day of the month, month is the
	 month, and wday is the day of the week.
	 These fields must be numeric values, representing the
	 twenty-four hour clock, or a *,
	 representing all values for that field. The
	 who field only exists in the system
	 crontab and specifies which user the command should be run
	 as. The last field is the command to be executed.

	[image: 4]
	This entry defines the values for this cron job. The
	 */5, followed by several more
	 * characters, specifies that
	 /usr/libexec/atrun is invoked by
	 root every five
	 minutes of every hour, of every day and day of the week, of
	 every month.
Commands can include any number of switches. However,
	 commands which extend to multiple lines need to be broken
	 with the backslash “\” continuation
	 character.

11.3.1. Creating a User Crontab
To create a user crontab, invoke
	crontab in editor mode:
% crontab -e
This will open the user's crontab using the default text
	editor. The first time a user runs this command, it will open
	an empty file. Once a user creates a crontab, this command
	will open that file for editing.
It is useful to add these lines to the top of the crontab
	file in order to set the environment variables and to remember
	the meanings of the fields in the crontab:
SHELL=/bin/sh
PATH=/etc:/bin:/sbin:/usr/bin:/usr/sbin
Order of crontab fields
# minute	hour	mday	month	wday	command
Then add a line for each command or script to run,
	specifying the time to run the command. This example runs the
	specified custom Bourne shell script every day at two in the
	afternoon. Since the path to the script is not specified in
	PATH, the full path to the script is
	given:
0	14	*	*	*	/usr/home/dru/bin/mycustomscript.sh
Tip:
Before using a custom script, make sure it is executable
	 and test it with the limited set of environment variables
	 set by cron. To replicate the environment that would be
	 used to run the above cron entry, use:
env -i SHELL=/bin/sh PATH=/etc:/bin:/sbin:/usr/bin:/usr/sbin HOME=/home/dru LOGNAME=dru /usr/home/dru/bin/mycustomscript.sh
The environment set by cron is discussed in
	 crontab(5). Checking that scripts operate correctly in
	 a cron environment is especially important if they include
	 any commands that delete files using wildcards.

When finished editing the crontab, save the file. It
	will automatically be installed and
	cron will read the crontab and run
	its cron jobs at their specified times. To list the cron jobs
	in a crontab, use this command:
% crontab -l
0	14	*	*	*	/usr/home/dru/bin/mycustomscript.sh
To remove all of the cron jobs in a user crontab:
% crontab -r
remove crontab for dru? y
11.4. Managing Services in FreeBSD
Contributed by Tom Rhodes. FreeBSD uses the rc(8) system of startup scripts during
 system initialization and for managing services. The scripts
 listed in /etc/rc.d provide basic services
 which can be controlled with the start,
 stop, and restart options to
 service(8). For instance, sshd(8) can be restarted
 with the following command:
service sshd restart
This procedure can be used to start services on a running
 system. Services will be started automatically at boot time
 as specified in rc.conf(5). For example, to enable
 natd(8) at system startup, add the following line to
 /etc/rc.conf:
natd_enable="YES"
If a natd_enable="NO" line is already
 present, change the NO to
 YES. The rc(8) scripts will
 automatically load any dependent services during the next boot,
 as described below.
Since the rc(8) system is primarily intended to start
 and stop services at system startup and shutdown time, the
 start, stop and
 restart options will only perform their action
 if the appropriate /etc/rc.conf variable
 is set. For instance, sshd restart will
 only work if sshd_enable is set to
 YES in /etc/rc.conf.
 To start, stop or
 restart a service regardless of the settings
 in /etc/rc.conf, these commands should be
 prefixed with “one”. For instance, to restart
 sshd(8) regardless of the current
 /etc/rc.conf setting, execute the following
 command:
service sshd onerestart
To check if a service is enabled in
 /etc/rc.conf, run the appropriate
 rc(8) script with rcvar. This example
 checks to see if sshd(8) is enabled in
 /etc/rc.conf:
service sshd rcvar
sshd
#
sshd_enable="YES"
(default: "")
Note:
The # sshd line is output from the
	above command, not a
	root console.

To determine whether or not a service is running, use
 status. For instance, to verify that
 sshd(8) is running:
service sshd status
sshd is running as pid 433.
In some cases, it is also possible to
 reload a service. This attempts to send a
 signal to an individual service, forcing the service to reload
 its configuration files. In most cases, this means sending
 the service a SIGHUP signal. Support for
 this feature is not included for every service.
The rc(8) system is used for network services and it
 also contributes to most of the system initialization. For
 instance, when the
 /etc/rc.d/bgfsck script is executed, it
 prints out the following message:
Starting background file system checks in 60 seconds.
This script is used for background file system checks,
 which occur only during system initialization.
Many system services depend on other services to function
 properly. For example, yp(8) and other
 RPC-based services may fail to start until
 after the rpcbind(8) service has started. To resolve this
 issue, information about dependencies and other meta-data is
 included in the comments at the top of each startup script.
 The rcorder(8) program is used to parse these comments
 during system initialization to determine the order in which
 system services should be invoked to satisfy the
 dependencies.
The following key word must be included in all startup
 scripts as it is required by rc.subr(8) to
 “enable” the startup script:
	PROVIDE: Specifies the services this
	 file provides.

The following key words may be included at the top of each
 startup script. They are not strictly necessary, but are
 useful as hints to rcorder(8):
	REQUIRE: Lists services which are
	 required for this service. The script containing this key
	 word will run after the specified
	 services.

	BEFORE: Lists services which depend
	 on this service. The script containing this key word will
	 run before the specified
	 services.

By carefully setting these keywords for each startup script,
 an administrator has a fine-grained level of control of the
 startup order of the scripts, without the need for
 “runlevels” used by some UNIX® operating
 systems.
Additional information can be found in rc(8) and
 rc.subr(8). Refer to this article
 for instructions on how to create custom rc(8)
 scripts.
11.4.1. Managing System-Specific Configuration
The principal location for system configuration
	information is /etc/rc.conf. This file
	contains a wide range of configuration information and it is
	read at system startup to configure the system. It provides
	the configuration information for the
	rc* files.
The entries in /etc/rc.conf override
	the default settings in
	/etc/defaults/rc.conf. The file
	containing the default settings should not be edited.
	Instead, all system-specific changes should be made to
	/etc/rc.conf.
A number of strategies may be applied in clustered
	applications to separate site-wide configuration from
	system-specific configuration in order to reduce
	administration overhead. The recommended approach is to place
	system-specific configuration into
	/etc/rc.conf.local. For example, these
	entries in /etc/rc.conf apply to all
	systems:
sshd_enable="YES"
keyrate="fast"
defaultrouter="10.1.1.254"
Whereas these entries in
	/etc/rc.conf.local apply to this system
	only:
hostname="node1.example.org"
ifconfig_fxp0="inet 10.1.1.1/8"
Distribute /etc/rc.conf to every
	system using an application such as
	rsync or
	puppet, while
	/etc/rc.conf.local remains
	unique.
Upgrading the system will not overwrite
	/etc/rc.conf, so system configuration
	information will not be lost.
Tip:
Both /etc/rc.conf and
	 /etc/rc.conf.local
	 are parsed by sh(1). This allows system operators to
	 create complex configuration scenarios. Refer to
	 rc.conf(5) for further information on this
	 topic.

11.5. Setting Up Network Interface Cards
Contributed by Marc Fonvieille. Adding and configuring a network interface card
 (NIC) is a common task for any FreeBSD
 administrator.
11.5.1. Locating the Correct Driver
First, determine the model of the NIC
	and the chip it uses. FreeBSD supports a wide variety of
	NICs. Check the Hardware Compatibility
	List for the FreeBSD release to see if the NIC
	is supported.
If the NIC is supported, determine
	the name of the FreeBSD driver for the NIC.
	Refer to /usr/src/sys/conf/NOTES and
	/usr/src/sys/arch/conf/NOTES
	for the list of NIC drivers with some
	information about the supported chipsets. When in doubt, read
	the manual page of the driver as it will provide more
	information about the supported hardware and any known
	limitations of the driver.
The drivers for common NICs are already
	present in the GENERIC kernel, meaning
	the NIC should be probed during boot. The
	system's boot messages can be viewed by typing
	more /var/run/dmesg.boot and using the
	spacebar to scroll through the text. In this example, two
	Ethernet NICs using the dc(4) driver
	are present on the system:
dc0: <82c169 PNIC 10/100BaseTX> port 0xa000-0xa0ff mem 0xd3800000-0xd38
000ff irq 15 at device 11.0 on pci0
miibus0: <MII bus> on dc0
bmtphy0: <BCM5201 10/100baseTX PHY> PHY 1 on miibus0
bmtphy0: 10baseT, 10baseT-FDX, 100baseTX, 100baseTX-FDX, auto
dc0: Ethernet address: 00:a0:cc:da:da:da
dc0: [ITHREAD]
dc1: <82c169 PNIC 10/100BaseTX> port 0x9800-0x98ff mem 0xd3000000-0xd30
000ff irq 11 at device 12.0 on pci0
miibus1: <MII bus> on dc1
bmtphy1: <BCM5201 10/100baseTX PHY> PHY 1 on miibus1
bmtphy1: 10baseT, 10baseT-FDX, 100baseTX, 100baseTX-FDX, auto
dc1: Ethernet address: 00:a0:cc:da:da:db
dc1: [ITHREAD]
If the driver for the NIC is not
	present in GENERIC, but a driver is
	available, the driver will need to be loaded before the
	NIC can be configured and used. This may
	be accomplished in one of two ways:
	The easiest way is to load a kernel module for the
	 NIC using kldload(8). To also
	 automatically load the driver at boot time, add the
	 appropriate line to
	 /boot/loader.conf. Not all
	 NIC drivers are available as
	 modules.

	Alternatively, statically compile support for the
	 NIC into a custom kernel. Refer to
	 /usr/src/sys/conf/NOTES,
	 /usr/src/sys/arch/conf/NOTES
	 and the manual page of the driver to determine which line
	 to add to the custom kernel configuration file. For more
	 information about recompiling the kernel, refer to Chapter 8, Configuring the FreeBSD Kernel. If the NIC
	 was detected at boot, the kernel does not need to be
	 recompiled.

11.5.1.1. Using Windows® NDIS Drivers
Unfortunately, there are still many vendors that do not
	 provide schematics for their drivers to the open source
	 community because they regard such information as trade
	 secrets. Consequently, the developers of FreeBSD and other
	 operating systems are left with two choices: develop the
	 drivers by a long and pain-staking process of reverse
	 engineering or using the existing driver binaries available
	 for Microsoft® Windows® platforms.
FreeBSD provides “native” support for the
	 Network Driver Interface Specification
	 (NDIS). It includes ndisgen(8)
	 which can be used to convert a Windows® XP driver into a
	 format that can be used on FreeBSD. Because the ndis(4)
	 driver uses a Windows® XP binary, it only runs on i386™
	 and amd64 systems. PCI, CardBus,
	 PCMCIA, and USB
	 devices are supported.
To use ndisgen(8), three things are needed:
	FreeBSD kernel sources.

	A Windows® XP driver binary with a
	 .SYS extension.

	A Windows® XP driver configuration file with a
	 .INF extension.

Download the .SYS and
	 .INF files for the specific
	 NIC. Generally, these can be found on
	 the driver CD or at the vendor's website. The following
	 examples use W32DRIVER.SYS and
	 W32DRIVER.INF.
The driver bit width must match the version of FreeBSD.
	 For FreeBSD/i386, use a Windows® 32-bit driver. For
	 FreeBSD/amd64, a Windows® 64-bit driver is needed.
The next step is to compile the driver binary into a
	 loadable kernel module. As
	 root, use
	 ndisgen(8):
ndisgen /path/to/W32DRIVER.INF /path/to/W32DRIVER.SYS
This command is interactive and prompts for any extra
	 information it requires. A new kernel module will be
	 generated in the current directory. Use kldload(8)
	 to load the new module:
kldload ./W32DRIVER_SYS.ko
In addition to the generated kernel module, the
	 ndis.ko and
	 if_ndis.ko modules must be loaded.
	 This should happen automatically when any module that
	 depends on ndis(4) is loaded. If not, load them
	 manually, using the following commands:
kldload ndis
kldload if_ndis
The first command loads the ndis(4) miniport driver
	 wrapper and the second loads the generated
	 NIC driver.
Check dmesg(8) to see if there were any load
	 errors. If all went well, the output should be similar to
	 the following:
ndis0: <Wireless-G PCI Adapter> mem 0xf4100000-0xf4101fff irq 3 at device 8.0 on pci1
ndis0: NDIS API version: 5.0
ndis0: Ethernet address: 0a:b1:2c:d3:4e:f5
ndis0: 11b rates: 1Mbps 2Mbps 5.5Mbps 11Mbps
ndis0: 11g rates: 6Mbps 9Mbps 12Mbps 18Mbps 36Mbps 48Mbps 54Mbps
From here, ndis0 can be
	 configured like any other NIC.
To configure the system to load the ndis(4) modules
	 at boot time, copy the generated module,
	 W32DRIVER_SYS.ko, to
	 /boot/modules. Then, add the following
	 line to /boot/loader.conf:
W32DRIVER_SYS_load="YES"
11.5.2. Configuring the Network Card
Once the right driver is loaded for the
	NIC, the card needs to be configured. It
	may have been configured at installation time by
	bsdinstall(8).
To display the NIC configuration,
	enter the following command:
% ifconfig
dc0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> metric 0 mtu 1500
 options=80008<VLAN_MTU,LINKSTATE>
 ether 00:a0:cc:da:da:da
 inet 192.168.1.3 netmask 0xffffff00 broadcast 192.168.1.255
 media: Ethernet autoselect (100baseTX <full-duplex>)
 status: active
dc1: flags=8802<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> metric 0 mtu 1500
 options=80008<VLAN_MTU,LINKSTATE>
 ether 00:a0:cc:da:da:db
 inet 10.0.0.1 netmask 0xffffff00 broadcast 10.0.0.255
 media: Ethernet 10baseT/UTP
 status: no carrier
lo0: flags=8049<UP,LOOPBACK,RUNNING,MULTICAST> metric 0 mtu 16384
 options=3<RXCSUM,TXCSUM>
 inet6 fe80::1%lo0 prefixlen 64 scopeid 0x4
 inet6 ::1 prefixlen 128
 inet 127.0.0.1 netmask 0xff000000
 nd6 options=3<PERFORMNUD,ACCEPT_RTADV>
In this example, the following devices were
	displayed:
	dc0: The first Ethernet
	 interface.

	dc1: The second Ethernet
	 interface.

	lo0: The loopback
	 device.

FreeBSD uses the driver name followed by the order in which
	the card is detected at boot to name the
	NIC. For example,
	sis2 is the third
	NIC on the system using the sis(4)
	driver.
In this example, dc0 is up and
	running. The key indicators are:
	UP means that the card is
	 configured and ready.

	The card has an Internet (inet)
	 address, 192.168.1.3.

	It has a valid subnet mask
	 (netmask), where
	 0xffffff00 is the
	 same as 255.255.255.0.

	It has a valid broadcast address, 192.168.1.255.

	The MAC address of the card
	 (ether) is 00:a0:cc:da:da:da.

	The physical media selection is on autoselection mode
	 (media: Ethernet autoselect (100baseTX
	 <full-duplex>)). In this example,
	 dc1 is configured to run with
	 10baseT/UTP media. For more
	 information on available media types for a driver, refer
	 to its manual page.

	The status of the link (status) is
	 active, indicating that the carrier
	 signal is detected. For dc1, the
	 status: no carrier status is normal
	 when an Ethernet cable is not plugged into the
	 card.

If the ifconfig(8) output had shown something similar
	to:
dc0: flags=8843<BROADCAST,SIMPLEX,MULTICAST> metric 0 mtu 1500
	options=80008<VLAN_MTU,LINKSTATE>
	ether 00:a0:cc:da:da:da
	media: Ethernet autoselect (100baseTX <full-duplex>)
	status: active
it would indicate the card has not been configured.
The card must be configured as
	root. The
	NIC configuration can be performed from the
	command line with ifconfig(8) but will not persist after
	a reboot unless the configuration is also added to
	/etc/rc.conf. If a
	DHCP server is present on the LAN,
	just add this line:
ifconfig_dc0="DHCP"
Replace dc0 with the correct
	value for the system.
The line added, then, follow the instructions given in
	Section 11.5.3, “Testing and Troubleshooting”.
Note:
If the network was configured during installation, some
	 entries for the NIC(s) may be already
	 present. Double check /etc/rc.conf
	 before adding any lines.

In the case, there is no DHCP server,
	the NIC(s) have to be configured manually.
	Add a line for each NIC present on the
	system, as seen in this example:
ifconfig_dc0="inet 192.168.1.3 netmask 255.255.255.0"
ifconfig_dc1="inet 10.0.0.1 netmask 255.255.255.0 media 10baseT/UTP"
Replace dc0 and
	dc1 and the IP
	address information with the correct values for the system.
	Refer to the man page for the driver, ifconfig(8), and
	rc.conf(5) for more details about the allowed options and
	the syntax of /etc/rc.conf.
If the network is not using DNS, edit
	/etc/hosts to add the names and
	IP addresses of the hosts on the
	LAN, if they are not already there. For
	more information, refer to hosts(5) and to
	/usr/share/examples/etc/hosts.
Note:
If there is no DHCP server and
	 access to the Internet is needed, manually configure the
	 default gateway and the nameserver:
echo 'defaultrouter="your_default_router"' >> /etc/rc.conf
echo 'nameserver your_DNS_server' >> /etc/resolv.conf

11.5.3. Testing and Troubleshooting
Once the necessary changes to
	/etc/rc.conf are saved, a reboot can be
	used to test the network configuration and to verify that the
	system restarts without any configuration errors.
	Alternatively, apply the settings to the networking system
	with this command:
service netif restart
Note:
If a default gateway has been set in
	 /etc/rc.conf, also issue this
	 command:
service routing restart

Once the networking system has been relaunched, test the
	NICs.
11.5.3.1. Testing the Ethernet Card
To verify that an Ethernet card is configured correctly,
	 ping(8) the interface itself, and then ping(8)
	 another machine on the LAN:
% ping -c5 192.168.1.3
PING 192.168.1.3 (192.168.1.3): 56 data bytes
64 bytes from 192.168.1.3: icmp_seq=0 ttl=64 time=0.082 ms
64 bytes from 192.168.1.3: icmp_seq=1 ttl=64 time=0.074 ms
64 bytes from 192.168.1.3: icmp_seq=2 ttl=64 time=0.076 ms
64 bytes from 192.168.1.3: icmp_seq=3 ttl=64 time=0.108 ms
64 bytes from 192.168.1.3: icmp_seq=4 ttl=64 time=0.076 ms

--- 192.168.1.3 ping statistics ---
5 packets transmitted, 5 packets received, 0% packet loss
round-trip min/avg/max/stddev = 0.074/0.083/0.108/0.013 ms
% ping -c5 192.168.1.2
PING 192.168.1.2 (192.168.1.2): 56 data bytes
64 bytes from 192.168.1.2: icmp_seq=0 ttl=64 time=0.726 ms
64 bytes from 192.168.1.2: icmp_seq=1 ttl=64 time=0.766 ms
64 bytes from 192.168.1.2: icmp_seq=2 ttl=64 time=0.700 ms
64 bytes from 192.168.1.2: icmp_seq=3 ttl=64 time=0.747 ms
64 bytes from 192.168.1.2: icmp_seq=4 ttl=64 time=0.704 ms

--- 192.168.1.2 ping statistics ---
5 packets transmitted, 5 packets received, 0% packet loss
round-trip min/avg/max/stddev = 0.700/0.729/0.766/0.025 ms
To test network resolution, use the host name instead
	 of the IP address. If there is no
	 DNS server on the network,
	 /etc/hosts must first be
	 configured. To this purpose, edit
	 /etc/hosts to add the names and
	 IP addresses of the hosts on the
	 LAN, if they are not already there. For
	 more information, refer to hosts(5) and to
	 /usr/share/examples/etc/hosts.
11.5.3.2. Troubleshooting
When troubleshooting hardware and software
	 configurations, check the simple things first. Is the
	 network cable plugged in? Are the network services properly
	 configured? Is the firewall configured correctly? Is the
	 NIC supported by FreeBSD? Before sending
	 a bug report, always check the Hardware Notes, update the
	 version of FreeBSD to the latest STABLE version, check the
	 mailing list archives, and search the Internet.
If the card works, yet performance is poor, read
	 through tuning(7). Also, check the network
	 configuration as incorrect network settings can cause slow
	 connections.
Some users experience one or two
	 device timeout messages, which is
	 normal for some cards. If they continue, or are bothersome,
	 determine if the device is conflicting with another device.
	 Double check the cable connections. Consider trying another
	 card.
To resolve watchdog timeout
	 errors, first check the network cable. Many cards
	 require a PCI slot which supports bus
	 mastering. On some old motherboards, only one
	 PCI slot allows it, usually slot 0.
	 Check the NIC and the motherboard
	 documentation to determine if that may be the
	 problem.
No route to host messages occur
	 if the system is unable to route a packet to the destination
	 host. This can happen if no default route is specified or
	 if a cable is unplugged. Check the output of
	 netstat -rn and make sure there is a
	 valid route to the host. If there is not, read
	 Section 31.2, “Gateways and Routes”.
ping: sendto: Permission denied
	 error messages are often caused by a misconfigured firewall.
	 If a firewall is enabled on FreeBSD but no rules have been
	 defined, the default policy is to deny all traffic, even
	 ping(8). Refer to
	 Chapter 30, Firewalls for more information.
Sometimes performance of the card is poor or below
	 average. In these cases, try setting the media
	 selection mode from autoselect to the
	 correct media selection. While this works for most
	 hardware, it may or may not resolve the issue. Again,
	 check all the network settings, and refer to
	 tuning(7).
11.6. Virtual Hosts
A common use of FreeBSD is virtual site hosting, where one
 server appears to the network as many servers. This is achieved
 by assigning multiple network addresses to a single
 interface.
A given network interface has one “real”
 address, and may have any number of “alias”
 addresses. These aliases are normally added by placing alias
 entries in /etc/rc.conf, as seen in this
 example:
ifconfig_fxp0_alias0="inet xxx.xxx.xxx.xxx netmask xxx.xxx.xxx.xxx"
Alias entries must start with
 alias0 using a
 sequential number such as
 alias0, alias1,
 and so on. The configuration process will stop at the first
 missing number.
The calculation of alias netmasks is important. For a
 given interface, there must be one address which correctly
 represents the network's netmask. Any other addresses which
 fall within this network must have a netmask of all
 1s, expressed as either
 255.255.255.255 or
 0xffffffff.
For example, consider the case where the
 fxp0 interface is connected to two
 networks: 10.1.1.0
 with a netmask of
 255.255.255.0 and
 202.0.75.16 with a
 netmask of
 255.255.255.240. The
 system is to be configured to appear in the ranges
 10.1.1.1 through
 10.1.1.5 and
 202.0.75.17 through
 202.0.75.20. Only
 the first address in a given network range should have a real
 netmask. All the rest
 (10.1.1.2 through
 10.1.1.5 and
 202.0.75.18 through
 202.0.75.20) must be
 configured with a netmask of
 255.255.255.255.
The following /etc/rc.conf entries
 configure the adapter correctly for this scenario:
ifconfig_fxp0="inet 10.1.1.1 netmask 255.255.255.0"
ifconfig_fxp0_alias0="inet 10.1.1.2 netmask 255.255.255.255"
ifconfig_fxp0_alias1="inet 10.1.1.3 netmask 255.255.255.255"
ifconfig_fxp0_alias2="inet 10.1.1.4 netmask 255.255.255.255"
ifconfig_fxp0_alias3="inet 10.1.1.5 netmask 255.255.255.255"
ifconfig_fxp0_alias4="inet 202.0.75.17 netmask 255.255.255.240"
ifconfig_fxp0_alias5="inet 202.0.75.18 netmask 255.255.255.255"
ifconfig_fxp0_alias6="inet 202.0.75.19 netmask 255.255.255.255"
ifconfig_fxp0_alias7="inet 202.0.75.20 netmask 255.255.255.255"
A simpler way to express this is with a space-separated list
 of IP address ranges. The first address
 will be given the
 indicated subnet mask and the additional addresses will have a
 subnet mask of 255.255.255.255.
ifconfig_fxp0_aliases="inet 10.1.1.1-5/24 inet 202.0.75.17-20/28"
11.9. Tuning with sysctl(8)
sysctl(8) is used to make changes to a running FreeBSD
 system. This includes many advanced options of the
 TCP/IP stack and virtual memory system
 that can dramatically improve performance for an experienced
 system administrator. Over five hundred system variables can
 be read and set using sysctl(8).
At its core, sysctl(8) serves two functions: to read
 and to modify system settings.
To view all readable variables:
% sysctl -a
To read a particular variable, specify its name:
% sysctl kern.maxproc
kern.maxproc: 1044
To set a particular variable, use the
 variable=value
 syntax:
sysctl kern.maxfiles=5000
kern.maxfiles: 2088 -> 5000
Settings of sysctl variables are usually either strings,
 numbers, or booleans, where a boolean is 1
 for yes or 0 for no.
To automatically set some variables each time the machine
 boots, add them to /etc/sysctl.conf. For
 more information, refer to sysctl.conf(5) and
 Section 11.9.1, “sysctl.conf”.
11.9.1. sysctl.conf
The configuration file for sysctl(8),
	/etc/sysctl.conf, looks much like
	/etc/rc.conf. Values are set in a
	variable=value form. The specified values
	are set after the system goes into multi-user mode. Not all
	variables are settable in this mode.
For example, to turn off logging of fatal signal exits
	and prevent users from seeing processes started by other
	users, the following tunables can be set in
	/etc/sysctl.conf:
Do not log fatal signal exits (e.g., sig 11)
kern.logsigexit=0

Prevent users from seeing information about processes that
are being run under another UID.
security.bsd.see_other_uids=0
11.9.2. sysctl(8) Read-only
Contributed by Tom Rhodes. In some cases it may be desirable to modify read-only
	sysctl(8) values, which will require a reboot of the
	system.
For instance, on some laptop models the cardbus(4)
	device will not probe memory ranges and will fail with errors
	similar to:
cbb0: Could not map register memory
device_probe_and_attach: cbb0 attach returned 12
The fix requires the modification of a read-only
	sysctl(8) setting. Add
	hw.pci.allow_unsupported_io_range=1 to
	/boot/loader.conf and reboot. Now
	cardbus(4) should work properly.
11.10. Tuning Disks
The following section will discuss various tuning
 mechanisms and options which may be applied to disk
 devices. In many cases, disks with mechanical parts,
 such as SCSI drives, will be the
 bottleneck driving down the overall system performance. While
 a solution is to install a drive without mechanical parts,
 such as a solid state drive, mechanical drives are not
 going away anytime in the near future. When tuning disks,
 it is advisable to utilize the features of the iostat(8)
 command to test various changes to the system. This
 command will allow the user to obtain valuable information
 on system IO.
11.10.1. Sysctl Variables
11.10.1.1. vfs.vmiodirenable
The vfs.vmiodirenable sysctl(8)
	 variable
	 may be set to either 0 (off) or
	 1 (on). It is set to
	 1 by default. This variable controls
	 how directories are cached by the system. Most directories
	 are small, using just a single fragment (typically 1 K)
	 in the file system and typically 512 bytes in the
	 buffer cache. With this variable turned off, the buffer
	 cache will only cache a fixed number of directories, even
	 if the system has a huge amount of memory. When turned on,
	 this sysctl(8) allows the buffer cache to use the
	 VM page cache to cache the directories,
	 making all the memory available for caching directories.
	 However, the minimum in-core memory used to cache a
	 directory is the physical page size (typically 4 K)
	 rather than 512 bytes. Keeping this option enabled
	 is recommended if the system is running any services which
	 manipulate large numbers of files. Such services can
	 include web caches, large mail systems, and news systems.
	 Keeping this option on will generally not reduce
	 performance, even with the wasted memory, but one should
	 experiment to find out.
11.10.1.2. vfs.write_behind
The vfs.write_behind sysctl(8)
	 variable
	 defaults to 1 (on). This tells the file
	 system to issue media writes as full clusters are collected,
	 which typically occurs when writing large sequential files.
	 This avoids saturating the buffer cache with dirty buffers
	 when it would not benefit I/O performance. However, this
	 may stall processes and under certain circumstances should
	 be turned off.
11.10.1.3. vfs.hirunningspace
The vfs.hirunningspace sysctl(8)
	 variable determines how much outstanding write I/O may be
	 queued to disk controllers system-wide at any given
	 instance. The default is usually sufficient, but on
	 machines with many disks, try bumping it up to four or five
	 megabytes. Setting too high a value
	 which exceeds the buffer cache's write threshold can lead
	 to bad clustering performance. Do not set this value
	 arbitrarily high as higher write values may add latency to
	 reads occurring at the same time.
There are various other buffer cache and
	 VM page cache related sysctl(8)
	 values. Modifying these values is not recommended as the
	 VM system does a good job of
	 automatically tuning itself.
11.10.1.4. vm.swap_idle_enabled
The vm.swap_idle_enabled
	 sysctl(8) variable is useful in large multi-user
	 systems with many active login users and lots of idle
	 processes. Such systems tend to generate continuous
	 pressure on free memory reserves. Turning this feature on
	 and tweaking the swapout hysteresis (in idle seconds) via
	 vm.swap_idle_threshold1 and
	 vm.swap_idle_threshold2 depresses the
	 priority of memory pages associated with idle processes more
	 quickly then the normal pageout algorithm. This gives a
	 helping hand to the pageout daemon. Only turn this option
	 on if needed, because the tradeoff is essentially pre-page
	 memory sooner rather than later which eats more swap and
	 disk bandwidth. In a small system this option will have a
	 determinable effect, but in a large system that is already
	 doing moderate paging, this option allows the
	 VM system to stage whole processes into
	 and out of memory easily.
11.10.1.5. hw.ata.wc
Turning off IDE write caching reduces
	 write bandwidth to IDE disks, but may
	 sometimes be necessary due to data consistency issues
	 introduced by hard drive vendors. The problem is that
	 some IDE drives lie about when a write
	 completes. With IDE write caching
	 turned on, IDE hard drives write data
	 to disk out of order and will sometimes delay writing some
	 blocks indefinitely when under heavy disk load. A crash or
	 power failure may cause serious file system corruption.
	 Check the default on the system by observing the
	 hw.ata.wc sysctl(8) variable. If
	 IDE write caching is turned off, one can
	 set this read-only variable to
	 1 in
	 /boot/loader.conf in order to enable
	 it at boot time.
For more information, refer to ata(4).
11.10.1.6. SCSI_DELAY
	 (kern.cam.scsi_delay)
The SCSI_DELAY kernel configuration
	 option may be used to reduce system boot times. The
	 defaults are fairly high and can be responsible for
	 15 seconds of delay in the boot process.
	 Reducing it to 5 seconds usually works
	 with modern drives. The
	 kern.cam.scsi_delay boot time tunable
	 should be used. The tunable and kernel configuration
	 option accept values in terms of
	 milliseconds and
	 not
	 seconds.
11.10.2. Soft Updates
To fine-tune a file system, use tunefs(8). This
	program has many different options. To toggle Soft Updates
	on and off, use:
tunefs -n enable /filesystem
tunefs -n disable /filesystem
A file system cannot be modified with tunefs(8) while
	it is mounted. A good time to enable Soft Updates is before
	any partitions have been mounted, in single-user mode.
Soft Updates is recommended for UFS
	file systems as it drastically improves meta-data performance,
	mainly file creation and deletion, through the use of a memory
	cache. There are two downsides to Soft Updates to be aware
	of. First, Soft Updates guarantee file system consistency
	in the case of a crash, but could easily be several seconds
	or even a minute behind updating the physical disk. If the
	system crashes, unwritten data may be lost. Secondly, Soft
	Updates delay the freeing of file system blocks. If the
	root file system is almost full, performing a major update,
	such as make installworld, can cause the
	file system to run out of space and the update to fail.
11.10.2.1. More Details About Soft Updates
Meta-data updates are updates to non-content data like
	 inodes or directories. There are two traditional approaches
	 to writing a file system's meta-data back to disk.
Historically, the default behavior was to write out
	 meta-data updates synchronously. If a directory changed,
	 the system waited until the change was actually written to
	 disk. The file data buffers (file contents) were passed
	 through the buffer cache and backed up to disk later on
	 asynchronously. The advantage of this implementation is
	 that it operates safely. If there is a failure during an
	 update, meta-data is always in a consistent state. A
	 file is either created completely or not at all. If the
	 data blocks of a file did not find their way out of the
	 buffer cache onto the disk by the time of the crash,
	 fsck(8) recognizes this and repairs the file system
	 by setting the file length to 0.
	 Additionally, the implementation is clear and simple. The
	 disadvantage is that meta-data changes are slow. For
	 example, rm -r touches all the files in a
	 directory sequentially, but each directory change will be
	 written synchronously to the disk. This includes updates to
	 the directory itself, to the inode table, and possibly to
	 indirect blocks allocated by the file. Similar
	 considerations apply for unrolling large hierarchies using
	 tar -x.
The second approach is to use asynchronous meta-data
	 updates. This is the default for a UFS
	 file system mounted with mount -o async.
	 Since all meta-data updates are also passed through the
	 buffer cache, they will be intermixed with the updates of
	 the file content data. The advantage of this
	 implementation is there is no need to wait until each
	 meta-data update has been written to disk, so all operations
	 which cause huge amounts of meta-data updates work much
	 faster than in the synchronous case. This implementation
	 is still clear and simple, so there is a low risk for bugs
	 creeping into the code. The disadvantage is that there is
	 no guarantee for a consistent state of the file system.
	 If there is a failure during an operation that updated
	 large amounts of meta-data, like a power failure or someone
	 pressing the reset button, the file system will be left
	 in an unpredictable state. There is no opportunity to
	 examine the state of the file system when the system comes
	 up again as the data blocks of a file could already have
	 been written to the disk while the updates of the inode
	 table or the associated directory were not. It is
	 impossible to implement a fsck(8) which is able to
	 clean up the resulting chaos because the necessary
	 information is not available on the disk. If the file
	 system has been damaged beyond repair, the only choice
	 is to reformat it and restore from backup.
The usual solution for this problem is to implement
	 dirty region logging, which is also
	 referred to as journaling.
	 Meta-data updates are still written synchronously, but only
	 into a small region of the disk. Later on, they are moved
	 to their proper location. Because the logging area is a
	 small, contiguous region on the disk, there are no long
	 distances for the disk heads to move, even during heavy
	 operations, so these operations are quicker than synchronous
	 updates. Additionally, the complexity of the implementation
	 is limited, so the risk of bugs being present is low. A
	 disadvantage is that all meta-data is written twice, once
	 into the logging region and once to the proper location, so
	 performance “pessimization” might result. On
	 the other hand, in case of a crash, all pending meta-data
	 operations can be either quickly rolled back or completed
	 from the logging area after the system comes up again,
	 resulting in a fast file system startup.
Kirk McKusick, the developer of Berkeley
	 FFS, solved this problem with Soft
	 Updates. All pending meta-data updates are kept in memory
	 and written out to disk in a sorted sequence
	 (“ordered meta-data updates”). This has the
	 effect that, in case of heavy meta-data operations, later
	 updates to an item “catch” the earlier ones
	 which are still in memory and have not already been written
	 to disk. All operations are generally performed in memory
	 before the update is written to disk and the data blocks are
	 sorted according to their position so that they will not be
	 on the disk ahead of their meta-data. If the system
	 crashes, an implicit “log rewind” causes all
	 operations which were not written to the disk appear as if
	 they never happened. A consistent file system state is
	 maintained that appears to be the one of 30 to 60 seconds
	 earlier. The algorithm used guarantees that all resources
	 in use are marked as such in their blocks and inodes.
	 After a crash, the only resource allocation error that
	 occurs is that resources are marked as “used”
	 which are actually “free”. fsck(8)
	 recognizes this situation, and frees the resources that
	 are no longer used. It is safe to ignore the dirty state
	 of the file system after a crash by forcibly mounting it
	 with mount -f. In order to free
	 resources that may be unused, fsck(8) needs to be run
	 at a later time. This is the idea behind the
	 background fsck(8): at system
	 startup time, only a snapshot of the
	 file system is recorded and fsck(8) is run afterwards.
	 All file systems can then be mounted
	 “dirty”, so the system startup proceeds in
	 multi-user mode. Then, background fsck(8) is
	 scheduled for all file systems where this is required, to
	 free resources that may be unused. File systems that do
	 not use Soft Updates still need the usual foreground
	 fsck(8).
The advantage is that meta-data operations are nearly
	 as fast as asynchronous updates and are faster than
	 logging, which has to write the
	 meta-data twice. The disadvantages are the complexity of
	 the code, a higher memory consumption, and some
	 idiosyncrasies. After a crash, the state of the file
	 system appears to be somewhat “older”. In
	 situations where the standard synchronous approach would
	 have caused some zero-length files to remain after the
	 fsck(8), these files do not exist at all with Soft
	 Updates because neither the meta-data nor the file contents
	 have been written to disk. Disk space is not released until
	 the updates have been written to disk, which may take place
	 some time after running rm(1). This may cause problems
	 when installing large amounts of data on a file system
	 that does not have enough free space to hold all the files
	 twice.
11.11. Tuning Kernel Limits
11.11.1. File/Process Limits
11.11.1.1. kern.maxfiles
The kern.maxfiles sysctl(8)
	 variable can be raised or lowered based upon system
	 requirements. This variable indicates the maximum number
	 of file descriptors on the system. When the file descriptor
	 table is full, file: table is full
	 will show up repeatedly in the system message buffer, which
	 can be viewed using dmesg(8).
Each open file, socket, or fifo uses one file
	 descriptor. A large-scale production server may easily
	 require many thousands of file descriptors, depending on the
	 kind and number of services running concurrently.
In older FreeBSD releases, the default value of
	 kern.maxfiles is derived from
	 maxusers in the kernel configuration file.
	 kern.maxfiles grows proportionally to the
	 value of maxusers. When compiling a custom
	 kernel, consider setting this kernel configuration option
	 according to the use of the system. From this number, the
	 kernel is given most of its pre-defined limits. Even though
	 a production machine may not have 256 concurrent users, the
	 resources needed may be similar to a high-scale web
	 server.
The read-only sysctl(8) variable
	 kern.maxusers is automatically sized at
	 boot based on the amount of memory available in the system,
	 and may be determined at run-time by inspecting the value
	 of kern.maxusers. Some systems require
	 larger or smaller values of
	 kern.maxusers and values of
	 64, 128, and
	 256 are not uncommon. Going above
	 256 is not recommended unless a huge
	 number of file descriptors is needed. Many of the tunable
	 values set to their defaults by
	 kern.maxusers may be individually
	 overridden at boot-time or run-time in
	 /boot/loader.conf. Refer to
	 loader.conf(5) and
	 /boot/defaults/loader.conf for more
	 details and some hints.
In older releases, the system will auto-tune
	 maxusers if it is set to
	 0.
	 [2]. When
	 setting this option, set maxusers to
	 at least 4, especially if the system
	 runs Xorg or is used to
	 compile software. The most important table set by
	 maxusers is the maximum number of
	 processes, which is set to
	 20 + 16 * maxusers. If
	 maxusers is set to 1,
	 there can only be
	 36 simultaneous processes, including
	 the 18 or so that the system starts up
	 at boot time and the 15 or so used by
	 Xorg. Even a simple task like
	 reading a manual page will start up nine processes to
	 filter, decompress, and view it. Setting
	 maxusers to 64 allows
	 up to 1044 simultaneous processes, which
	 should be enough for nearly all uses. If, however, the
	 proc table full error is displayed
	 when trying to start another program, or a server is
	 running with a large number of simultaneous users, increase
	 the number and rebuild.
Note:
maxusers does
	 not limit the number of users which
	 can log into the machine. It instead sets various table
	 sizes to reasonable values considering the maximum number
	 of users on the system and how many processes each user
	 will be running.

11.11.1.2. kern.ipc.soacceptqueue
The kern.ipc.soacceptqueue
	 sysctl(8) variable limits the size of the listen queue
	 for accepting new TCP connections. The
	 default value of 128 is typically too low
	 for robust handling of new connections on a heavily loaded
	 web server. For such environments, it is recommended to
	 increase this value to 1024 or higher. A
	 service such as sendmail(8), or
	 Apache may itself limit the
	 listen queue size, but will often have a directive in its
	 configuration file to adjust the queue size. Large listen
	 queues do a better job of avoiding Denial of Service
	 (DoS) attacks.
11.11.2. Network Limits
The NMBCLUSTERS kernel configuration
	option dictates the amount of network Mbufs available to the
	system. A heavily-trafficked server with a low number of
	Mbufs will hinder performance. Each cluster represents
	approximately 2 K of memory, so a value of
	1024 represents 2
	megabytes of kernel memory reserved for network buffers. A
	simple calculation can be done to figure out how many are
	needed. A web server which maxes out at
	1000 simultaneous connections where each
	connection uses a 6 K receive and 16 K send buffer,
	requires approximately 32 MB worth of network buffers
	to cover the web server. A good rule of thumb is to multiply
	by 2, so
	2x32 MB / 2 KB =
	64 MB / 2 kB =
	32768. Values between
	4096 and 32768 are
	recommended for machines with greater amounts of memory.
	Never specify an arbitrarily high value for this parameter
	as it could lead to a boot time crash. To observe network
	cluster usage, use -m with
	netstat(1).
The kern.ipc.nmbclusters loader tunable
	should be used to tune this at boot time. Only older versions
	of FreeBSD will require the use of the
	NMBCLUSTERS kernel config(8)
	option.
For busy servers that make extensive use of the
	sendfile(2) system call, it may be necessary to increase
	the number of sendfile(2) buffers via the
	NSFBUFS kernel configuration option or by
	setting its value in /boot/loader.conf
	(see loader(8) for details). A common indicator that
	this parameter needs to be adjusted is when processes are seen
	in the sfbufa state. The sysctl(8)
	variable kern.ipc.nsfbufs is read-only.
	This parameter nominally scales with
	kern.maxusers, however it may be necessary
	to tune accordingly.
Important:
Even though a socket has been marked as non-blocking,
	 calling sendfile(2) on the non-blocking socket may
	 result in the sendfile(2) call blocking until enough
	 struct sf_buf's are made
	 available.

11.11.2.1. net.inet.ip.portrange.*
The net.inet.ip.portrange.*
	 sysctl(8) variables control the port number ranges
	 automatically bound to TCP and
	 UDP sockets. There are three ranges: a
	 low range, a default range, and a high range. Most network
	 programs use the default range which is controlled by
	 net.inet.ip.portrange.first and
	 net.inet.ip.portrange.last, which default
	 to 1024 and 5000,
	 respectively. Bound port ranges are used for outgoing
	 connections and it is possible to run the system out of
	 ports under certain circumstances. This most commonly
	 occurs when running a heavily loaded web proxy. The port
	 range is not an issue when running a server which handles
	 mainly incoming connections, such as a web server, or has
	 a limited number of outgoing connections, such as a mail
	 relay. For situations where there is a shortage of ports,
	 it is recommended to increase
	 net.inet.ip.portrange.last modestly. A
	 value of 10000, 20000
	 or 30000 may be reasonable. Consider
	 firewall effects when changing the port range. Some
	 firewalls may block large ranges of ports, usually
	 low-numbered ports, and expect systems to use higher ranges
	 of ports for outgoing connections. For this reason, it
	 is not recommended that the value of
	 net.inet.ip.portrange.first be
	 lowered.
11.11.2.2. TCP Bandwidth Delay Product
TCP bandwidth delay product limiting
	 can be enabled by setting the
	 net.inet.tcp.inflight.enable
	 sysctl(8) variable to 1. This
	 instructs the system to attempt to calculate the bandwidth
	 delay product for each connection and limit the amount of
	 data queued to the network to just the amount required to
	 maintain optimum throughput.
This feature is useful when serving data over modems,
	 Gigabit Ethernet, high speed WAN links,
	 or any other link with a high bandwidth delay product,
	 especially when also using window scaling or when a large
	 send window has been configured. When enabling this option,
	 also set net.inet.tcp.inflight.debug to
	 0 to disable debugging. For production
	 use, setting net.inet.tcp.inflight.min
	 to at least 6144 may be beneficial.
	 Setting high minimums may effectively disable bandwidth
	 limiting, depending on the link. The limiting feature
	 reduces the amount of data built up in intermediate route
	 and switch packet queues and reduces the amount of data
	 built up in the local host's interface queue. With fewer
	 queued packets, interactive connections, especially over
	 slow modems, will operate with lower
	 Round Trip Times. This feature only
	 effects server side data transmission such as uploading.
	 It has no effect on data reception or downloading.
Adjusting net.inet.tcp.inflight.stab
	 is not recommended. This parameter
	 defaults to 20, representing 2 maximal
	 packets added to the bandwidth delay product window
	 calculation. The additional window is required to stabilize
	 the algorithm and improve responsiveness to changing
	 conditions, but it can also result in higher ping(8)
	 times over slow links, though still much lower than without
	 the inflight algorithm. In such cases, try reducing this
	 parameter to 15, 10,
	 or 5 and reducing
	 net.inet.tcp.inflight.min to a value such
	 as 3500 to get the desired effect.
	 Reducing these parameters should be done as a last resort
	 only.
11.11.3. Virtual Memory
11.11.3.1. kern.maxvnodes
A vnode is the internal representation of a file or
	 directory. Increasing the number of vnodes available to
	 the operating system reduces disk I/O. Normally, this is
	 handled by the operating system and does not need to be
	 changed. In some cases where disk I/O is a bottleneck and
	 the system is running out of vnodes, this setting needs
	 to be increased. The amount of inactive and free
	 RAM will need to be taken into
	 account.
To see the current number of vnodes in use:
sysctl vfs.numvnodes
vfs.numvnodes: 91349
To see the maximum vnodes:
sysctl kern.maxvnodes
kern.maxvnodes: 100000
If the current vnode usage is near the maximum, try
	 increasing kern.maxvnodes by a value of
	 1000. Keep an eye on the number of
	 vfs.numvnodes. If it climbs up to the
	 maximum again, kern.maxvnodes will need
	 to be increased further. Otherwise, a shift in memory
	 usage as reported by top(1) should be visible and
	 more memory should be active.

[2] The auto-tuning algorithm sets
	 maxusers equal to the amount of
	 memory in the system, with a minimum of
	 32, and a maximum of
	 384.

11.12. Adding Swap Space
Sometimes a system requires more swap space. This section
 describes two methods to increase swap space: adding swap to an
 existing partition or new hard drive, and creating a swap file
 on an existing partition.
For information on how to encrypt swap space, which options
 exist, and why it should be done, refer to Section 17.13, “Encrypting Swap”.
11.12.1. Swap on a New Hard Drive or Existing Partition
Adding a new hard drive for swap gives better performance
	than using a partition on an existing drive. Setting up
	partitions and hard drives is explained in Section 17.2, “Adding Disks” while Section 2.6.1, “Designing the Partition Layout” discusses partition layouts
	and swap partition size considerations.
Use swapon to add a swap partition to
	the system. For example:
swapon /dev/ada1s1b
Warning:
It is possible to use any partition not currently
	 mounted, even if it already contains data. Using
	 swapon on a partition that contains data
	 will overwrite and destroy that data. Make sure that the
	 partition to be added as swap is really the intended
	 partition before running swapon.

To automatically add this swap partition on boot, add an
	entry to /etc/fstab:
/dev/ada1s1b	none	swap	sw	0	0
See fstab(5) for an explanation of the entries in
	/etc/fstab. More information about
	swapon can be found in
	swapon(8).
11.12.2. Creating a Swap File
These examples create a 64M swap file called
	/usr/swap0 instead of using a
	partition.
Using swap files requires that the module needed by
	md(4) has either been built into the kernel or has been
	loaded before swap is enabled. See
	Chapter 8, Configuring the FreeBSD Kernel for information about building
	a custom kernel.
Example 11.2. Creating a Swap File on
	 FreeBSD 10.X and Later
	Create the swap file:
dd if=/dev/zero of=/usr/swap0 bs=1m count=64

	Set the proper permissions on the new file:
chmod 0600 /usr/swap0

	Inform the system about the swap file by adding a
	 line to /etc/fstab:
md99	none	swap	sw,file=/usr/swap0,late	0	0
The md(4) device md99 is
	 used, leaving lower device numbers available for
	 interactive use.

	Swap space will be added on system startup. To add
	 swap space immediately, use swapon(8):
swapon -aL

Example 11.3. Creating a Swap File on
	 FreeBSD 9.X and Earlier
	Create the swap file,
	 /usr/swap0:
dd if=/dev/zero of=/usr/swap0 bs=1m count=64

	Set the proper permissions on
	 /usr/swap0:
chmod 0600 /usr/swap0

	Enable the swap file in
	 /etc/rc.conf:
swapfile="/usr/swap0" # Set to name of swap file

	Swap space will be added on system startup. To
	 enable the swap file immediately, specify a free memory
	 device. Refer to Section 17.9, “Memory Disks” for
	 more information about memory devices.
mdconfig -a -t vnode -f /usr/swap0 -u 0 && swapon /dev/md0

11.13. Power and Resource Management
Written by Hiten Pandya and Tom Rhodes. It is important to utilize hardware resources in an
 efficient manner. Power and resource management allows the
 operating system to monitor system limits and to possibly
 provide an alert if the system temperature increases
 unexpectedly. An early specification for providing power
 management was the Advanced Power Management
 (APM) facility. APM
 controls the power usage of a system based on its activity.
 However, it was difficult and inflexible for operating systems
 to manage the power usage and thermal properties of a system.
 The hardware was managed by the BIOS and the
 user had limited configurability and visibility into the power
 management settings. The APM
 BIOS is supplied by the vendor and is
 specific to the hardware platform. An APM
 driver in the operating system mediates access to the
 APM Software Interface, which allows
 management of power levels.
There are four major problems in APM.
 First, power management is done by the vendor-specific
 BIOS, separate from the operating system.
 For example, the user can set idle-time values for a hard drive
 in the APM BIOS so that,
 when exceeded, the BIOS spins down the hard
 drive without the consent of the operating system. Second, the
 APM logic is embedded in the
 BIOS, and it operates outside the scope of
 the operating system. This means that users can only fix
 problems in the APM
 BIOS by flashing a new one into the
 ROM, which is a dangerous procedure with the
 potential to leave the system in an unrecoverable state if it
 fails. Third, APM is a vendor-specific
 technology, meaning that there is a lot of duplication of
 efforts and bugs found in one vendor's BIOS
 may not be solved in others. Lastly, the APM
 BIOS did not have enough room to implement a
 sophisticated power policy or one that can adapt well to the
 purpose of the machine.
The Plug and Play BIOS
 (PNPBIOS) was unreliable in many situations.
 PNPBIOS is 16-bit technology, so the
 operating system has to use 16-bit emulation in order to
 interface with PNPBIOS methods. FreeBSD
 provides an APM driver as
 APM should still be used for systems
 manufactured at or before the year 2000. The driver is
 documented in apm(4).
The successor to APM is the Advanced
 Configuration and Power Interface (ACPI).
 ACPI is a standard written by an alliance of
 vendors to provide an interface for hardware resources and power
 management. It is a key element in Operating
	System-directed configuration and Power Management
 as it provides more control and flexibility to the operating
 system.
This chapter demonstrates how to configure
 ACPI on FreeBSD. It then offers some tips on
 how to debug ACPI and how to submit a problem
 report containing debugging information so that developers can
 diagnosis and fix ACPI issues.
11.13.1. Configuring ACPI
In FreeBSD the acpi(4) driver is loaded by default at
	system boot and should not be compiled
	into the kernel. This driver cannot be unloaded after boot
	because the system bus uses it for various hardware
	interactions. However, if the system is experiencing
	problems, ACPI can be disabled altogether
	by rebooting after setting
	hint.acpi.0.disabled="1" in
	/boot/loader.conf or by setting this
	variable at the loader prompt, as described in Section 12.2.3, “Stage Three”.
Note:
ACPI and APM
	 cannot coexist and should be used separately. The last one
	 to load will terminate if the driver notices the other is
	 running.

ACPI can be used to put the system into
	a sleep mode with acpiconf, the
	-s flag, and a number from
	1 to 5. Most users only
	need 1 (quick suspend to
	RAM) or 3 (suspend to
	RAM). Option 5 performs
	a soft-off which is the same as running
	halt -p.
Other options are available using
	sysctl. Refer to acpi(4) and
	acpiconf(8) for more information.
11.13.2. Common Problems
ACPI is present in all modern computers
	that conform to the ia32 (x86), ia64 (Itanium), and amd64
	(AMD) architectures. The full standard has
	many features including CPU performance
	management, power planes control, thermal zones, various
	battery systems, embedded controllers, and bus enumeration.
	Most systems implement less than the full standard. For
	instance, a desktop system usually only implements bus
	enumeration while a laptop might have cooling and battery
	management support as well. Laptops also have suspend and
	resume, with their own associated complexity.
An ACPI-compliant system has various
	components. The BIOS and chipset vendors
	provide various fixed tables, such as FADT,
	in memory that specify things like the APIC
	map (used for SMP), config registers, and
	simple configuration values. Additionally, a bytecode table,
	the Differentiated System Description Table
	DSDT, specifies a tree-like name space of
	devices and methods.
The ACPI driver must parse the fixed
	tables, implement an interpreter for the bytecode, and modify
	device drivers and the kernel to accept information from the
	ACPI subsystem. For FreeBSD, Intel® has
	provided an interpreter (ACPI-CA) that is
	shared with Linux® and NetBSD. The path to the
	ACPI-CA source code is
	src/sys/contrib/dev/acpica. The glue
	code that allows ACPI-CA to work on FreeBSD is
	in src/sys/dev/acpica/Osd. Finally,
	drivers that implement various ACPI devices
	are found in src/sys/dev/acpica.
For ACPI to work correctly, all the
	parts have to work correctly. Here are some common problems,
	in order of frequency of appearance, and some possible
	workarounds or fixes. If a fix does not resolve the issue,
	refer to Section 11.13.4, “Getting and Submitting Debugging Info” for instructions
	on how to submit a bug report.
11.13.2.1. Mouse Issues
In some cases, resuming from a suspend operation will
	 cause the mouse to fail. A known work around is to add
	 hint.psm.0.flags="0x3000" to
	 /boot/loader.conf.
11.13.2.2. Suspend/Resume
ACPI has three suspend to
	 RAM (STR) states,
	 S1-S3, and one suspend
	 to disk state (STD), called
	 S4. STD can be
	 implemented in two separate ways. The
	 S4BIOS is a
	 BIOS-assisted suspend to disk and
	 S4OS is implemented
	 entirely by the operating system. The normal state the
	 system is in when plugged in but not powered up is
	 “soft off” (S5).
Use sysctl hw.acpi to check for the
	 suspend-related items. These example results are from a
	 Thinkpad:
hw.acpi.supported_sleep_state: S3 S4 S5
hw.acpi.s4bios: 0
Use acpiconf -s to test
	 S3, S4, and
	 S5. An s4bios of one
	 (1) indicates
	 S4BIOS support instead
	 of S4 operating system support.
When testing suspend/resume, start with
	 S1, if supported. This state is most
	 likely to work since it does not require much driver
	 support. No one has implemented S2,
	 which is similar to S1. Next, try
	 S3. This is the deepest
	 STR state and requires a lot of driver
	 support to properly reinitialize the hardware.
A common problem with suspend/resume is that many device
	 drivers do not save, restore, or reinitialize their
	 firmware, registers, or device memory properly. As a first
	 attempt at debugging the problem, try:
sysctl debug.bootverbose=1
sysctl debug.acpi.suspend_bounce=1
acpiconf -s 3
This test emulates the suspend/resume cycle of all
	 device drivers without actually going into
	 S3 state. In some cases, problems such
	 as losing firmware state, device watchdog time out, and
	 retrying forever, can be captured with this method. Note
	 that the system will not really enter S3
	 state, which means devices may not lose power, and many
	 will work fine even if suspend/resume methods are totally
	 missing, unlike real S3 state.
Harder cases require additional hardware, such as a
	 serial port and cable for debugging through a serial
	 console, a Firewire port and cable for using dcons(4),
	 and kernel debugging skills.
To help isolate the problem, unload as many drivers as
	 possible. If it works, narrow down which driver is the
	 problem by loading drivers until it fails again. Typically,
	 binary drivers like nvidia.ko, display
	 drivers, and USB will have the most
	 problems while Ethernet interfaces usually work fine. If
	 drivers can be properly loaded and unloaded, automate this
	 by putting the appropriate commands in
	 /etc/rc.suspend and
	 /etc/rc.resume. Try setting
	 hw.acpi.reset_video to 1
	 if the display is messed up after resume. Try setting
	 longer or shorter values for
	 hw.acpi.sleep_delay to see if that
	 helps.
Try loading a recent Linux® distribution to see if
	 suspend/resume works on the same hardware. If it works on
	 Linux®, it is likely a FreeBSD driver problem. Narrowing down
	 which driver causes the problem will assist developers in
	 fixing the problem. Since the ACPI
	 maintainers rarely maintain other drivers, such as sound
	 or ATA, any driver problems should also
	 be posted to the freebsd-current list and mailed to the
	 driver maintainer. Advanced users can include debugging
	 printf(3)s in a problematic driver to track down where
	 in its resume function it hangs.
Finally, try disabling ACPI and
	 enabling APM instead. If suspend/resume
	 works with APM, stick with
	 APM, especially on older hardware
	 (pre-2000). It took vendors a while to get
	 ACPI support correct and older hardware
	 is more likely to have BIOS problems with
	 ACPI.
11.13.2.3. System Hangs
Most system hangs are a result of lost interrupts or an
	 interrupt storm. Chipsets may have problems based on boot,
	 how the BIOS configures interrupts before
	 correctness of the APIC
	 (MADT) table, and routing of the System
	 Control Interrupt (SCI).
Interrupt storms can be distinguished from lost
	 interrupts by checking the output of
	 vmstat -i and looking at the line that
	 has acpi0. If the counter is increasing
	 at more than a couple per second, there is an interrupt
	 storm. If the system appears hung, try breaking to
	 DDB (CTRL+ALT+ESC on console) and type
	 show interrupts.
When dealing with interrupt problems, try disabling
	 APIC support with
	 hint.apic.0.disabled="1" in
	 /boot/loader.conf.
11.13.2.4. Panics
Panics are relatively rare for ACPI
	 and are the top priority to be fixed. The first step is to
	 isolate the steps to reproduce the panic, if possible, and
	 get a backtrace. Follow the advice for enabling
	 options DDB and setting up a serial
	 console in Section 26.6.4, “Entering the DDB Debugger from the Serial Line” or setting
	 up a dump partition. To get a backtrace in
	 DDB, use tr. When
	 handwriting the backtrace, get at least the last five and
	 the top five lines in the trace.
Then, try to isolate the problem by booting with
	 ACPI disabled. If that works, isolate
	 the ACPI subsystem by using various
	 values of debug.acpi.disable. See
	 acpi(4) for some examples.
11.13.2.5. System Powers Up After Suspend or Shutdown
First, try setting
	 hw.acpi.disable_on_poweroff="0" in
	 /boot/loader.conf. This keeps
	 ACPI from disabling various events during
	 the shutdown process. Some systems need this value set to
	 1 (the default) for the same reason.
	 This usually fixes the problem of a system powering up
	 spontaneously after a suspend or poweroff.
11.13.2.6. BIOS Contains Buggy Bytecode
Some BIOS vendors provide incorrect
	 or buggy bytecode. This is usually manifested by kernel
	 console messages like this:
ACPI-1287: *** Error: Method execution failed [_SB_.PCI0.LPC0.FIGD._STA] \\
(Node 0xc3f6d160), AE_NOT_FOUND
Often, these problems may be resolved by updating the
	 BIOS to the latest revision. Most
	 console messages are harmless, but if there are other
	 problems, like the battery status is not working, these
	 messages are a good place to start looking for
	 problems.
11.13.3. Overriding the Default AML
The BIOS bytecode, known as
	ACPI Machine Language
	(AML), is compiled from a source language
	called ACPI Source Language
	(ASL). The AML is
	found in the table known as the Differentiated System
	Description Table (DSDT).
The goal of FreeBSD is for everyone to have working
	ACPI without any user intervention.
	Workarounds are still being developed for common mistakes made
	by BIOS vendors. The Microsoft®
	interpreter (acpi.sys and
	acpiec.sys) does not strictly check for
	adherence to the standard, and thus many
	BIOS vendors who only test
	ACPI under Windows® never fix their
	ASL. FreeBSD developers continue to identify
	and document which non-standard behavior is allowed by
	Microsoft®'s interpreter and replicate it so that FreeBSD can
	work without forcing users to fix the
	ASL.
To help identify buggy behavior and possibly fix it
	manually, a copy can be made of the system's
	ASL. To copy the system's
	ASL to a specified file name, use
	acpidump with -t, to show
	the contents of the fixed tables, and -d, to
	disassemble the AML:
acpidump -td > my.asl
Some AML versions assume the user is
	running Windows®. To override this, set
	hw.acpi.osname="Windows
	 2009" in
	/boot/loader.conf, using the most recent
	Windows® version listed in the ASL.
Other workarounds may require my.asl
	to be customized. If this file is edited, compile the new
	ASL using the following command. Warnings
	can usually be ignored, but errors are bugs that will usually
	prevent ACPI from working correctly.
iasl -f my.asl
Including -f forces creation of the
	AML, even if there are errors during
	compilation. Some errors, such as missing return statements,
	are automatically worked around by the FreeBSD
	interpreter.
The default output filename for iasl is
	DSDT.aml. Load this file instead of the
	BIOS's buggy copy, which is still present
	in flash memory, by editing
	/boot/loader.conf as follows:
acpi_dsdt_load="YES"
acpi_dsdt_name="/boot/DSDT.aml"
Be sure to copy DSDT.aml to
	/boot, then reboot the system. If this
	fixes the problem, send a diff(1) of the old and new
	ASL to freebsd-acpi so that developers can
	work around the buggy behavior in
	acpica.
11.13.4. Getting and Submitting Debugging Info
Written by Nate Lawson. With contributions from Peter Schultz and Tom Rhodes. The ACPI driver has a flexible
	debugging facility. A set of subsystems and the level of
	verbosity can be specified. The subsystems to debug are
	specified as layers and are broken down into components
	(ACPI_ALL_COMPONENTS) and
	ACPI hardware support
	(ACPI_ALL_DRIVERS). The verbosity of
	debugging output is specified as the level and ranges from
	just report errors (ACPI_LV_ERROR) to
	everything (ACPI_LV_VERBOSE). The level is
	a bitmask so multiple options can be set at once, separated by
	spaces. In practice, a serial console should be used to log
	the output so it is not lost as the console message buffer
	flushes. A full list of the individual layers and levels is
	found in acpi(4).
Debugging output is not enabled by default. To enable it,
	add options ACPI_DEBUG to the custom kernel
	configuration file if ACPI is compiled into
	the kernel. Add ACPI_DEBUG=1 to
	/etc/make.conf to enable it globally. If
	a module is used instead of a custom kernel, recompile just
	the acpi.ko module as follows:
cd /sys/modules/acpi/acpi && make clean && make ACPI_DEBUG=1
Copy the compiled acpi.ko to
	/boot/kernel and add the desired level
	and layer to /boot/loader.conf. The
	entries in this example enable debug messages for all
	ACPI components and hardware drivers and
	output error messages at the least verbose level:
debug.acpi.layer="ACPI_ALL_COMPONENTS ACPI_ALL_DRIVERS"
debug.acpi.level="ACPI_LV_ERROR"
If the required information is triggered by a specific
	event, such as a suspend and then resume, do not modify
	/boot/loader.conf. Instead, use
	sysctl to specify the layer and level after
	booting and preparing the system for the specific event. The
	variables which can be set using sysctl are
	named the same as the tunables in
	/boot/loader.conf.
Once the debugging information is gathered, it can be sent
	to freebsd-acpi so that it can be used by the FreeBSD
	ACPI maintainers to identify the root cause
	of the problem and to develop a solution.
Note:
Before submitting debugging information to this mailing
	 list, ensure the latest BIOS version is
	 installed and, if available, the embedded controller
	 firmware version.

When submitting a problem report, include the following
	information:
	Description of the buggy behavior, including system
	 type, model, and anything that causes the bug to appear.
	 Note as accurately as possible when the bug began
	 occurring if it is new.

	The output of dmesg after running
	 boot -v, including any error messages
	 generated by the bug.

	The dmesg output from boot
	 -v with ACPI disabled,
	 if disabling ACPI helps to fix the
	 problem.

	Output from sysctl hw.acpi. This
	 lists which features the system offers.

	The URL to a pasted version of the
	 system's ASL. Do
	 not send the ASL
	 directly to the list as it can be very large. Generate a
	 copy of the ASL by running this
	 command:
acpidump -dt > name-system.asl
Substitute the login name for
	 name and manufacturer/model for
	 system. For example, use
	 njl-FooCo6000.asl.

Most FreeBSD developers watch the FreeBSD-CURRENT mailing list, but one should
	submit problems to freebsd-acpi to be sure it is seen. Be
	patient when waiting for a response. If the bug is not
	immediately apparent, submit a bug report.
	When entering a PR,
	include the same information as requested above. This helps
	developers to track the problem and resolve it. Do not send a
	PR without emailing freebsd-acpi first as
	it is likely that the problem has been reported before.
11.13.5. References
More information about ACPI may be
	found in the following locations:
	The FreeBSD ACPI Mailing List Archives
	 (https://lists.freebsd.org/pipermail/freebsd-acpi/)

	The ACPI 2.0 Specification (http://acpi.info/spec.htm)

	acpi(4), acpi_thermal(4), acpidump(8),
	 iasl(8), and acpidb(8)

12.2. FreeBSD Boot Process
Turning on a computer and starting the operating system
 poses an interesting dilemma. By definition, the computer does
 not know how to do anything until the operating system is
 started. This includes running programs from the disk. If the
 computer can not run a program from the disk without the
 operating system, and the operating system programs are on the
 disk, how is the operating system started?
This problem parallels one in the book The
	Adventures of Baron Munchausen. A character had
 fallen part way down a manhole, and pulled himself out by
 grabbing his bootstraps and lifting. In the early days of
 computing, the term bootstrap was applied
 to the mechanism used to load the operating system. It has
 since become shortened to “booting”.
On x86 hardware, the Basic Input/Output System
 (BIOS) is responsible for loading the
 operating system. The BIOS looks on the hard
 disk for the Master Boot Record (MBR), which
 must be located in a specific place on the disk. The
 BIOS has enough knowledge to load and run the
 MBR, and assumes that the
 MBR can then carry out the rest of the tasks
 involved in loading the operating system, possibly with the help
 of the BIOS.
Note:
FreeBSD provides for booting from both the older
	MBR standard, and the newer GUID Partition
	Table (GPT). GPT
	partitioning is often found on computers with the Unified
	Extensible Firmware Interface (UEFI).
	However, FreeBSD can boot from GPT partitions
	even on machines with only a legacy BIOS
	with gptboot(8). Work is under way to provide direct
	UEFI booting.

The code within the MBR is typically
 referred to as a boot manager, especially
 when it interacts with the user. The boot manager usually has
 more code in the first track of the disk or within the file
 system. Examples of boot managers include the standard FreeBSD
 boot manager boot0, also called
 Boot Easy, and
 Grub, which is used by many Linux®
 distributions.
If only one operating system is installed, the
 MBR searches for the first bootable (active)
 slice on the disk, and then runs the code on that slice to load
 the remainder of the operating system. When multiple operating
 systems are present, a different boot manager can be installed
 to display a list of operating systems so the user
 can select one to boot.
The remainder of the FreeBSD bootstrap system is divided into
 three stages. The first stage knows just enough to get the
 computer into a specific state and run the second stage. The
 second stage can do a little bit more, before running the third
 stage. The third stage finishes the task of loading the
 operating system. The work is split into three stages because
 the MBR puts limits on the size of the
 programs that can be run at stages one and two. Chaining the
 tasks together allows FreeBSD to provide a more flexible
 loader.
The kernel is then started and begins to probe for devices
 and initialize them for use. Once the kernel boot process is
 finished, the kernel passes control to the user process
 init(8), which makes sure the disks are in a usable state,
 starts the user-level resource configuration which mounts file
 systems, sets up network cards to communicate on the network,
 and starts the processes which have been configured to run at
 startup.
This section describes these stages in more detail and
 demonstrates how to interact with the FreeBSD boot process.
12.2.1. The Boot Manager
The boot manager code in the MBR is
	sometimes referred to as stage zero of
	the boot process. By default, FreeBSD uses the
	boot0 boot manager.
The MBR installed by the FreeBSD installer
	is based on /boot/boot0. The size and
	capability of boot0 is restricted
	to 446 bytes due to the slice table and
	0x55AA identifier at the end of the
	MBR. If boot0
	and multiple operating systems are installed, a message
	similar to this example will be displayed at boot time:
Example 12.1. boot0 Screenshot
F1 Win
F2 FreeBSD

Default: F2

Other operating systems will overwrite an existing
	MBR if they are installed after FreeBSD. If
	this happens, or to replace the existing
	MBR with the FreeBSD MBR,
	use the following command:
fdisk -B -b /boot/boot0 device
where device is the boot disk,
	such as ad0 for the first
	IDE disk, ad2 for the
	first IDE disk on a second
	IDE controller, or da0
	for the first SCSI disk. To create a
	custom configuration of the MBR, refer to
	boot0cfg(8).
12.2.2. Stage One and Stage Two
Conceptually, the first and second stages are part of the
	same program on the same area of the disk. Because of space
	constraints, they have been split into two, but are always
	installed together. They are copied from the combined
	/boot/boot by the FreeBSD installer or
	bsdlabel.
These two stages are located outside file systems, in the
	first track of the boot slice, starting with the first sector.
	This is where boot0, or any other
	boot manager, expects to find a program to run which will
	continue the boot process.
The first stage, boot1, is very
	simple, since it can only be 512 bytes in size. It knows just
	enough about the FreeBSD bsdlabel, which
	stores information about the slice, to find and execute
	boot2.
Stage two, boot2, is slightly more
	sophisticated, and understands the FreeBSD file system enough to
	find files. It can provide a simple interface to choose the
	kernel or loader to run. It runs
	loader, which is much more
	sophisticated and provides a boot configuration file. If the
	boot process is interrupted at stage two, the following
	interactive screen is displayed:
Example 12.2. boot2 Screenshot
>> FreeBSD/i386 BOOT
Default: 0:ad(0,a)/boot/loader
boot:

To replace the installed boot1 and
	boot2, use bsdlabel,
	where diskslice is the disk and
	slice to boot from, such as ad0s1 for the
	first slice on the first IDE disk:
bsdlabel -B diskslice
Warning:
If just the disk name is used, such as
	 ad0, bsdlabel will
	 create the disk in “dangerously dedicated
	 mode”, without slices. This is probably not the
	 desired action, so double check the
	 diskslice before pressing
	 Return.

12.2.3. Stage Three
The loader is the final stage
	of the three-stage bootstrap process. It is located on the
	file system, usually as
	/boot/loader.
The loader is intended as an
	interactive method for configuration, using a built-in command
	set, backed up by a more powerful interpreter which has a more
	complex command set.
During initialization, loader
	will probe for a console and for disks, and figure out which
	disk it is booting from. It will set variables accordingly,
	and an interpreter is started where user commands can be
	passed from a script or interactively.
The loader will then read
	/boot/loader.rc, which by default reads
	in /boot/defaults/loader.conf which sets
	reasonable defaults for variables and reads
	/boot/loader.conf for local changes to
	those variables. loader.rc then acts on
	these variables, loading whichever modules and kernel are
	selected.
Finally, by default, loader
	issues a 10 second wait for key presses, and boots the kernel
	if it is not interrupted. If interrupted, the user is
	presented with a prompt which understands the command set,
	where the user may adjust variables, unload all modules, load
	modules, and then finally boot or reboot. Table 12.1, “Loader Built-In Commands” lists the most commonly
	used loader commands. For a
	complete discussion of all available commands, refer to
	loader(8).
Table 12.1. Loader Built-In Commands
	Variable	Description
	autoboot
		seconds	Proceeds to boot the kernel if not interrupted
		within the time span given, in seconds. It displays a
		countdown, and the default time span is 10
		seconds.
	boot
		[-options]
		[kernelname]	Immediately proceeds to boot the kernel, with
		any specified options or kernel name. Providing a
		kernel name on the command-line is only applicable
		after an unload has been issued.
		Otherwise, the previously-loaded kernel will be
		used. If kernelname is not
		qualified, it will be searched under
		/boot/kernel and
		/boot/modules.
	boot-conf	Goes through the same automatic configuration of
		modules based on specified variables, most commonly
		kernel. This only makes sense if
		unload is used first, before
		changing some variables.
	help
		[topic]	Shows help messages read from
		/boot/loader.help. If the topic
		given is index, the list of
		available topics is displayed.
	include filename
		…	Reads the specified file and interprets it line
		by line. An error immediately stops the
		include.
	load [-t
		 type]
		filename	Loads the kernel, kernel module, or file of the
		type given, with the specified filename. Any
		arguments after filename
		are passed to the file. If
		filename is not qualified, it
		will be searched under
		/boot/kernel
		and /boot/modules.
	ls [-l]
		[path]	Displays a listing of files in the given path, or
		the root directory, if the path is not specified. If
		-l is specified, file sizes will
		also be shown.
	lsdev [-v]	Lists all of the devices from which it may be
		possible to load modules. If -v is
		specified, more details are printed.
	lsmod [-v]	Displays loaded modules. If -v
		is specified, more details are shown.
	more filename	Displays the files specified, with a pause at
		each LINES displayed.
	reboot	Immediately reboots the system.
	set variable, set
		variable=value	Sets the specified environment variables.
	unload	Removes all loaded modules.

Here are some practical examples of loader usage. To boot
	the usual kernel in single-user mode
	:
boot -s
To unload the usual kernel and modules and then load the
	previous or another, specified kernel:
unload
load kernel.old
Use kernel.GENERIC to refer to the
	default kernel that comes with an installation, or
	kernel.old, to refer to the previously
	installed kernel before a system upgrade or before configuring
	a custom kernel.
Use the following to load the usual modules with another
	kernel:
unload
set kernel="kernel.old"
boot-conf
To load an automated kernel configuration script:
load -t userconfig_script /boot/kernel.conf
12.2.4. Last Stage
Once the kernel is loaded by either
	loader or by
	boot2, which bypasses
	loader, it examines any boot flags
	and adjusts its behavior as necessary. Table 12.2, “Kernel Interaction During Boot” lists the commonly used boot flags.
	Refer to boot(8) for more information on the other boot
	flags.
Table 12.2. Kernel Interaction During Boot
	Option	Description
	-a	During kernel initialization, ask for the device
		to mount as the root file system.
	-C	Boot the root file system from a
		CDROM.
	-s	Boot into single-user mode.
	-v	Be more verbose during kernel startup.

Once the kernel has finished booting, it passes control to
	the user process init(8), which is located at
	/sbin/init, or the program path specified
	in the init_path variable in
	loader. This is the last stage of the boot
	process.
The boot sequence makes sure that the file systems
	available on the system are consistent. If a
	UFS file system is not, and
	fsck cannot fix the inconsistencies,
	init drops the system into
	single-user mode so that the system administrator can resolve
	the problem directly. Otherwise, the system boots into
	multi-user mode.
12.2.4.1. Single-User Mode
A user can specify this mode by booting with
	 -s or by setting the
	 boot_single variable in
	 loader. It can also be reached
	 by running shutdown now from multi-user
	 mode. Single-user mode begins with this message:
Enter full pathname of shell or RETURN for /bin/sh:
If the user presses Enter, the system
	 will enter the default Bourne shell. To specify a different
	 shell, input the full path to the shell.
Single-user mode is usually used to repair a system that
	 will not boot due to an inconsistent file system or an error
	 in a boot configuration file. It can also be used to reset
	 the root password
	 when it is unknown. These actions are possible as the
	 single-user mode prompt gives full, local access to the
	 system and its configuration files. There is no networking
	 in this mode.
While single-user mode is useful for repairing a system,
	 it poses a security risk unless the system is in a
	 physically secure location. By default, any user who can
	 gain physical access to a system will have full control of
	 that system after booting into single-user mode.
If the system console is changed to
	 insecure in
	 /etc/ttys, the system will first prompt
	 for the root
	 password before initiating single-user mode. This adds a
	 measure of security while removing the ability to reset the
	 root password when
	 it is unknown.
Example 12.3. Configuring an Insecure Console in
	 /etc/ttys
name getty type status comments
#
If console is marked "insecure", then init will ask for the root password
when going to single-user mode.
console none unknown off insecure

An insecure console means that
	 physical security to the console is considered to be
	 insecure, so only someone who knows the root password may use
	 single-user mode.
12.2.4.2. Multi-User Mode
If init finds the file
	 systems to be in order, or once the user has finished their
	 commands in single-user mode and has typed
	 exit to leave single-user mode, the
	 system enters multi-user mode, in which it starts the
	 resource configuration of the system.
The resource configuration system reads in configuration
	 defaults from /etc/defaults/rc.conf and
	 system-specific details from
	 /etc/rc.conf. It then proceeds to
	 mount the system file systems listed in
	 /etc/fstab. It starts up networking
	 services, miscellaneous system daemons, then the startup
	 scripts of locally installed packages.
To learn more about the resource configuration system,
	 refer to rc(8) and examine the scripts located in
	 /etc/rc.d.
12.3. Configuring Boot Time Splash Screens
Contributed by Joseph J. Barbish. Typically when a FreeBSD system boots, it displays its progress
 as a series of messages at the console. A boot splash screen
 creates an alternate boot screen that hides all of the boot
 probe and service startup messages. A few boot loader messages,
 including the boot options menu and a timed wait countdown
 prompt, are displayed at boot time, even when the splash screen
 is enabled. The display of the splash screen can be turned off
 by hitting any key on the keyboard during the boot
 process.
There are two basic environments available in FreeBSD. The
 first is the default legacy virtual console command line
 environment. After the system finishes booting, a console login
 prompt is presented. The second environment is a configured
 graphical environment. Refer to Chapter 5, The X Window System for more
 information on how to install and configure a graphical display
 manager and a graphical login manager.
Once the system has booted, the splash screen defaults to
 being a screen saver. After a time period of non-use, the
 splash screen will display and will cycle through steps of
 changing intensity of the image, from bright to very dark and
 over again. The configuration of the splash screen saver can be
 overridden by adding a saver= line to
 /etc/rc.conf. Several built-in screen
 savers are available and described in splash(4). The
 saver= option only applies to virtual
 consoles and has no effect on graphical display managers.
By installing the
 sysutils/bsd-splash-changer package or port,
 a random splash image from a collection will display at boot.
 The splash screen function supports 256-colors in the
 bitmap (.bmp), ZSoft
 PCX (.pcx), or
 TheDraw (.bin) formats. The
 .bmp, .pcx, or
 .bin image has to be placed on the root
 partition, for example in /boot. The
 splash image files must have a resolution of 320 by 200 pixels
 or less in order to work on standard VGA
 adapters. For the default boot display resolution of 256-colors
 and 320 by 200 pixels or less, add the following lines to
 /boot/loader.conf. Replace
 splash.bmp with the name of the
 bitmap file to use:
splash_bmp_load="YES"
bitmap_load="YES"
bitmap_name="/boot/splash.bmp"
To use a PCX file instead of a bitmap
 file:
splash_pcx_load="YES"
bitmap_load="YES"
bitmap_name="/boot/splash.pcx"
To instead use ASCII art in the https://en.wikipedia.org/wiki/TheDraw
 format:
splash_txt="YES"
bitmap_load="YES"
bitmap_name="/boot/splash.bin"
To use larger images that fill the whole display screen, up
 to the maximum resolution of 1024 by 768 pixels, the
 VESA module must also be loaded during system
 boot. If using a custom kernel, ensure that the custom kernel
 configuration file includes the VESA kernel
 configuration option. To load the VESA
 module for the splash screen, add this line to
 /boot/loader.conf before the three lines
 mentioned in the above examples:
vesa_load="YES"
Other interesting loader.conf options
 include:
	beastie_disable="YES"
	This will stop the boot options menu from being
	 displayed, but the timed wait count down prompt will still
	 be present. Even with the display of the boot options
	 menu disabled, entering an option selection at the timed
	 wait count down prompt will enact the corresponding boot
	 option.

	loader_logo="beastie"
	This will replace the default words
	 “FreeBSD”, which are displayed to the right of
	 the boot options menu, with the colored beastie
	 logo.

For more information, refer to splash(4),
 loader.conf(5), and vga(4).
12.4. Device Hints
Contributed by Tom Rhodes. During initial system startup, the boot loader(8) reads
 device.hints(5). This file stores kernel boot information
 known as variables, sometimes referred to as
 “device hints”. These “device hints”
 are used by device drivers for device configuration.
Device hints may also be specified at the Stage 3 boot
 loader prompt, as demonstrated in Section 12.2.3, “Stage Three”.
 Variables can be added using set, removed
 with unset, and viewed
 show. Variables set in
 /boot/device.hints can also be overridden.
 Device hints entered at the boot loader are not permanent and
 will not be applied on the next reboot.
Once the system is booted, kenv(1) can be used to dump
 all of the variables.
The syntax for /boot/device.hints
 is one variable per line, using the hash
 “#” as comment markers. Lines are constructed as
 follows:
hint.driver.unit.keyword="value"
The syntax for the Stage 3 boot loader is:
set hint.driver.unit.keyword=value
where driver is the device driver name,
 unit is the device driver unit number, and
 keyword is the hint keyword. The keyword may
 consist of the following options:
	at: specifies the bus which the
	 device is attached to.

	port: specifies the start address of
	 the I/O to be used.

	irq: specifies the interrupt request
	 number to be used.

	drq: specifies the DMA channel
	 number.

	maddr: specifies the physical memory
	 address occupied by the device.

	flags: sets various flag bits for the
	 device.

	disabled: if set to
	 1 the device is disabled.

Since device drivers may accept or require more hints not
 listed here, viewing a driver's manual page is recommended.
 For more information, refer to device.hints(5),
 kenv(1), loader.conf(5), and loader(8).
12.5. Shutdown Sequence
Upon controlled shutdown using shutdown(8),
 init(8) will attempt to run the script
 /etc/rc.shutdown, and then proceed to send
 all processes the TERM signal, and
 subsequently the KILL signal to any that do
 not terminate in a timely manner.
To power down a FreeBSD machine on architectures and systems
 that support power management, use

 shutdown -p now to turn the power off
 immediately. To reboot a FreeBSD system, use
 shutdown -r now. One must be
 root or a member of
 operator in order to
 run shutdown(8). One can also use halt(8) and
 reboot(8). Refer to their manual pages and to
 shutdown(8) for more information.
Modify group membership by referring to
 Section 3.3, “Users and Basic Account Management”.
Note:
Power management requires acpi(4) to be loaded as
	a module or statically compiled into a custom kernel.

Chapter 13. Security
Rewritten by Tom Rhodes. 13.1. Synopsis
Security, whether physical or virtual, is a topic so broad
 that an entire industry has evolved around it. Hundreds of
 standard practices have been authored about how to secure
 systems and networks, and as a user of FreeBSD, understanding how
 to protect against attacks and intruders is a must.
In this chapter, several fundamentals and techniques will be
 discussed. The FreeBSD system comes with multiple layers of
 security, and many more third party utilities may be added to
 enhance security.
After reading this chapter, you will know:
	Basic FreeBSD system security concepts.

	The various crypt mechanisms available in FreeBSD.

	How to set up one-time password authentication.

	How to configure TCP Wrapper
	 for use with inetd(8).

	How to set up Kerberos on
	 FreeBSD.

	How to configure IPsec and create a
	 VPN.

	How to configure and use
	 OpenSSH on FreeBSD.

	How to use file system ACLs.

	How to use pkg to audit
	 third party software packages installed from the Ports
	 Collection.

	How to utilize FreeBSD security advisories.

	What Process Accounting is and how to enable it on
	 FreeBSD.

	How to control user resources using login classes or the
	 resource limits database.

Before reading this chapter, you should:
	Understand basic FreeBSD and Internet concepts.

Additional security topics are covered elsewhere in this
 Handbook. For example, Mandatory Access Control is discussed in
 Chapter 15, Mandatory Access Control and Internet firewalls are discussed in
 Chapter 30, Firewalls.
13.2. Introduction
Security is everyone's responsibility. A weak entry point
 in any system could allow intruders to gain access to critical
 information and cause havoc on an entire network. One of the
 core principles of information security is the
 CIA triad, which stands for the
 Confidentiality, Integrity, and Availability of information
 systems.
The CIA triad is a bedrock concept of
 computer security as customers and users expect their data to be
 protected. For example, a customer expects that their credit
 card information is securely stored (confidentiality), that
 their orders are not changed behind the scenes (integrity), and
 that they have access to their order information at all times
 (availablility).
To provide CIA, security professionals
 apply a defense in depth strategy. The idea of defense in depth
 is to add several layers of security to prevent one single layer
 failing and the entire security system collapsing. For example,
 a system administrator cannot simply turn on a firewall and
 consider the network or system secure. One must also audit
 accounts, check the integrity of binaries, and ensure malicious
 tools are not installed. To implement an effective security
 strategy, one must understand threats and how to defend against
 them.
What is a threat as it pertains to computer security?
 Threats are not limited to remote attackers who attempt to
 access a system without permission from a remote location.
 Threats also include employees, malicious software, unauthorized
 network devices, natural disasters, security vulnerabilities,
 and even competing corporations.
Systems and networks can be accessed without permission,
 sometimes by accident, or by remote attackers, and in some
 cases, via corporate espionage or former employees. As a user,
 it is important to prepare for and admit when a mistake has led
 to a security breach and report possible issues to the security
 team. As an administrator, it is important to know of the
 threats and be prepared to mitigate them.
When applying security to systems, it is recommended to
 start by securing the basic accounts and system configuration,
 and then to secure the network layer so that it adheres to the
 system policy and the organization's security procedures. Many
 organizations already have a security policy that covers the
 configuration of technology devices. The policy should include
 the security configuration of workstations, desktops, mobile
 devices, phones, production servers, and development servers.
 In many cases, standard operating procedures
 (SOPs) already exist. When in doubt, ask the
 security team.
The rest of this introduction describes how some of these
 basic security configurations are performed on a FreeBSD system.
 The rest of this chapter describes some specific tools which can
 be used when implementing a security policy on a FreeBSD
 system.
13.2.1. Preventing Logins
In securing a system, a good starting point is an audit of
	accounts. Ensure that root has a strong password and
	that this password is not shared. Disable any accounts that
	do not need login access.
To deny login access to accounts, two methods exist. The
	first is to lock the account. This example locks the
	toor account:
pw lock toor
The second method is to prevent login access by changing
	the shell to /sbin/nologin. Only the
	superuser can change the shell for other users:
chsh -s /usr/sbin/nologin toor
The /usr/sbin/nologin shell prevents
	the system from assigning a shell to the user when they
	attempt to login.
13.2.2. Permitted Account Escalation
In some cases, system administration needs to be shared
	with other users. FreeBSD has two methods to handle this. The
	first one, which is not recommended, is a shared root password
	used by members of the wheel group. With this
	method, a user types su and enters the
	password for wheel
	whenever superuser access is needed. The user should then
	type exit to leave privileged access after
	finishing the commands that required administrative access.
	To add a user to this group, edit
	/etc/group and add the user to the end of
	the wheel entry. The user must be
	separated by a comma character with no space.
The second, and recommended, method to permit privilege
	escalation is to install the security/sudo
	package or port. This software provides additional auditing,
	more fine-grained user control, and can be configured to lock
	users into running only the specified privileged
	commands.
After installation, use visudo to edit
	/usr/local/etc/sudoers. This example
	creates a new webadmin group, adds the
	trhodes account to
	that group, and configures that group access to restart
	apache24:
pw groupadd webadmin -M trhodes -g 6000
visudo
%webadmin ALL=(ALL) /usr/sbin/service apache24 *
13.2.3. Password Hashes
Passwords are a necessary evil of technology. When they
	must be used, they should be complex and a powerful hash
	mechanism should be used to encrypt the version that is stored
	in the password database. FreeBSD supports the
	DES, MD5,
	SHA256, SHA512, and
	Blowfish hash algorithms in its crypt()
	library. The default of SHA512 should not
	be changed to a less secure hashing algorithm, but can be
	changed to the more secure Blowfish algorithm.
Note:
Blowfish is not part of AES and is
	 not considered compliant with any Federal Information
	 Processing Standards (FIPS). Its use may
	 not be permitted in some environments.

To determine which hash algorithm is used to encrypt a
	user's password, the superuser can view the hash for the user
	in the FreeBSD password database. Each hash starts with a symbol
	which indicates the type of hash mechanism used to encrypt the
	password. If DES is used, there is no
	beginning symbol. For MD5, the symbol is
	$. For SHA256 and
	SHA512, the symbol is
	6. For Blowfish, the symbol is
	$2a$. In this example, the password for
	dru is hashed using
	the default SHA512 algorithm as the hash
	starts with 6. Note that the encrypted
	hash, not the password itself, is stored in the password
	database:
grep dru /etc/master.passwd
dru:6pzIjSvCAn.PBYQBA$PXpSeWPx3g5kscj3IMiM7tUEUSPmGexxta.8Lt9TGSi2lNQqYGKszsBPuGME0:1001:1001::0:0:dru:/usr/home/dru:/bin/csh
The hash mechanism is set in the user's login class. For
	this example, the user is in the default
	login class and the hash algorithm is set with this line in
	/etc/login.conf:
 :passwd_format=sha512:\
To change the algorithm to Blowfish, modify that line to
	look like this:
 :passwd_format=blf:\
Then run cap_mkdb /etc/login.conf as
	described in Section 13.13.1, “Configuring Login Classes”. Note that this
	change will not affect any existing password hashes. This
	means that all passwords should be re-hashed by asking users
	to run passwd in order to change their
	password.
For remote logins, two-factor authentication should be
	used. An example of two-factor authentication is
	“something you have”, such as a key, and
	“something you know”, such as the passphrase for
	that key. Since OpenSSH is part of
	the FreeBSD base system, all network logins should be over an
	encrypted connection and use key-based authentication instead
	of passwords. For more information, refer to Section 13.8, “OpenSSH”. Kerberos users may need to make
	additional changes to implement
	OpenSSH in their network. These
	changes are described in Section 13.5, “Kerberos”.
13.2.4. Password Policy Enforcement
Enforcing a strong password policy for local accounts is a
	fundamental aspect of system security. In FreeBSD, password
	length, password strength, and password complexity can be
	implemented using built-in Pluggable Authentication Modules
	(PAM).
This section demonstrates how to configure the minimum and
	maximum password length and the enforcement of mixed
	characters using the pam_passwdqc.so
	module. This module is enforced when a user changes their
	password.
To configure this module, become the superuser and
	uncomment the line containing
	pam_passwdqc.so in
	/etc/pam.d/passwd. Then, edit that line
	to match the password policy:
password requisite pam_passwdqc.so min=disabled,disabled,disabled,12,10 similar=deny retry=3 enforce=users
This example sets several requirements for new passwords.
	The min setting controls the minimum
	password length. It has five values because this module
	defines five different types of passwords based on their
	complexity. Complexity is defined by the type of characters
	that must exist in a password, such as letters, numbers,
	symbols, and case. The types of passwords are described in
	pam_passwdqc(8). In this example, the first three types
	of passwords are disabled, meaning that passwords that meet
	those complexity requirements will not be accepted, regardless
	of their length. The 12 sets a minimum
	password policy of at least twelve characters, if the password
	also contains characters with three types of complexity. The
	10 sets the password policy to also allow
	passwords of at least ten characters, if the password contains
	characters with four types of complexity.
The similar setting denies passwords
	that are similar to the user's previous password. The
	retry setting provides a user with three
	opportunities to enter a new password.
Once this file is saved, a user changing their password
	will see a message similar to the following:
% passwd
Changing local password for trhodes
Old Password:

You can now choose the new password.
A valid password should be a mix of upper and lower case letters,
digits and other characters. You can use a 12 character long
password with characters from at least 3 of these 4 classes, or
a 10 character long password containing characters from all the
classes. Characters that form a common pattern are discarded by
the check.
Alternatively, if no one else can see your terminal now, you can
pick this as your password: "trait-useful&knob".
Enter new password:
If a password that does not match the policy is entered,
	it will be rejected with a warning and the user will have an
	opportunity to try again, up to the configured number of
	retries.
Most password policies require passwords to expire after
	so many days. To set a password age time in FreeBSD, set
	passwordtime for the user's login class in
	/etc/login.conf. The
	default login class contains an
	example:
:passwordtime=90d:\
So, to set an expiry of 90 days for this login class,
	remove the comment symbol (#), save the
	edit, and run cap_mkdb
	 /etc/login.conf.
To set the expiration on individual users, pass an
	expiration date or the number of days to expiry and a username
	to pw:
pw usermod -p 30-apr-2015 -n trhodes
As seen here, an expiration date is set in the form of
	day, month, and year. For more information, see
	pw(8).
13.2.5. Detecting Rootkits
A rootkit is any unauthorized
	software that attempts to gain root access to a system. Once
	installed, this malicious software will normally open up
	another avenue of entry for an attacker. Realistically, once
	a system has been compromised by a rootkit and an
	investigation has been performed, the system should be
	reinstalled from scratch. There is tremendous risk that even
	the most prudent security or systems engineer will miss
	something an attacker left behind.
A rootkit does do one thing useful for administrators:
	once detected, it is a sign that a compromise happened at some
	point. But, these types of applications tend to be very well
	hidden. This section demonstrates a tool that can be used to
	detect rootkits, security/rkhunter.
After installation of this package or port, the system may
	be checked using the following command. It will produce a lot
	of information and will require some manual pressing of
	ENTER:
rkhunter -c
After the process completes, a status message will be
	printed to the screen. This message will include the amount
	of files checked, suspect files, possible rootkits, and more.
	During the check, some generic security warnings may
	be produced about hidden files, the
	OpenSSH protocol selection, and
	known vulnerable versions of installed software. These can be
	handled now or after a more detailed analysis has been
	performed.
Every administrator should know what is running on the
	systems they are responsible for. Third-party tools like
	rkhunter and
	sysutils/lsof, and native commands such
	as netstat and ps, can
	show a great deal of information on the system. Take notes on
	what is normal, ask questions when something seems out of
	place, and be paranoid. While preventing a compromise is
	ideal, detecting a compromise is a must.
13.2.6. Binary Verification
Verification of system files and binaries is important
	because it provides the system administration and security
	teams information about system changes. A software
	application that monitors the system for changes is called an
	Intrusion Detection System (IDS).
FreeBSD provides native support for a basic
	IDS system. While the nightly security
	emails will notify an administrator of changes, the
	information is stored locally and there is a chance that a
	malicious user could modify this information in order to hide
	their changes to the system. As such, it is recommended to
	create a separate set of binary signatures and store them on a
	read-only, root-owned directory or, preferably, on a removable
	USB disk or remote
	rsync server.
The built-in mtree utility can be used
	to generate a specification of the contents of a directory. A
	seed, or a numeric constant, is used to generate the
	specification and is required to check that the specification
	has not changed. This makes it possible to determine if a
	file or binary has been modified. Since the seed value is
	unknown by an attacker, faking or checking the checksum values
	of files will be difficult to impossible. The following
	example generates a set of SHA256 hashes,
	one for each system binary in /bin, and
	saves those values to a hidden file in root's home directory,
	/root/.bin_chksum_mtree:
mtree -s 3483151339707503 -c -K cksum,sha256digest -p /bin > /root/.bin_chksum_mtree
mtree: /bin checksum: 3427012225
The 3483151339707503 represents
	the seed. This value should be remembered, but not
	shared.
Viewing /root/.bin_cksum_mtree should
	yield output similar to the following:
user: root
machine: dreadnaught
tree: /bin
date: Mon Feb 3 10:19:53 2014

.
/set type=file uid=0 gid=0 mode=0555 nlink=1 flags=none
. type=dir mode=0755 nlink=2 size=1024 \
 time=1380277977.000000000
 \133 nlink=2 size=11704 time=1380277977.000000000 \
 cksum=484492447 \
 sha256digest=6207490fbdb5ed1904441fbfa941279055c3e24d3a4049aeb45094596400662a
 cat size=12096 time=1380277975.000000000 cksum=3909216944 \
 sha256digest=65ea347b9418760b247ab10244f47a7ca2a569c9836d77f074e7a306900c1e69
 chflags size=8168 time=1380277975.000000000 cksum=3949425175 \
 sha256digest=c99eb6fc1c92cac335c08be004a0a5b4c24a0c0ef3712017b12c89a978b2dac3
 chio size=18520 time=1380277975.000000000 cksum=2208263309 \
 sha256digest=ddf7c8cb92a58750a675328345560d8cc7fe14fb3ccd3690c34954cbe69fc964
 chmod size=8640 time=1380277975.000000000 cksum=2214429708 \
 sha256digest=a435972263bf814ad8df082c0752aa2a7bdd8b74ff01431ccbd52ed1e490bbe7
The machine's hostname, the date and time the
	specification was created, and the name of the user who
	created the specification are included in this report. There
	is a checksum, size, time, and SHA256
	digest for each binary in the directory.
To verify that the binary signatures have not changed,
	compare the current contents of the directory to the
	previously generated specification, and save the results to a
	file. This command requires the seed that was used to
	generate the original specification:
mtree -s 3483151339707503 -p /bin < /root/.bin_chksum_mtree >> /root/.bin_chksum_output
mtree: /bin checksum: 3427012225
This should produce the same checksum for
	/bin that was produced when the
	specification was created. If no changes have occurred to the
	binaries in this directory, the
	/root/.bin_chksum_output output file will
	be empty. To simulate a change, change the date on
	/bin/cat using touch
	and run the verification command again:
touch /bin/cat
mtree -s 3483151339707503 -p /bin < /root/.bin_chksum_mtree >> /root/.bin_chksum_output
more /root/.bin_chksum_output
cat changed
	modification time expected Fri Sep 27 06:32:55 2013 found Mon Feb 3 10:28:43 2014
It is recommended to create specifications for the
	directories which contain binaries and configuration files, as
	well as any directories containing sensitive data. Typically,
	specifications are created for /bin,
	/sbin, /usr/bin,
	/usr/sbin,
	/usr/local/bin,
	/etc, and
	/usr/local/etc.
More advanced IDS systems exist, such
	as security/aide. In most cases,
	mtree provides the functionality
	administrators need. It is important to keep the seed value
	and the checksum output hidden from malicious users. More
	information about mtree can be found in
	mtree(8).
13.2.7. System Tuning for Security
In FreeBSD, many system features can be tuned using
	sysctl. A few of the security features
	which can be tuned to prevent Denial of Service
	(DoS) attacks will be covered in this
	section. More information about using
	sysctl, including how to temporarily change
	values and how to make the changes permanent after testing,
	can be found in Section 11.9, “Tuning with sysctl(8)”.
Note:
Any time a setting is changed with
	 sysctl, the chance to cause undesired
	 harm is increased, affecting the availability of the system.
	 All changes should be monitored and, if possible, tried on a
	 testing system before being used on a production
	 system.

By default, the FreeBSD kernel boots with a security level of
	-1. This is called “insecure
	 mode” because immutable file flags may be turned off
	and all devices may be read from or written to. The security
	level will remain at -1 unless it is
	altered through sysctl or by a setting in
	the startup scripts. The security level may be increased
	during system startup by setting
	kern_securelevel_enable to
	YES in /etc/rc.conf,
	and the value of kern_securelevel to the
	desired security level. See security(7) and init(8)
	for more information on these settings and the available
	security levels.
Warning:
Increasing the securelevel can break
	 Xorg and cause other issues. Be
	 prepared to do some debugging.

The net.inet.tcp.blackhole and
	net.inet.udp.blackhole settings can be used
	to drop incoming SYN packets on closed
	ports without sending a return RST
	response. The default behavior is to return an
	RST to show a port is closed. Changing the
	default provides some level of protection against ports scans,
	which are used to determine which applications are running on
	a system. Set net.inet.tcp.blackhole to
	2 and
	net.inet.udp.blackhole to
	1. Refer to blackhole(4) for more
	information about these settings.
The net.inet.icmp.drop_redirect and
	net.inet.ip.redirect settings help prevent
	against redirect attacks. A redirect
	attack is a type of DoS which sends mass
	numbers of ICMP type 5 packets. Since
	these packets are not required, set
	net.inet.icmp.drop_redirect to
	1 and set
	net.inet.ip.redirect to
	0.
Source routing is a method for detecting and accessing
	non-routable addresses on the internal network. This should
	be disabled as non-routable addresses are normally not
	routable on purpose. To disable this feature, set
	net.inet.ip.sourceroute and
	net.inet.ip.accept_sourceroute to
	0.
When a machine on the network needs to send messages to
	all hosts on a subnet, an ICMP echo request
	message is sent to the broadcast address. However, there is
	no reason for an external host to perform such an action. To
	reject all external broadcast requests, set
	net.inet.icmp.bmcastecho to
	0.
Some additional settings are documented in
	security(7).
13.4. TCP Wrapper
Written
	 by Tom Rhodes. TCP Wrapper is a host-based
 access control system which extends the abilities of Section 29.2, “The inetd
 Super-Server”. It can be configured to provide
 logging support, return messages, and connection restrictions
 for the server daemons under the control of
 inetd. Refer to tcpd(8) for
 more information about
 TCP Wrapper and its features.
TCP Wrapper should not be
 considered a replacement for a properly configured firewall.
 Instead, TCP Wrapper should be used
 in conjunction with a firewall and other security enhancements
 in order to provide another layer of protection in the
 implementation of a security policy.
13.4.1. Initial Configuration
To enable TCP Wrapper in FreeBSD,
	add the following lines to
	/etc/rc.conf:
inetd_enable="YES"
inetd_flags="-Ww"
Then, properly configure
	/etc/hosts.allow.
Note:
Unlike other implementations of
	 TCP Wrapper, the use of
	 hosts.deny is deprecated in FreeBSD. All
	 configuration options should be placed in
	 /etc/hosts.allow.

In the simplest configuration, daemon connection policies
	are set to either permit or block, depending on the options in
	/etc/hosts.allow. The default
	configuration in FreeBSD is to allow all connections to the
	daemons started with inetd.
Basic configuration usually takes the form of
	daemon : address : action, where
	daemon is the daemon which
	inetd started,
	address is a valid hostname,
	IP address, or an IPv6 address enclosed in
	brackets ([]), and action is either
	allow or deny.
	TCP Wrapper uses a first rule match
	semantic, meaning that the configuration file is scanned from
	the beginning for a matching rule. When a match is found, the
	rule is applied and the search process stops.
For example, to allow POP3 connections
	via the mail/qpopper daemon, the following
	lines should be appended to
	hosts.allow:
This line is required for POP3 connections:
qpopper : ALL : allow
Whenever this file is edited, restart
	inetd:
service inetd restart
13.4.2. Advanced Configuration
TCP Wrapper provides advanced
	options to allow more control over the way connections are
	handled. In some cases, it may be appropriate to return a
	comment to certain hosts or daemon connections. In other
	cases, a log entry should be recorded or an email sent to the
	administrator. Other situations may require the use of a
	service for local connections only. This is all possible
	through the use of configuration options known as wildcards,
	expansion characters, and external command execution.
Suppose that a situation occurs where a connection should
	be denied yet a reason should be sent to the host who
	attempted to establish that connection. That action is
	possible with twist. When a connection
	attempt is made, twist executes a shell
	command or script. An example exists in
	hosts.allow:
The rest of the daemons are protected.
ALL : ALL \
	: severity auth.info \
	: twist /bin/echo "You are not welcome to use %d from %h."
In this example, the message “You are not allowed to
	 use daemon name from
	 hostname.” will be
	returned for any daemon not configured in
	hosts.allow. This is useful for sending
	a reply back to the connection initiator right after the
	established connection is dropped. Any message returned
	must be wrapped in quote
	(") characters.
Warning:
It may be possible to launch a denial of service attack
	 on the server if an attacker floods these daemons with
	 connection requests.

Another possibility is to use spawn.
	Like twist, spawn implicitly
	denies the connection and may be used to run external shell
	commands or scripts. Unlike twist,
	spawn will not send a reply back to the host
	who established the connection. For example, consider the
	following configuration:
We do not allow connections from example.com:
ALL : .example.com \
	: spawn (/bin/echo %a from %h attempted to access %d >> \
	 /var/log/connections.log) \
	: deny
This will deny all connection attempts from *.example.com and log the
	hostname, IP address, and the daemon to
	which access was attempted to
	/var/log/connections.log. This example
	uses the substitution characters %a and
	%h. Refer to hosts_access(5) for the
	complete list.
To match every instance of a daemon, domain, or
	IP address, use ALL.
	Another wildcard is PARANOID which may be
	used to match any host which provides an IP
	address that may be forged because the IP
	address differs from its resolved hostname. In this example,
	all connection requests to Sendmail
	which have an IP address that varies from
	its hostname will be denied:
Block possibly spoofed requests to sendmail:
sendmail : PARANOID : deny
Caution:
Using the PARANOID wildcard will
	 result in denied connections if the client or server has a
	 broken DNS setup.

To learn more about wildcards and their associated
	functionality, refer to hosts_access(5).
Note:
When adding new configuration lines, make sure that any
	 unneeded entries for that daemon are commented out in
	 hosts.allow.

13.7. VPN over
	IPsec
Written by Nik Clayton. Written by Hiten M. Pandya. Internet Protocol Security (IPsec) is a
 set of protocols which sit on top of the Internet Protocol
 (IP) layer. It allows two or more hosts to
 communicate in a secure manner by authenticating and encrypting
 each IP packet of a communication session.
 The FreeBSD IPsec network stack is based on the
 http://www.kame.net/
 implementation and supports both IPv4 and
 IPv6 sessions.
IPsec is comprised of the following
 sub-protocols:
	Encapsulated Security Payload
	 (ESP): this protocol
	 protects the IP packet data from third
	 party interference by encrypting the contents using
	 symmetric cryptography algorithms such as Blowfish and
	 3DES.

	Authentication Header
	 (AH): this protocol
	 protects the IP packet header from third
	 party interference and spoofing by computing a cryptographic
	 checksum and hashing the IP packet
	 header fields with a secure hashing function. This is then
	 followed by an additional header that contains the hash, to
	 allow the information in the packet to be
	 authenticated.

	IP Payload Compression Protocol
	 (IPComp): this protocol
	 tries to increase communication performance by compressing
	 the IP payload in order to reduce the
	 amount of data sent.

These protocols can either be used together or separately,
 depending on the environment.
IPsec supports two modes of operation.
 The first mode, Transport Mode, protects
 communications between two hosts. The second mode,
 Tunnel Mode, is used to build virtual
 tunnels, commonly known as Virtual Private Networks
 (VPNs). Consult ipsec(4) for detailed
 information on the IPsec subsystem in
 FreeBSD.
IPsec support is enabled by default on
 FreeBSD 11 and later. For previous versions of FreeBSD, add
 these options to a custom kernel configuration file and rebuild
 the kernel using the instructions in Chapter 8, Configuring the FreeBSD Kernel:
options IPSEC #IP security
device crypto
If IPsec debugging support is desired,
 the following kernel option should also be added:
options IPSEC_DEBUG #debug for IP security
This rest of this chapter demonstrates the process of
 setting up an IPsec VPN
 between a home network and a corporate network. In the example
 scenario:
	Both sites are connected to the Internet through a
	 gateway that is running FreeBSD.

	The gateway on each network has at least one external
	 IP address. In this example, the
	 corporate LAN's external
	 IP address is 172.16.5.4 and the home
	 LAN's external IP
	 address is 192.168.1.12.

	The internal addresses of the two networks can be either
	 public or private IP addresses. However,
	 the address space must not collide. For example, both
	 networks cannot use 192.168.1.x. In this
	 example, the corporate LAN's internal
	 IP address is 10.246.38.1 and the home
	 LAN's internal IP
	 address is 10.0.0.5.

13.7.1. Configuring a VPN on FreeBSD
Written by Tom Rhodes. To begin, security/ipsec-tools must be
	installed from the Ports Collection. This software provides a
	number of applications which support the configuration.
The next requirement is to create two gif(4)
	pseudo-devices which will be used to tunnel packets and allow
	both networks to communicate properly. As root, run the following
	commands, replacing internal and
	external with the real IP
	addresses of the internal and external interfaces of the two
	gateways:
ifconfig gif0 create
ifconfig gif0 internal1 internal2
ifconfig gif0 tunnel external1 external2
Verify the setup on each gateway, using
	ifconfig. Here is the output from Gateway
	1:
gif0: flags=8051 mtu 1280
tunnel inet 172.16.5.4 --> 192.168.1.12
inet6 fe80::2e0:81ff:fe02:5881%gif0 prefixlen 64 scopeid 0x6
inet 10.246.38.1 --> 10.0.0.5 netmask 0xffffff00
Here is the output from Gateway 2:
gif0: flags=8051 mtu 1280
tunnel inet 192.168.1.12 --> 172.16.5.4
inet 10.0.0.5 --> 10.246.38.1 netmask 0xffffff00
inet6 fe80::250:bfff:fe3a:c1f%gif0 prefixlen 64 scopeid 0x4
Once complete, both internal IP
	addresses should be reachable using ping(8):
priv-net# ping 10.0.0.5
PING 10.0.0.5 (10.0.0.5): 56 data bytes
64 bytes from 10.0.0.5: icmp_seq=0 ttl=64 time=42.786 ms
64 bytes from 10.0.0.5: icmp_seq=1 ttl=64 time=19.255 ms
64 bytes from 10.0.0.5: icmp_seq=2 ttl=64 time=20.440 ms
64 bytes from 10.0.0.5: icmp_seq=3 ttl=64 time=21.036 ms
--- 10.0.0.5 ping statistics ---
4 packets transmitted, 4 packets received, 0% packet loss
round-trip min/avg/max/stddev = 19.255/25.879/42.786/9.782 ms

corp-net# ping 10.246.38.1
PING 10.246.38.1 (10.246.38.1): 56 data bytes
64 bytes from 10.246.38.1: icmp_seq=0 ttl=64 time=28.106 ms
64 bytes from 10.246.38.1: icmp_seq=1 ttl=64 time=42.917 ms
64 bytes from 10.246.38.1: icmp_seq=2 ttl=64 time=127.525 ms
64 bytes from 10.246.38.1: icmp_seq=3 ttl=64 time=119.896 ms
64 bytes from 10.246.38.1: icmp_seq=4 ttl=64 time=154.524 ms
--- 10.246.38.1 ping statistics ---
5 packets transmitted, 5 packets received, 0% packet loss
round-trip min/avg/max/stddev = 28.106/94.594/154.524/49.814 ms
As expected, both sides have the ability to send and
	receive ICMP packets from the privately
	configured addresses. Next, both gateways must be told how to
	route packets in order to correctly send traffic from either
	network. The following commands will achieve this
	goal:
corp-net# route add 10.0.0.0 10.0.0.5 255.255.255.0
corp-net# route add net 10.0.0.0: gateway 10.0.0.5
priv-net# route add 10.246.38.0 10.246.38.1 255.255.255.0
priv-net# route add host 10.246.38.0: gateway 10.246.38.1
At this point, internal machines should be reachable from
	each gateway as well as from machines behind the gateways.
	Again, use ping(8) to confirm:
corp-net# ping 10.0.0.8
PING 10.0.0.8 (10.0.0.8): 56 data bytes
64 bytes from 10.0.0.8: icmp_seq=0 ttl=63 time=92.391 ms
64 bytes from 10.0.0.8: icmp_seq=1 ttl=63 time=21.870 ms
64 bytes from 10.0.0.8: icmp_seq=2 ttl=63 time=198.022 ms
64 bytes from 10.0.0.8: icmp_seq=3 ttl=63 time=22.241 ms
64 bytes from 10.0.0.8: icmp_seq=4 ttl=63 time=174.705 ms
--- 10.0.0.8 ping statistics ---
5 packets transmitted, 5 packets received, 0% packet loss
round-trip min/avg/max/stddev = 21.870/101.846/198.022/74.001 ms

priv-net# ping 10.246.38.107
PING 10.246.38.1 (10.246.38.107): 56 data bytes
64 bytes from 10.246.38.107: icmp_seq=0 ttl=64 time=53.491 ms
64 bytes from 10.246.38.107: icmp_seq=1 ttl=64 time=23.395 ms
64 bytes from 10.246.38.107: icmp_seq=2 ttl=64 time=23.865 ms
64 bytes from 10.246.38.107: icmp_seq=3 ttl=64 time=21.145 ms
64 bytes from 10.246.38.107: icmp_seq=4 ttl=64 time=36.708 ms
--- 10.246.38.107 ping statistics ---
5 packets transmitted, 5 packets received, 0% packet loss
round-trip min/avg/max/stddev = 21.145/31.721/53.491/12.179 ms
Setting up the tunnels is the easy part. Configuring a
	secure link is a more in depth process. The following
	configuration uses pre-shared (PSK)
	RSA keys. Other than the
	IP addresses, the
	/usr/local/etc/racoon/racoon.conf on both
	gateways will be identical and look similar to:
path pre_shared_key "/usr/local/etc/racoon/psk.txt"; #location of pre-shared key file
log debug;	#log verbosity setting: set to 'notify' when testing and debugging is complete

padding	# options are not to be changed
{
 maximum_length 20;
 randomize off;
 strict_check off;
 exclusive_tail off;
}

timer	# timing options. change as needed
{
 counter 5;
 interval 20 sec;
 persend 1;
natt_keepalive 15 sec;
 phase1 30 sec;
 phase2 15 sec;
}

listen	# address [port] that racoon will listen on
{
 isakmp 172.16.5.4 [500];
 isakmp_natt 172.16.5.4 [4500];
}

remote 192.168.1.12 [500]
{
 exchange_mode main,aggressive;
 doi ipsec_doi;
 situation identity_only;
 my_identifier address 172.16.5.4;
 peers_identifier address 192.168.1.12;
 lifetime time 8 hour;
 passive off;
 proposal_check obey;
nat_traversal off;
 generate_policy off;

 proposal {
 encryption_algorithm blowfish;
 hash_algorithm md5;
 authentication_method pre_shared_key;
 lifetime time 30 sec;
 dh_group 1;
 }
}

sainfo (address 10.246.38.0/24 any address 10.0.0.0/24 any)	# address $network/$netmask $type address $network/$netmask $type ($type being any or esp)
{								# $network must be the two internal networks you are joining.
 pfs_group 1;
 lifetime time 36000 sec;
 encryption_algorithm blowfish,3des;
 authentication_algorithm hmac_md5,hmac_sha1;
 compression_algorithm deflate;
}
For descriptions of each available option, refer to the
	manual page for racoon.conf.
The Security Policy Database (SPD)
	needs to be configured so that FreeBSD and
	racoon are able to encrypt and
	decrypt network traffic between the hosts.
This can be achieved with a shell script, similar to the
	following, on the corporate gateway. This file will be used
	during system initialization and should be saved as
	/usr/local/etc/racoon/setkey.conf.
flush;
spdflush;
To the home network
spdadd 10.246.38.0/24 10.0.0.0/24 any -P out ipsec esp/tunnel/172.16.5.4-192.168.1.12/use;
spdadd 10.0.0.0/24 10.246.38.0/24 any -P in ipsec esp/tunnel/192.168.1.12-172.16.5.4/use;
Once in place, racoon may be
	started on both gateways using the following command:
/usr/local/sbin/racoon -F -f /usr/local/etc/racoon/racoon.conf -l /var/log/racoon.log
The output should be similar to the following:
corp-net# /usr/local/sbin/racoon -F -f /usr/local/etc/racoon/racoon.conf
Foreground mode.
2006-01-30 01:35:47: INFO: begin Identity Protection mode.
2006-01-30 01:35:48: INFO: received Vendor ID: KAME/racoon
2006-01-30 01:35:55: INFO: received Vendor ID: KAME/racoon
2006-01-30 01:36:04: INFO: ISAKMP-SA established 172.16.5.4[500]-192.168.1.12[500] spi:623b9b3bd2492452:7deab82d54ff704a
2006-01-30 01:36:05: INFO: initiate new phase 2 negotiation: 172.16.5.4[0]192.168.1.12[0]
2006-01-30 01:36:09: INFO: IPsec-SA established: ESP/Tunnel 192.168.1.12[0]->172.16.5.4[0] spi=28496098(0x1b2d0e2)
2006-01-30 01:36:09: INFO: IPsec-SA established: ESP/Tunnel 172.16.5.4[0]->192.168.1.12[0] spi=47784998(0x2d92426)
2006-01-30 01:36:13: INFO: respond new phase 2 negotiation: 172.16.5.4[0]192.168.1.12[0]
2006-01-30 01:36:18: INFO: IPsec-SA established: ESP/Tunnel 192.168.1.12[0]->172.16.5.4[0] spi=124397467(0x76a279b)
2006-01-30 01:36:18: INFO: IPsec-SA established: ESP/Tunnel 172.16.5.4[0]->192.168.1.12[0] spi=175852902(0xa7b4d66)
To ensure the tunnel is working properly, switch to
	another console and use tcpdump(1) to view network
	traffic using the following command. Replace
	em0 with the network interface card as
	required:
tcpdump -i em0 host 172.16.5.4 and dst 192.168.1.12
Data similar to the following should appear on the
	console. If not, there is an issue and debugging the
	returned data will be required.
01:47:32.021683 IP corporatenetwork.com > 192.168.1.12.privatenetwork.com: ESP(spi=0x02acbf9f,seq=0xa)
01:47:33.022442 IP corporatenetwork.com > 192.168.1.12.privatenetwork.com: ESP(spi=0x02acbf9f,seq=0xb)
01:47:34.024218 IP corporatenetwork.com > 192.168.1.12.privatenetwork.com: ESP(spi=0x02acbf9f,seq=0xc)
At this point, both networks should be available and seem
	to be part of the same network. Most likely both networks are
	protected by a firewall. To allow traffic to flow between
	them, rules need to be added to pass packets. For the
	ipfw(8) firewall, add the following lines to the firewall
	configuration file:
ipfw add 00201 allow log esp from any to any
ipfw add 00202 allow log ah from any to any
ipfw add 00203 allow log ipencap from any to any
ipfw add 00204 allow log udp from any 500 to any
Note:
The rule numbers may need to be altered depending on the
	 current host configuration.

For users of pf(4) or ipf(8), the following
	rules should do the trick:
pass in quick proto esp from any to any
pass in quick proto ah from any to any
pass in quick proto ipencap from any to any
pass in quick proto udp from any port = 500 to any port = 500
pass in quick on gif0 from any to any
pass out quick proto esp from any to any
pass out quick proto ah from any to any
pass out quick proto ipencap from any to any
pass out quick proto udp from any port = 500 to any port = 500
pass out quick on gif0 from any to any
Finally, to allow the machine to start support for the
	VPN during system initialization, add the
	following lines to /etc/rc.conf:
ipsec_enable="YES"
ipsec_program="/usr/local/sbin/setkey"
ipsec_file="/usr/local/etc/racoon/setkey.conf" # allows setting up spd policies on boot
racoon_enable="yes"
13.8. OpenSSH
Contributed
	 by Chern Lee. OpenSSH is a set of network
 connectivity tools used to provide secure access to remote
 machines. Additionally, TCP/IP connections
 can be tunneled or forwarded securely through
 SSH connections.
 OpenSSH encrypts all traffic to
 effectively eliminate eavesdropping, connection hijacking, and
 other network-level attacks.
OpenSSH is maintained by the
 OpenBSD project and is installed by default in FreeBSD. It is
 compatible with both SSH version 1 and 2
 protocols.
When data is sent over the network in an unencrypted form,
 network sniffers anywhere in between the client and server can
 steal user/password information or data transferred during the
 session. OpenSSH offers a variety of
 authentication and encryption methods to prevent this from
 happening. More information about
 OpenSSH is available from http://www.openssh.com/.
This section provides an overview of the built-in client
 utilities to securely access other systems and securely transfer
 files from a FreeBSD system. It then describes how to configure a
 SSH server on a FreeBSD system. More
 information is available in the man pages mentioned in this
 chapter.
13.8.1. Using the SSH Client Utilities
To log into a SSH server, use
	ssh and specify a username that exists on
	that server and the IP address or hostname
	of the server. If this is the first time a connection has
	been made to the specified server, the user will be prompted
	to first verify the server's fingerprint:
ssh user@example.com
The authenticity of host 'example.com (10.0.0.1)' can't be established.
ECDSA key fingerprint is 25:cc:73:b5:b3:96:75:3d:56:19:49:d2:5c:1f:91:3b.
Are you sure you want to continue connecting (yes/no)? yes
Permanently added 'example.com' (ECDSA) to the list of known hosts.
Password for user@example.com: user_password
SSH utilizes a key fingerprint system
	to verify the authenticity of the server when the client
	connects. When the user accepts the key's fingerprint by
	typing yes when connecting for the first
	time, a copy of the key is saved to
	.ssh/known_hosts in the user's home
	directory. Future attempts to login are verified against the
	saved key and ssh will display an alert if
	the server's key does not match the saved key. If this
	occurs, the user should first verify why the key has changed
	before continuing with the connection.
By default, recent versions of
	OpenSSH only accept
	SSHv2 connections. By default, the client
	will use version 2 if possible and will fall back to version 1
	if the server does not support version 2. To force
	ssh to only use the specified protocol,
	include -1 or -2.
	Additional options are described in ssh(1).
Use scp(1) to securely copy a file to or from a
	remote machine. This example copies
	COPYRIGHT on the remote system to a file
	of the same name in the current directory of the local
	system:
scp user@example.com:/COPYRIGHT COPYRIGHT
Password for user@example.com: *******
COPYRIGHT 100% |*****************************| 4735
00:00
#
Since the fingerprint was already verified for this host,
	the server's key is automatically checked before prompting for
	the user's password.
The arguments passed to scp are similar
	to cp. The file or files to copy is the
	first argument and the destination to copy to is the second.
	Since the file is fetched over the network, one or more of the
	file arguments takes the form
	user@host:<path_to_remote_file>. Be
	aware when copying directories recursively that
	scp uses -r, whereas
	cp uses -R.
To open an interactive session for copying files, use
	sftp. Refer to sftp(1) for a list of
	available commands while in an sftp
	session.
13.8.1.1. Key-based Authentication
Instead of using passwords, a client can be configured
	 to connect to the remote machine using keys. To generate
	 RSA
	 authentication keys, use ssh-keygen. To
	 generate a public and private key pair, specify the type of
	 key and follow the prompts. It is recommended to protect
	 the keys with a memorable, but hard to guess
	 passphrase.
% ssh-keygen -t rsa
Generating public/private rsa key pair.
Enter file in which to save the key (/home/user/.ssh/id_rsa):
Enter passphrase (empty for no passphrase): [image: 1]
Enter same passphrase again: [image: 2]
Your identification has been saved in /home/user/.ssh/id_rsa.
Your public key has been saved in /home/user/.ssh/id_rsa.pub.
The key fingerprint is:
SHA256:54Xm9Uvtv6H4NOo6yjP/YCfODryvUU7yWHzMqeXwhq8 user@host.example.com
The key's randomart image is:
+---[RSA 2048]----+
| |
| |
| |
| . o.. |
| .S*+*o |
| . O=Oo . . |
| = Oo= oo..|
| .oB.* +.oo.|
| =OE**.o..=|
+----[SHA256]-----+
	[image: 1]
	Type a passphrase here. It can contain spaces and
	 symbols.

	[image: 2]
	Retype the passphrase to verify it.

The private key
	 is stored in ~/.ssh/id_rsa
	 and the public key
	 is stored in ~/.ssh/id_rsa.pub.
	 The
	 public key must be copied to
	 ~/.ssh/authorized_keys on the remote
	 machine for key-based authentication to
	 work.
Warning:
Many users believe that keys are secure by design and
	 will use a key without a passphrase. This is
	 dangerous behavior. An
	 administrator can verify that a key pair is protected by a
	 passphrase by viewing the private key manually. If the
	 private key file contains the word
	 ENCRYPTED, the key owner is using a
	 passphrase. In addition, to better secure end users,
	 from may be placed in the public key
	 file. For example, adding
	 from="192.168.10.5" in front of the
	 ssh-rsa
	 prefix will only allow that specific user to log in from
	 that IP address.

The options and files vary with different versions of
	 OpenSSH.
	 To avoid problems, consult ssh-keygen(1).
If a passphrase is used, the user is prompted for
	 the passphrase each time a connection is made to the server.
	 To load SSH keys into memory and remove
	 the need to type the passphrase each time, use
	 ssh-agent(1) and ssh-add(1).
Authentication is handled by
	 ssh-agent, using the private keys that
	 are loaded into it. ssh-agent
	 can be used to launch another application like a
	 shell or a window manager.
To use ssh-agent in a shell, start it
	 with a shell as an argument. Add the identity by
	 running ssh-add and entering the
	 passphrase for the private key.
	 The user will then be able to ssh
	 to any host that has the corresponding public key installed.
	 For example:
% ssh-agent csh
% ssh-add
Enter passphrase for key '/usr/home/user/.ssh/id_rsa': [image: 1]
Identity added: /usr/home/user/.ssh/id_rsa (/usr/home/user/.ssh/id_rsa)
%
	[image: 1]
	Enter the passphrase for the key.

To use ssh-agent in
	 Xorg, add an entry for it in
	 ~/.xinitrc. This provides the
	 ssh-agent services to all programs
	 launched in Xorg. An example
	 ~/.xinitrc might look like this:
exec ssh-agent startxfce4
This launches ssh-agent, which in
	 turn launches XFCE, every time
	 Xorg starts. Once
	 Xorg has been restarted so that
	 the changes can take effect, run ssh-add
	 to load all of the SSH keys.
13.8.1.2. SSH Tunneling
OpenSSH has the ability to
	 create a tunnel to encapsulate another protocol in an
	 encrypted session.
The following command tells ssh to
	 create a tunnel for
	 telnet:
% ssh -2 -N -f -L 5023:localhost:23 user@foo.example.com
%
This example uses the following options:
	-2
	Forces ssh to use version 2 to
		connect to the server.

	-N
	Indicates no command, or tunnel only. If omitted,
		ssh initiates a normal
		session.

	-f
	Forces ssh to run in the
		background.

	-L
	Indicates a local tunnel in
		localport:remotehost:remoteport
		format.

	user@foo.example.com
	The login name to use on the specified remote
		SSH server.

An SSH tunnel works by creating a
	 listen socket on localhost on the
	 specified localport. It then forwards
	 any connections received on localport via
	 the SSH connection to the specified
	 remotehost:remoteport. In the example,
	 port 5023 on the client is forwarded to
	 port 23 on the remote machine. Since
	 port 23 is used by telnet, this
	 creates an encrypted telnet
	 session through an SSH tunnel.
This method can be used to wrap any number of insecure
	 TCP protocols such as
	 SMTP, POP3, and
	 FTP, as seen in the following
	 examples.
Example 13.1. Create a Secure Tunnel for
	 SMTP
% ssh -2 -N -f -L 5025:localhost:25 user@mailserver.example.com
user@mailserver.example.com's password: *****
% telnet localhost 5025
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
220 mailserver.example.com ESMTP
This can be used in conjunction with
	 ssh-keygen and additional user accounts
	 to create a more seamless SSH tunneling
	 environment. Keys can be used in place of typing a
	 password, and the tunnels can be run as a separate
	 user.

Example 13.2. Secure Access of a POP3
	 Server
In this example, there is an SSH
	 server that accepts connections from the outside. On the
	 same network resides a mail server running a
	 POP3 server. To check email in a
	 secure manner, create an SSH connection
	 to the SSH server and tunnel through to
	 the mail server:
% ssh -2 -N -f -L 2110:mail.example.com:110 user@ssh-server.example.com
user@ssh-server.example.com's password: ******
Once the tunnel is up and running, point the email
	 client to send POP3 requests to
	 localhost on port 2110. This
	 connection will be forwarded securely across the tunnel to
	 mail.example.com.

Example 13.3. Bypassing a Firewall
Some firewalls
	 filter both incoming and outgoing connections. For
	 example, a firewall might limit access from remote
	 machines to ports 22 and 80 to only allow
	 SSH and web surfing. This prevents
	 access to any other service which uses a port other than
	 22 or 80.
The solution is to create an SSH
	 connection to a machine outside of the network's firewall
	 and use it to tunnel to the desired service:
% ssh -2 -N -f -L 8888:music.example.com:8000 user@unfirewalled-system.example.org
user@unfirewalled-system.example.org's password: *******
In this example, a streaming Ogg Vorbis client can now
	 be pointed to localhost port
	 8888, which will be forwarded over to
	 music.example.com on port 8000,
	 successfully bypassing the firewall.

13.8.2. Enabling the SSH Server
In addition to providing built-in SSH
	client utilities, a FreeBSD system can be configured as an
	SSH server, accepting connections from
	other SSH clients.
To see if sshd is operating,
	use the service(8) command:
service sshd status
If the service is not running, add the following line to
	/etc/rc.conf.
sshd_enable="YES"
This will start sshd, the
	daemon program for OpenSSH, the
	next time the system boots. To start it now:
service sshd start
The first time sshd starts on a
	FreeBSD system, the system's host keys will be automatically
	created and the fingerprint will be displayed on the console.
	Provide users with the fingerprint so that they can verify it
	the first time they connect to the server.
Refer to sshd(8) for the list of available options
	when starting sshd and a more
	complete discussion about authentication, the login process,
	and the various configuration files.
At this point, the sshd should
	be available to all users with a username and password on
	the system.
13.8.3. SSH Server Security
While sshd is the most widely
	used remote administration facility for FreeBSD, brute force
	and drive by attacks are common to any system exposed to
	public networks. Several additional parameters are available
	to prevent the success of these attacks and will be described
	in this section.
It is a good idea to limit which users can log into the
	SSH server and from where using the
	AllowUsers keyword in the
	OpenSSH server configuration file.
	For example, to only allow root to log in from
	192.168.1.32, add
	this line to /etc/ssh/sshd_config:
AllowUsers root@192.168.1.32
To allow admin
	to log in from anywhere, list that user without specifying an
	IP address:
AllowUsers admin
Multiple users should be listed on the same line, like
	so:
AllowUsers root@192.168.1.32 admin
After making changes to
	/etc/ssh/sshd_config,
	tell sshd to reload its
	configuration file by running:
service sshd reload
Note:
When this keyword is used, it is important to list each
	 user that needs to log into this machine. Any user that is
	 not specified in that line will be locked out. Also, the
	 keywords used in the OpenSSH
	 server configuration file are case-sensitive. If the
	 keyword is not spelled correctly, including its case, it
	 will be ignored. Always test changes to this file to make
	 sure that the edits are working as expected. Refer to
	 sshd_config(5) to verify the spelling and use of the
	 available keywords.

In addition, users may be forced to use two factor
	authentication via the use of a public and private key. When
	required, the user may generate a key pair through the use
	of ssh-keygen(1) and send the administrator the public
	key. This key file will be placed in the
	authorized_keys as described above in
	the client section. To force the users to use keys only,
	the following option may be configured:
AuthenticationMethods publickey
Tip:
Do not confuse /etc/ssh/sshd_config
	 with /etc/ssh/ssh_config (note the
	 extra d in the first filename). The
	 first file configures the server and the second file
	 configures the client. Refer to ssh_config(5) for a
	 listing of the available client settings.

13.9. Access Control Lists
Contributed
	 by Tom Rhodes. Access Control Lists (ACLs) extend the
 standard UNIX® permission model in a POSIX®.1e compatible way.
 This permits an administrator to take advantage of a more
 fine-grained permissions model.
The FreeBSD GENERIC kernel provides
 ACL support for UFS file
 systems. Users who prefer to compile a custom kernel must
 include the following option in their custom kernel
 configuration file:
options UFS_ACL
If this option is not compiled in, a warning message will be
 displayed when attempting to mount a file system with
 ACL support. ACLs rely on
 extended attributes which are natively supported in
 UFS2.
This chapter describes how to enable
 ACL support and provides some usage
 examples.
13.9.1. Enabling ACL Support
ACLs are enabled by the mount-time
	administrative flag, acls, which may be added
	to /etc/fstab. The mount-time flag can
	also be automatically set in a persistent manner using
	tunefs(8) to modify a superblock ACLs
	flag in the file system header. In general, it is preferred
	to use the superblock flag for several reasons:
	The superblock flag cannot be changed by a remount
	 using mount -u as it requires a complete
	 umount and fresh
	 mount. This means that
	 ACLs cannot be enabled on the root file
	 system after boot. It also means that
	 ACL support on a file system cannot be
	 changed while the system is in use.

	Setting the superblock flag causes the file system to
	 always be mounted with ACLs enabled,
	 even if there is not an fstab entry
	 or if the devices re-order. This prevents accidental
	 mounting of the file system without ACL
	 support.

Note:
It is desirable to discourage accidental mounting
	 without ACLs enabled because nasty things
	 can happen if ACLs are enabled, then
	 disabled, then re-enabled without flushing the extended
	 attributes. In general, once ACLs are
	 enabled on a file system, they should not be disabled, as
	 the resulting file protections may not be compatible with
	 those intended by the users of the system, and re-enabling
	 ACLs may re-attach the previous
	 ACLs to files that have since had their
	 permissions changed, resulting in unpredictable
	 behavior.

File systems with ACLs enabled will
	show a plus (+) sign in their permission
	settings:
drwx------ 2 robert robert 512 Dec 27 11:54 private
drwxrwx---+ 2 robert robert 512 Dec 23 10:57 directory1
drwxrwx---+ 2 robert robert 512 Dec 22 10:20 directory2
drwxrwx---+ 2 robert robert 512 Dec 27 11:57 directory3
drwxr-xr-x 2 robert robert 512 Nov 10 11:54 public_html
In this example, directory1,
	directory2, and
	directory3 are all taking advantage of
	ACLs, whereas
	public_html is not.
13.9.2. Using ACLs
File system ACLs can be viewed using
	getfacl. For instance, to view the
	ACL settings on
	test:
% getfacl test
	#file:test
	#owner:1001
	#group:1001
	user::rw-
	group::r--
	other::r--
To change the ACL settings on this
	file, use setfacl. To remove all of the
	currently defined ACLs from a file or file
	system, include -k. However, the preferred
	method is to use -b as it leaves the basic
	fields required for ACLs to work.
% setfacl -k test
To modify the default ACL entries, use
	-m:
% setfacl -m u:trhodes:rwx,group:web:r--,o::--- test
In this example, there were no pre-defined entries, as
	they were removed by the previous command. This command
	restores the default options and assigns the options listed.
	If a user or group is added which does not exist on the
	system, an Invalid argument error will
	be displayed.
Refer to getfacl(1) and setfacl(1) for more
	information about the options available for these
	commands.
13.10. Monitoring Third Party Security Issues
Contributed
	 by Tom Rhodes. In recent years, the security world has made many
 improvements to how vulnerability assessment is handled. The
 threat of system intrusion increases as third party utilities
 are installed and configured for virtually any operating
 system available today.
Vulnerability assessment is a key factor in security.
 While FreeBSD releases advisories for the base system, doing so
 for every third party utility is beyond the FreeBSD Project's
 capability. There is a way to mitigate third party
 vulnerabilities and warn administrators of known security
 issues. A FreeBSD add on utility known as
 pkg includes options explicitly for
 this purpose.
pkg polls a database for security
 issues. The database is updated and maintained by the FreeBSD
 Security Team and ports developers.
Please refer to instructions
 for installing
 pkg.
Installation provides periodic(8) configuration files
 for maintaining the pkg audit
 database, and provides a programmatic method of keeping it
 updated. This functionality is enabled if
 daily_status_security_pkgaudit_enable
 is set to YES in periodic.conf(5).
 Ensure that daily security run emails, which are sent to
 root's email account,
 are being read.
After installation, and to audit third party utilities as
 part of the Ports Collection at any time, an administrator may
 choose to update the database and view known vulnerabilities
 of installed packages by invoking:
pkg audit -F
pkg displays messages
 any published vulnerabilities in installed packages:
Affected package: cups-base-1.1.22.0_1
Type of problem: cups-base -- HPGL buffer overflow vulnerability.
Reference: <https://www.FreeBSD.org/ports/portaudit/40a3bca2-6809-11d9-a9e7-0001020eed82.html>

1 problem(s) in your installed packages found.

You are advised to update or deinstall the affected package(s) immediately.
By pointing a web browser to the displayed
 URL, an administrator may obtain more
 information about the vulnerability. This will include the
 versions affected, by FreeBSD port version, along with other web
 sites which may contain security advisories.
pkg is a powerful utility
 and is extremely useful when coupled with
 ports-mgmt/portmaster.
Chapter 14. Jails
Contributed
	by Matteo Riondato. 14.1. Synopsis
Since system administration is a difficult task, many tools
 have been developed to make life easier for the administrator.
 These tools often enhance the way systems are installed,
 configured, and maintained. One of the tools which can be used
 to enhance the security of a FreeBSD system is
 jails. Jails have been available since
 FreeBSD 4.X and continue to be enhanced in their usefulness,
 performance, reliability, and security.
Jails build upon the chroot(2) concept, which is used
 to change the root directory of a set of processes. This
 creates a safe environment, separate from the rest of the
 system. Processes created in the chrooted environment can not
 access files or resources outside of it. For that reason,
 compromising a service running in a chrooted environment should
 not allow the attacker to compromise the entire system.
 However, a chroot has several limitations. It is suited to easy
 tasks which do not require much flexibility or complex, advanced
 features. Over time, many ways have been found to escape from a
 chrooted environment, making it a less than ideal solution for
 securing services.
Jails improve on the concept of the traditional chroot
 environment in several ways. In a traditional chroot
 environment, processes are only limited in the part of the file
 system they can access. The rest of the system resources,
 system users, running processes, and the networking subsystem
 are shared by the chrooted processes and the processes of the
 host system. Jails expand this model by virtualizing access to
 the file system, the set of users, and the networking subsystem.
 More fine-grained controls are available for tuning the access
 of a jailed environment. Jails can be considered as a type of
 operating system-level virtualization.
A jail is characterized by four elements:
	A directory subtree: the starting point from which a
	 jail is entered. Once inside the jail, a process is not
	 permitted to escape outside of this subtree.

	A hostname: which will be used by the jail.

	An IP address: which is assigned to
	 the jail. The IP address of a jail is
	 often an alias address for an existing network
	 interface.

	A command: the path name of an executable to run inside
	 the jail. The path is relative to the root directory of the
	 jail environment.

Jails have their own set of users and their own root account which are limited
 to the jail environment. The root account of a jail is not
 allowed to perform operations to the system outside of the
 associated jail environment.
This chapter provides an overview of the terminology and
 commands for managing FreeBSD jails. Jails are a powerful tool for
 both system administrators, and advanced users.
After reading this chapter, you will know:
	What a jail is and what purpose it may serve in FreeBSD
	 installations.

	How to build, start, and stop a jail.

	The basics of jail administration, both from inside and
	 outside the jail.

Important:
Jails are a powerful tool, but they are not a security
	panacea. While it is not possible for a jailed process to
	break out on its own, there are several ways in which an
	unprivileged user outside the jail can cooperate with a
	privileged user inside the jail to obtain elevated privileges
	in the host environment.
Most of these attacks can be mitigated by ensuring that
	the jail root is not accessible to unprivileged users in the
	host environment. As a general rule, untrusted users with
	privileged access to a jail should not be given access to the
	host environment.

14.2. Terms Related to Jails
To facilitate better understanding of parts of the FreeBSD
 system related to jails, their internals and the way they
 interact with the rest of FreeBSD, the following terms are used
 further in this chapter:
	chroot(8) (command)
	Utility, which uses chroot(2) FreeBSD system call to
	 change the root directory of a process and all its
	 descendants.

	chroot(2) (environment)
	The environment of processes running in a
	 “chroot”. This includes resources such as
	 the part of the file system which is visible, user and
	 group IDs which are available, network interfaces and
	 other IPC mechanisms, etc.

	jail(8) (command)
	The system administration utility which allows
	 launching of processes within a jail environment.

	host (system, process, user, etc.)
	The controlling system of a jail environment. The
	 host system has access to all the hardware resources
	 available, and can control processes both outside of and
	 inside a jail environment. One of the important
	 differences of the host system from a jail is that the
	 limitations which apply to superuser processes inside a
	 jail are not enforced for processes of the host
	 system.

	hosted (system, process, user, etc.)
	A process, user or other entity, whose access to
	 resources is restricted by a FreeBSD jail.

14.5. Updating Multiple Jails
Contributed by Daniel Gerzo. Based upon an idea presented by Simon L. B. Nielsen. And an article written by Ken Tom. The management of multiple jails can become problematic
 because every jail has to be rebuilt from scratch whenever it is
 upgraded. This can be time consuming and tedious if a lot of
 jails are created and manually updated.
This section demonstrates one method to resolve this issue
 by safely sharing as much as is possible between jails using
 read-only mount_nullfs(8) mounts, so that updating is
 simpler. This makes it more attractive to put single services,
 such as HTTP, DNS, and
 SMTP, into individual jails. Additionally,
 it provides a simple way to add, remove, and upgrade
 jails.
Note:
Simpler solutions exist, such as
	ezjail, which provides an easier
	method of administering FreeBSD jails but is less versatile than
	this setup. ezjail is covered in
	more detail in Section 14.6, “Managing Jails with
	ezjail”.

The goals of the setup described in this section are:
	Create a simple and easy to understand jail structure
	 that does not require running a full installworld on each
	 and every jail.

	Make it easy to add new jails or remove existing
	 ones.

	Make it easy to update or upgrade existing jails.

	Make it possible to run a customized FreeBSD branch.

	Be paranoid about security, reducing as much as
	 possible the possibility of compromise.

	Save space and inodes, as much as possible.

This design relies on a single, read-only master template
 which is mounted into each jail and one read-write device per
 jail. A device can be a separate physical disc, a partition, or
 a vnode backed memory device. This example uses read-write
 nullfs mounts.
The file system layout is as follows:
	The jails are based under the
	 /home partition.

	Each jail will be mounted under the
	 /home/j directory.

	The template for each jail and the read-only partition
	 for all of the jails is
	 /home/j/mroot.

	A blank directory will be created for each jail under
	 the /home/j directory.

	Each jail will have a /s directory
	 that will be linked to the read-write portion of the
	 system.

	Each jail will have its own read-write system that is
	 based upon /home/j/skel.

	The read-write portion of each jail will be created in
	 /home/js.

14.5.1. Creating the Template
This section describes the steps needed to create the
	master template.
It is recommended to first update the host FreeBSD system to
	the latest -RELEASE branch using the instructions in Section 23.5, “Updating FreeBSD from Source”. Additionally, this template uses the
	sysutils/cpdup package or port and
	portsnap will be used to download
	the FreeBSD Ports Collection.
	First, create a directory structure for the read-only
	 file system which will contain the FreeBSD binaries for the
	 jails. Then, change directory to the FreeBSD source tree and
	 install the read-only file system to the jail
	 template:
mkdir /home/j /home/j/mroot
cd /usr/src
make installworld DESTDIR=/home/j/mroot

	Next, prepare a FreeBSD Ports Collection for the jails as
	 well as a FreeBSD source tree, which is required for
	 mergemaster:
cd /home/j/mroot
mkdir usr/ports
portsnap -p /home/j/mroot/usr/ports fetch extract
cpdup /usr/src /home/j/mroot/usr/src

	Create a skeleton for the read-write portion of the
	 system:
mkdir /home/j/skel /home/j/skel/home /home/j/skel/usr-X11R6 /home/j/skel/distfiles
mv etc /home/j/skel
mv usr/local /home/j/skel/usr-local
mv tmp /home/j/skel
mv var /home/j/skel
mv root /home/j/skel

	Use mergemaster to install
	 missing configuration files. Then, remove the extra
	 directories that mergemaster
	 creates:
mergemaster -t /home/j/skel/var/tmp/temproot -D /home/j/skel -i
cd /home/j/skel
rm -R bin boot lib libexec mnt proc rescue sbin sys usr dev

	Now, symlink the read-write file system to the
	 read-only file system. Ensure that the symlinks are
	 created in the correct s/ locations
	 as the creation of directories in the wrong locations will
	 cause the installation to fail.
cd /home/j/mroot
mkdir s
ln -s s/etc etc
ln -s s/home home
ln -s s/root root
ln -s ../s/usr-local usr/local
ln -s ../s/usr-X11R6 usr/X11R6
ln -s ../../s/distfiles usr/ports/distfiles
ln -s s/tmp tmp
ln -s s/var var

	As a last step, create a generic
	 /home/j/skel/etc/make.conf containing
	 this line:
WRKDIRPREFIX?= /s/portbuild
This makes it possible to compile FreeBSD ports inside
	 each jail. Remember that the ports directory is part of
	 the read-only system. The custom path for
	 WRKDIRPREFIX allows builds to be done
	 in the read-write portion of every jail.

14.5.2. Creating Jails
The jail template can now be used to setup and configure
	the jails in /etc/rc.conf. This example
	demonstrates the creation of 3 jails: NS,
	MAIL and WWW.
	Add the following lines to
	 /etc/fstab, so that the read-only
	 template for the jails and the read-write space will be
	 available in the respective jails:
/home/j/mroot /home/j/ns nullfs ro 0 0
/home/j/mroot /home/j/mail nullfs ro 0 0
/home/j/mroot /home/j/www nullfs ro 0 0
/home/js/ns /home/j/ns/s nullfs rw 0 0
/home/js/mail /home/j/mail/s nullfs rw 0 0
/home/js/www /home/j/www/s nullfs rw 0 0
To prevent
	 fsck from checking
	 nullfs mounts during boot and
	 dump from backing up the
	 read-only nullfs mounts of the jails, the last two
	 columns are both set to 0.

	Configure the jails in
	 /etc/rc.conf:
jail_enable="YES"
jail_set_hostname_allow="NO"
jail_list="ns mail www"
jail_ns_hostname="ns.example.org"
jail_ns_ip="192.168.3.17"
jail_ns_rootdir="/usr/home/j/ns"
jail_ns_devfs_enable="YES"
jail_mail_hostname="mail.example.org"
jail_mail_ip="192.168.3.18"
jail_mail_rootdir="/usr/home/j/mail"
jail_mail_devfs_enable="YES"
jail_www_hostname="www.example.org"
jail_www_ip="62.123.43.14"
jail_www_rootdir="/usr/home/j/www"
jail_www_devfs_enable="YES"
The
	 jail_name_rootdir
	 variable is set to
	 /usr/home instead
	 of /home because
	 the physical path of /home on a default FreeBSD
	 installation is /usr/home. The
	 jail_name_rootdir
	 variable must not be set to a path
	 which includes a symbolic link, otherwise the jails will
	 refuse to start.

	Create the required mount points for the read-only
	 file system of each jail:
mkdir /home/j/ns /home/j/mail /home/j/www

	Install the read-write template into each jail using
	 sysutils/cpdup:
mkdir /home/js
cpdup /home/j/skel /home/js/ns
cpdup /home/j/skel /home/js/mail
cpdup /home/j/skel /home/js/www

	In this phase, the jails are built and prepared to
	 run. First, mount the required file systems for each
	 jail, and then start them:
mount -a
service jail start

The jails should be running now. To check if they have
	started correctly, use jls. Its output
	should be similar to the following:
jls
 JID IP Address Hostname Path
 3 192.168.3.17 ns.example.org /home/j/ns
 2 192.168.3.18 mail.example.org /home/j/mail
 1 62.123.43.14 www.example.org /home/j/www
At this point, it should be possible to log onto each
	jail, add new users, or configure daemons. The
	JID column indicates the jail
	identification number of each running jail. Use the following
	command to perform administrative tasks in the jail whose
	JID is 3:
jexec 3 tcsh
14.5.3. Upgrading
The design of this setup provides an easy way to upgrade
	existing jails while minimizing their downtime. Also, it
	provides a way to roll back to the older version should a
	problem occur.
	The first step is to upgrade the host system. Then,
	 create a new temporary read-only template in
	 /home/j/mroot2.
mkdir /home/j/mroot2
cd /usr/src
make installworld DESTDIR=/home/j/mroot2
cd /home/j/mroot2
cpdup /usr/src usr/src
mkdir s
The installworld creates a
	 few unnecessary directories, which should be
	 removed:
chflags -R 0 var
rm -R etc var root usr/local tmp

	Recreate the read-write symlinks for the master file
	 system:
ln -s s/etc etc
ln -s s/root root
ln -s s/home home
ln -s ../s/usr-local usr/local
ln -s ../s/usr-X11R6 usr/X11R6
ln -s s/tmp tmp
ln -s s/var var

	Next, stop the jails:
service jail stop

	Unmount the original file systems as the read-write
	 systems are attached to the read-only system
	 (/s):
umount /home/j/ns/s
umount /home/j/ns
umount /home/j/mail/s
umount /home/j/mail
umount /home/j/www/s
umount /home/j/www

	Move the old read-only file system and replace it with
	 the new one. This will serve as a backup and archive of
	 the old read-only file system should something go wrong.
	 The naming convention used here corresponds to when a new
	 read-only file system has been created. Move the original
	 FreeBSD Ports Collection over to the new file system to save
	 some space and inodes:
cd /home/j
mv mroot mroot.20060601
mv mroot2 mroot
mv mroot.20060601/usr/ports mroot/usr

	At this point the new read-only template is ready, so
	 the only remaining task is to remount the file systems and
	 start the jails:
mount -a
service jail start

Use jls to check if the jails started
	correctly. Run mergemaster in each jail to
	update the configuration files.
14.6. Managing Jails with
	ezjail
Originally contributed by Warren Block. Creating and managing multiple jails can quickly become
 tedious and error-prone. Dirk Engling's
 ezjail automates and greatly
 simplifies many jail tasks. A basejail is
 created as a template. Additional jails use
 mount_nullfs(8) to share many of the basejail directories
 without using additional disk space. Each additional jail takes
 only a few megabytes of disk space before applications are
 installed. Upgrading the copy of the userland in the basejail
 automatically upgrades all of the other jails.
Additional benefits and features are described in detail on
 the ezjail web site, https://erdgeist.org/arts/software/ezjail/.
14.6.1. Installing ezjail
Installing ezjail consists of
	adding a loopback interface for use in jails, installing the
	port or package, and enabling the service.
	To keep jail loopback traffic off the host's loopback
	 network interface lo0, a second
	 loopback interface is created by adding an entry to
	 /etc/rc.conf:
cloned_interfaces="lo1"
The second loopback interface lo1
	 will be created when the system starts. It can also be
	 created manually without a restart:
service netif cloneup
Created clone interfaces: lo1.
Jails can be allowed to use aliases of this secondary
	 loopback interface without interfering with the
	 host.
Inside a jail, access to the loopback address
	 127.0.0.1 is
	 redirected to the first IP address
	 assigned to the jail. To make the jail loopback
	 correspond with the new lo1 interface,
	 that interface must be specified first in the list of
	 interfaces and IP addresses given when
	 creating a new jail.
Give each jail a unique loopback address in the
	 127.0.0.0/8 netblock.

	Install
	 sysutils/ezjail:
cd /usr/ports/sysutils/ezjail
make install clean

	Enable ezjail by adding
	 this line to /etc/rc.conf:
ezjail_enable="YES"

	The service will automatically start on system boot.
	 It can be started immediately for the current
	 session:
service ezjail start

14.6.2. Initial Setup
With ezjail installed, the
	basejail directory structure can be created and populated.
	This step is only needed once on the jail host
	computer.
In both of these examples, -p causes the
	ports tree to be retrieved with portsnap(8) into the
	basejail. That single copy of the ports directory will be
	shared by all the jails. Using a separate copy of the ports
	directory for jails isolates them from the host. The
	ezjail FAQ
	explains in more detail: http://erdgeist.org/arts/software/ezjail/#FAQ.
	
	 	To Populate the Jail with FreeBSD-RELEASE
For a basejail based on the FreeBSD RELEASE matching
		that of the host computer, use
		install. For example, on a host
		computer running FreeBSD 10-STABLE, the latest
		RELEASE version of FreeBSD -10 will be installed in
		the jail):
ezjail-admin install -p

	 	To Populate the Jail with
		installworld
The basejail can be installed from binaries
		created by buildworld on
		the host with
		ezjail-admin update.
In this example, FreeBSD 10-STABLE has been
		built from source. The jail directories are created.
		Then installworld is
		executed, installing the host's
		/usr/obj into the
		basejail.
ezjail-admin update -i -p
The host's /usr/src is used
		by default. A different source directory on the host
		can be specified with -s and a path,
		or set with ezjail_sourcetree in
		/usr/local/etc/ezjail.conf.

	

Tip:
The basejail's ports tree is shared by other jails.
	 However, downloaded distfiles are stored in the jail that
	 downloaded them. By default, these files are stored in
	 /var/ports/distfiles within each
	 jail. /var/ports inside each jail is
	 also used as a work directory when building ports.

Tip:
The FTP protocol is used by default
	 to download packages for the installation of the basejail.
	 Firewall or proxy configurations can prevent or interfere
	 with FTP transfers. The
	 HTTP protocol works differently and
	 avoids these problems. It can be chosen by specifying a
	 full URL for a particular download mirror
	 in /usr/local/etc/ezjail.conf:
ezjail_ftphost=http://ftp.FreeBSD.org
See Section A.2, “FTP Sites” for a list of
	 sites.

14.6.3. Creating and Starting a New Jail
New jails are created with
	ezjail-admin create. In these examples,
	the lo1 loopback interface is used as
	described above.
Procedure 14.1. Create and Start a New Jail
	Create the jail, specifying a name and the loopback
	 and network interfaces to use, along with their
	 IP addresses. In this example, the
	 jail is named dnsjail.
ezjail-admin create dnsjail 'lo1|127.0.1.1,em0|192.168.1.50'
Tip:
Most network services run in jails without
	 problems. A few network services, most notably
	 ping(8), use
	 raw network sockets. In jails, raw
	 network sockets are disabled by default for security.
	 Services that require them will not work.
Occasionally, a jail genuinely needs raw sockets.
	 For example, network monitoring applications often use
	 ping(8) to check the availability of other
	 computers. When raw network sockets are actually needed
	 in a jail, they can be enabled by editing the
	 ezjail
	 configuration file for the individual jail,
	 /usr/local/etc/ezjail/jailname.
	 Modify the parameters
	 entry:
export jail_jailname_parameters="allow.raw_sockets=1"
Do not enable raw network sockets unless services in
	 the jail actually require them.

	Start the jail:
ezjail-admin start dnsjail

	Use a console on the jail:
ezjail-admin console dnsjail

The jail is operating and additional configuration can be
	completed. Typical settings added at this point
	include:
	Set the
	 root
	 Password
Connect to the jail and set the
	 root user's
	 password:
ezjail-admin console dnsjail
passwd
Changing local password for root
New Password:
Retype New Password:

	Time Zone Configuration
The jail's time zone can be set with tzsetup(8).
	 To avoid spurious error messages, the adjkerntz(8)
	 entry in /etc/crontab can be
	 commented or removed. This job attempts to update the
	 computer's hardware clock with time zone changes, but
	 jails are not allowed to access that hardware.

	DNS Servers
Enter domain name server lines in
	 /etc/resolv.conf so
	 DNS works in the jail.

	Edit /etc/hosts
Change the address and add the jail name to the
	 localhost entries in
	 /etc/hosts.

	Configure /etc/rc.conf
Enter configuration settings in
	 /etc/rc.conf. This is much like
	 configuring a full computer. The host name and
	 IP address are not set here. Those
	 values are already provided by the jail
	 configuration.

With the jail configured, the applications for which the
	jail was created can be installed.
Tip:
Some ports must be built with special options to be used
	 in a jail. For example, both of the network monitoring
	 plugin packages
	 net-mgmt/nagios-plugins and
	 net-mgmt/monitoring-plugins
	 have a JAIL option which must be enabled
	 for them to work correctly inside a jail.

14.6.4. Updating Jails
14.6.4.1. Updating the Operating System
Because the basejail's copy of the userland is shared by
	 the other jails, updating the basejail automatically updates
	 all of the other jails. Either source or binary updates can
	 be used.
To build the world from source on the host, then
	 install it in the basejail, use:
ezjail-admin update -b
If the world has already been compiled on the host,
	 install it in the basejail with:
ezjail-admin update -i
Binary updates use freebsd-update(8). These
	 updates have the same limitations as if
	 freebsd-update(8) were being run directly. The most
	 important one is that only -RELEASE versions of FreeBSD are
	 available with this method.
Update the basejail to the latest patched release of
	 the version of FreeBSD on the host. For example, updating from
	 RELEASE-p1 to RELEASE-p2.
ezjail-admin update -u
To upgrade the basejail to a new version, first
	 upgrade the host system as described in Section 23.2.3, “Performing Major and Minor Version Upgrades”. Once the host has
	 been upgraded and rebooted, the basejail can then be
	 upgraded. freebsd-update(8) has no way of determining
	 which version is currently installed in the basejail, so the
	 original version must be specified. Use file(1) to
	 determine the original version in the basejail:
file /usr/jails/basejail/bin/sh
/usr/jails/basejail/bin/sh: ELF 64-bit LSB executable, x86-64, version 1 (FreeBSD), dynamically linked (uses shared libs), for FreeBSD 9.3, stripped
Now use this information to perform the upgrade from
	 9.3-RELEASE to the current version of
	 the host system:
ezjail-admin update -U -s 9.3-RELEASE
After updating the basejail, mergemaster(8) must
	 be run to update each jail's configuration files.
How to use mergemaster(8) depends on the purpose
	 and trustworthiness of a jail. If a jail's services or
	 users are not trusted, then mergemaster(8) should only
	 be run from within that jail:
Example 14.1. mergemaster(8) on Untrusted Jail
Delete the link from the jail's
	 /usr/src into the basejail and
	 create a new /usr/src in the jail
	 as a mountpoint. Mount the host computer's
	 /usr/src read-only on the jail's
	 new /usr/src mountpoint:
rm /usr/jails/jailname/usr/src
mkdir /usr/jails/jailname/usr/src
mount -t nullfs -o ro /usr/src /usr/jails/jailname/usr/src
Get a console in the jail:
ezjail-admin console jailname
Inside the jail, run mergemaster.
	 Then exit the jail console:
cd /usr/src
mergemaster -U
exit
Finally, unmount the jail's
	 /usr/src:
umount /usr/jails/jailname/usr/src

Example 14.2. mergemaster(8) on Trusted Jail
If the users and services in a jail are trusted,
	 mergemaster(8) can be run from the host:
mergemaster -U -D /usr/jails/jailname

14.6.4.2. Updating Ports
The ports tree in the basejail is shared by the other
	 jails. Updating that copy of the ports tree gives the other
	 jails the updated version also.
The basejail ports tree is updated with
	 portsnap(8):
ezjail-admin update -P
14.6.5. Controlling Jails
14.6.5.1. Stopping and Starting Jails
ezjail automatically starts
	 jails when the computer is started. Jails can be manually
	 stopped and restarted with stop and
	 start:
ezjail-admin stop sambajail
Stopping jails: sambajail.
By default, jails are started automatically when the
	 host computer starts. Autostarting can be disabled
	 with config:
ezjail-admin config -r norun seldomjail
This takes effect the next time the host computer is
	 started. A jail that is already running will not be
	 stopped.
Enabling autostart is very similar:
ezjail-admin config -r run oftenjail
14.6.5.2. Archiving and Restoring Jails
Use archive to create a
	 .tar.gz archive of a jail. The file
	 name is composed from the name of the jail and the current
	 date. Archive files are written to the archive directory,
	 /usr/jails/ezjail_archives. A
	 different archive directory can be chosen by setting
	 ezjail_archivedir in the configuration
	 file.
The archive file can be copied elsewhere as a backup, or
	 an existing jail can be restored from it with
	 restore. A new jail can be created from
	 the archive, providing a convenient way to clone existing
	 jails.
Stop and archive a jail named
	 wwwserver:
ezjail-admin stop wwwserver
Stopping jails: wwwserver.
ezjail-admin archive wwwserver
ls /usr/jails/ezjail-archives/
wwwserver-201407271153.13.tar.gz
Create a new jail named
	 wwwserver-clone from the archive created
	 in the previous step. Use the em1
	 interface and assign a new IP address to
	 avoid conflict with the original:
ezjail-admin create -a /usr/jails/ezjail_archives/wwwserver-201407271153.13.tar.gz wwwserver-clone 'lo1|127.0.3.1,em1|192.168.1.51'
14.6.6. Full Example: BIND in a
	Jail
Putting the BIND
	DNS server in a jail improves security by
	isolating it. This example creates a simple caching-only name
	server.
	The jail will be called
	 dns1.

	The jail will use IP address
	 192.168.1.240 on the host's
	 re0 interface.

	The upstream ISP's DNS servers are
	 at 10.0.0.62 and
	 10.0.0.61.

	The basejail has already been created and a ports tree
	 installed as shown in
	 Section 14.6.2, “Initial Setup”.

Example 14.3. Running BIND in a Jail
Create a cloned loopback interface by adding a line to
	 /etc/rc.conf:
cloned_interfaces="lo1"
Immediately create the new loopback interface:
service netif cloneup
Created clone interfaces: lo1.
Create the jail:
ezjail-admin create dns1 'lo1|127.0.2.1,re0|192.168.1.240'
Start the jail, connect to a console running on it, and
	 perform some basic configuration:
ezjail-admin start dns1
ezjail-admin console dns1
passwd
Changing local password for root
New Password:
Retype New Password:
tzsetup
sed -i .bak -e '/adjkerntz/ s/^/#/' /etc/crontab
sed -i .bak -e 's/127.0.0.1/127.0.2.1/g; s/localhost.my.domain/dns1.my.domain dns1/' /etc/hosts
Temporarily set the upstream DNS
	 servers in /etc/resolv.conf so ports
	 can be downloaded:
nameserver 10.0.0.62
nameserver 10.0.0.61
Still using the jail console, install
	 dns/bind99.
make -C /usr/ports/dns/bind99 install clean
Configure the name server by editing
	 /usr/local/etc/namedb/named.conf.
Create an Access Control List (ACL)
	 of addresses and networks that are permitted to send
	 DNS queries to this name server. This
	 section is added just before the options
	 section already in the file:
...
// or cause huge amounts of useless Internet traffic.

acl "trusted" {
	192.168.1.0/24;
	localhost;
	localnets;
};

options {
...
Use the jail IP address in the
	 listen-on setting to accept
	 DNS queries from other computers on the
	 network:
	listen-on	{ 192.168.1.240; };
A simple caching-only DNS name server
	 is created by changing the forwarders
	 section. The original file contains:
/*
	forwarders {
		127.0.0.1;
	};
*/
Uncomment the section by removing the
	 /* and */ lines.
	 Enter the IP addresses of the upstream
	 DNS servers. Immediately after the
	 forwarders section, add references to the
	 trusted ACL defined
	 earlier:
	forwarders {
		10.0.0.62;
		10.0.0.61;
	};

	allow-query { any; };
	allow-recursion { trusted; };
	allow-query-cache { trusted; };
Enable the service in
	 /etc/rc.conf:
named_enable="YES"
Start and test the name server:
service named start
wrote key file "/usr/local/etc/namedb/rndc.key"
Starting named.
/usr/local/bin/dig @192.168.1.240 freebsd.org
A response that includes
;; Got answer;
shows that the new DNS server is
	 working. A long delay followed by a response
	 including
;; connection timed out; no servers could be reached
shows a problem. Check the configuration settings and
	 make sure any local firewalls allow the new
	 DNS access to the upstream
	 DNS servers.
The new DNS server can use itself for
	 local name resolution, just like other local computers. Set
	 the address of the DNS server in the
	 client computer's
	 /etc/resolv.conf:
nameserver 192.168.1.240
A local DHCP server can be configured
	 to provide this address for a local DNS
	 server, providing automatic configuration on
	 DHCP clients.

15.2. Key Terms
The following key terms are used when referring to the
 MAC framework:
	compartment: a set of programs and
	 data to be partitioned or separated, where users are given
	 explicit access to specific component of a system. A
	 compartment represents a grouping, such as a work group,
	 department, project, or topic. Compartments make it
	 possible to implement a need-to-know-basis security
	 policy.

	integrity: the level of trust which
	 can be placed on data. As the integrity of the data is
	 elevated, so does the ability to trust that data.

	level: the increased or decreased
	 setting of a security attribute. As the level increases,
	 its security is considered to elevate as well.

	label: a security attribute which
	 can be applied to files, directories, or other items in the
	 system. It could be considered a confidentiality stamp.
	 When a label is placed on a file, it describes the security
	 properties of that file and will only permit access by
	 files, users, and resources with a similar security setting.
	 The meaning and interpretation of label values depends on
	 the policy configuration. Some policies treat a label as
	 representing the integrity or secrecy of an object while
	 other policies might use labels to hold rules for
	 access.

	multilabel: this property is a file
	 system option which can be set in single-user mode using
	 tunefs(8), during boot using fstab(5), or during
	 the creation of a new file system. This option permits
	 an administrator to apply different MAC
	 labels on different objects. This option only applies to
	 security policy modules which support labeling.

	single label: a policy where the
	 entire file system uses one label to enforce access control
	 over the flow of data. Whenever multilabel
	 is not set, all files will conform to the same label
	 setting.

	object: an entity through which
	 information flows under the direction of a
	 subject. This includes directories,
	 files, fields, screens, keyboards, memory, magnetic storage,
	 printers or any other data storage or moving device. An
	 object is a data container or a system resource. Access to
	 an object effectively means access to its data.

	subject: any active entity that
	 causes information to flow between
	 objects such as a user, user process,
	 or system process. On FreeBSD, this is almost always a
	 thread acting in a process on behalf of a user.

	policy: a collection of rules
	 which defines how objectives are to be achieved. A policy
	 usually documents how certain items are to be handled. This
	 chapter considers a policy to be a collection of rules which
	 controls the flow of data and information and defines who
	 has access to that data and information.

	high-watermark: this type of
	 policy permits the raising of security levels for the
	 purpose of accessing higher level information. In most
	 cases, the original level is restored after the process is
	 complete. Currently, the FreeBSD MAC
	 framework does not include this type of policy.

	low-watermark: this type of policy
	 permits lowering security levels for the purpose of
	 accessing information which is less secure. In most cases,
	 the original security level of the user is restored after
	 the process is complete. The only security policy module in
	 FreeBSD to use this is mac_lomac(4).

	sensitivity: usually used when
	 discussing Multilevel Security (MLS). A
	 sensitivity level describes how important or secret the data
	 should be. As the sensitivity level increases, so does the
	 importance of the secrecy, or confidentiality, of the
	 data.

15.3. Understanding MAC Labels
A MAC label is a security attribute
 which may be applied to subjects and objects throughout the
 system. When setting a label, the administrator must
 understand its implications in order to prevent unexpected or
 undesired behavior of the system. The attributes available on
 an object depend on the loaded policy module, as policy modules
 interpret their attributes in different ways.
The security label on an object is used as a part of a
 security access control decision by a policy. With some
 policies, the label contains all of the information necessary
 to make a decision. In other policies, the labels may be
 processed as part of a larger rule set.
There are two types of label policies: single label and
 multi label. By default, the system will use single label. The
 administrator should be aware of the pros and cons of each in
 order to implement policies which meet the requirements of the
 system's security model.
A single label security policy only permits one label to be
 used for every subject or object. Since a single label policy
 enforces one set of access permissions across the entire system,
 it provides lower administration overhead, but decreases the
 flexibility of policies which support labeling. However, in
 many environments, a single label policy may be all that is
 required.
A single label policy is somewhat similar to
 DAC as root configures the policies so
 that users are placed in the appropriate categories and access
 levels. A notable difference is that many policy modules can
 also restrict root.
 Basic control over objects will then be released to the group,
 but root may revoke or
 modify the settings at any time.
When appropriate, a multi label policy can be set on a
 UFS file system by passing
 multilabel to tunefs(8). A multi label
 policy permits each subject or object to have its own
 independent MAC label. The decision to use a
 multi label or single label policy is only required for policies
 which implement the labeling feature, such as
 biba, lomac, and
 mls. Some policies, such as
 seeotheruids, portacl and
 partition, do not use labels at all.
Using a multi label policy on a partition and establishing a
 multi label security model can increase administrative overhead
 as everything in that file system has a label. This includes
 directories, files, and even device nodes.
The following command will set multilabel
 on the specified UFS file system. This may
 only be done in single-user mode and is not a requirement for
 the swap file system:
tunefs -l enable /
Note:
Some users have experienced problems with setting the
	multilabel flag on the root partition. If
	this is the case, please review Section 15.8, “Troubleshooting the MAC Framework”.

Since the multi label policy is set on a per-file system
 basis, a multi label policy may not be needed if the file system
 layout is well designed. Consider an example security
 MAC model for a FreeBSD web server. This
 machine uses the single label, biba/high, for
 everything in the default file systems. If the web server needs
 to run at biba/low to prevent write up
 capabilities, it could be installed to a separate
 UFS /usr/local file
 system set at biba/low.
15.3.1. Label Configuration
Virtually all aspects of label policy module configuration
	will be performed using the base system utilities. These
	commands provide a simple interface for object or subject
	configuration or the manipulation and verification of
	the configuration.
All configuration may be done using
	setfmac, which is used to set
	MAC labels on system objects, and
	setpmac, which is used to set the labels on
	system subjects. For example, to set the
	biba MAC label to
	high on test:
setfmac biba/high test
If the configuration is successful, the prompt will be
	returned without error. A common error is
	Permission denied which usually occurs
	when the label is being set or modified on a restricted
	object. Other conditions may produce different failures. For
	instance, the file may not be owned by the user attempting to
	relabel the object, the object may not exist, or the object
	may be read-only. A mandatory policy will not allow the
	process to relabel the file, maybe because of a property of
	the file, a property of the process, or a property of the
	proposed new label value. For example, if a user running at
	low integrity tries to change the label of a high integrity
	file, or a user running at low integrity tries to change the
	label of a low integrity file to a high integrity label, these
	operations will fail.
The system administrator may use
	setpmac to override the policy module's
	settings by assigning a different label to the invoked
	process:
setfmac biba/high test
Permission denied
setpmac biba/low setfmac biba/high test
getfmac test
test: biba/high
For currently running processes, such as
	sendmail,
	getpmac is usually used instead. This
	command takes a process ID (PID) in place
	of a command name. If users attempt to manipulate a file not
	in their access, subject to the rules of the loaded policy
	modules, the Operation not permitted
	error will be displayed.
15.3.2. Predefined Labels
A few FreeBSD policy modules which support the labeling
	feature offer three predefined labels: low,
	equal, and high,
	where:
	low is considered the lowest label
	 setting an object or subject may have. Setting this on
	 objects or subjects blocks their access to objects or
	 subjects marked high.

	equal sets the subject or object to
	 be disabled or unaffected and should only be placed on
	 objects considered to be exempt from the policy.

	high grants an object or subject
	 the highest setting available in the Biba and
	 MLS policy modules.

Such policy modules include mac_biba(4),
	mac_mls(4) and mac_lomac(4). Each of the predefined
	labels establishes a different information flow directive.
	Refer to the manual page of the module to determine the traits
	of the generic label configurations.
15.3.3. Numeric Labels
The Biba and MLS policy modules support
	a numeric label which may be set to indicate the precise level
	of hierarchical control. This numeric level is used to
	partition or sort information into different groups of
	classification, only permitting access to that group or a
	higher group level. For example:
biba/10:2+3+6(5:2+3-20:2+3+4+5+6)
may be interpreted as “Biba Policy Label/Grade
	 10:Compartments 2, 3 and 6: (grade 5 ...”)
In this example, the first grade would be considered the
	effective grade with effective compartments, the second grade
	is the low grade, and the last one is the high grade. In most
	configurations, such fine-grained settings are not needed as
	they are considered to be advanced configurations.
System objects only have a current grade and compartment.
	System subjects reflect the range of available rights in the
	system, and network interfaces, where they are used for access
	control.
The grade and compartments in a subject and object pair
	are used to construct a relationship known as
	dominance, in which a subject dominates
	an object, the object dominates the subject, neither dominates
	the other, or both dominate each other. The “both
	 dominate” case occurs when the two labels are equal.
	Due to the information flow nature of Biba, a user has rights
	to a set of compartments that might correspond to projects,
	but objects also have a set of compartments. Users may have
	to subset their rights using su or
	setpmac in order to access objects in a
	compartment from which they are not restricted.
15.3.4. User Labels
Users are required to have labels so that their files and
	processes properly interact with the security policy defined
	on the system. This is configured in
	/etc/login.conf using login classes.
	Every policy module that uses labels will implement the user
	class setting.
To set the user class default label which will be enforced
	by MAC, add a label entry.
	An example label entry containing every
	policy module is displayed below. Note that in a real
	configuration, the administrator would never enable every
	policy module. It is recommended that the rest of this
	chapter be reviewed before any configuration is
	implemented.
default:\
	:copyright=/etc/COPYRIGHT:\
	:welcome=/etc/motd:\
	:setenv=MAIL=/var/mail/$,BLOCKSIZE=K:\
	:path=~/bin:/sbin:/bin:/usr/sbin:/usr/bin:/usr/local/sbin:/usr/local/bin:\
	:manpath=/usr/share/man /usr/local/man:\
	:nologin=/usr/sbin/nologin:\
	:cputime=1h30m:\
	:datasize=8M:\
	:vmemoryuse=100M:\
	:stacksize=2M:\
	:memorylocked=4M:\
	:memoryuse=8M:\
	:filesize=8M:\
	:coredumpsize=8M:\
	:openfiles=24:\
	:maxproc=32:\
	:priority=0:\
	:requirehome:\
	:passwordtime=91d:\
	:umask=022:\
	:ignoretime@:\
	:label=partition/13,mls/5,biba/10(5-15),lomac/10[2]:
While users can not modify the default value, they may
	change their label after they login, subject to the
	constraints of the policy. The example above tells the Biba
	policy that a process's minimum integrity is
	5, its maximum is 15,
	and the default effective label is 10. The
	process will run at 10 until it chooses to
	change label, perhaps due to the user using
	setpmac, which will be constrained by Biba
	to the configured range.
After any change to login.conf, the
	login class capability database must be rebuilt using
	cap_mkdb.
Many sites have a large number of users requiring
	several different user classes. In depth planning is
	required as this can become difficult to manage.
15.3.5. Network Interface Labels
Labels may be set on network interfaces to help control
	the flow of data across the network. Policies using network
	interface labels function in the same way that policies
	function with respect to objects. Users at high settings in
	Biba, for example, will not be permitted to access network
	interfaces with a label of low.
When setting the MAC label on network
	interfaces, maclabel may be passed to
	ifconfig:
ifconfig bge0 maclabel biba/equal
This example will set the MAC label of
	biba/equal on the bge0
	interface. When using a setting similar to
	biba/high(low-high), the entire label
	should be quoted to prevent an error from being
	returned.
Each policy module which supports labeling has a tunable
	which may be used to disable the MAC label
	on network interfaces. Setting the label to
	equal will have a similar effect. Review
	the output of sysctl, the policy manual
	pages, and the information in the rest of this chapter for
	more information on those tunables.
15.4. Planning the Security Configuration
Before implementing any MAC policies, a
 planning phase is recommended. During the planning stages, an
 administrator should consider the implementation requirements
 and goals, such as:
	How to classify information and resources available on
	 the target systems.

	Which information or resources to restrict access to
	 along with the type of restrictions that should be
	 applied.

	Which MAC modules will be required to
	 achieve this goal.

A trial run of the trusted system and its configuration
 should occur before a
 MAC implementation is used on production
 systems. Since different environments have different needs and
 requirements, establishing a complete security profile will
 decrease the need of changes once the system goes live.
Consider how the MAC framework augments
 the security of the system as a whole. The various security
 policy modules provided by the MAC framework
 could be used to protect the network and file systems or to
 block users from accessing certain ports and sockets. Perhaps
 the best use of the policy modules is to load several security
 policy modules at a time in order to provide a
 MLS environment. This approach differs from
 a hardening policy, which typically hardens elements of a system
 which are used only for specific purposes. The downside to
 MLS is increased administrative
 overhead.
The overhead is minimal when compared to the lasting effect
 of a framework which provides the ability to pick and choose
 which policies are required for a specific configuration and
 which keeps performance overhead down. The reduction of support
 for unneeded policies can increase the overall performance of
 the system as well as offer flexibility of choice. A good
 implementation would consider the overall security requirements
 and effectively implement the various security policy modules
 offered by the framework.
A system utilizing MAC guarantees that a
 user will not be permitted to change security attributes at
 will. All user utilities, programs, and scripts must work
 within the constraints of the access rules provided by the
 selected security policy modules and control of the
 MAC access rules is in the hands of the
 system administrator.
It is the duty of the system administrator to carefully
 select the correct security policy modules. For an environment
 that needs to limit access control over the network, the
 mac_portacl(4), mac_ifoff(4), and mac_biba(4)
 policy modules make good starting points. For an environment
 where strict confidentiality of file system objects is required,
 consider the mac_bsdextended(4) and mac_mls(4) policy
 modules.
Policy decisions could be made based on network
 configuration. If only certain users should be permitted
 access to ssh(1), the mac_portacl(4) policy module is
 a good choice. In the case of file systems, access to objects
 might be considered confidential to some users, but not to
 others. As an example, a large development team might be
 broken off into smaller projects where developers in project A
 might not be permitted to access objects written by developers
 in project B. Yet both projects might need to access objects
 created by developers in project C. Using the different
 security policy modules provided by the MAC
 framework, users could be divided into these groups and then
 given access to the appropriate objects.
Each security policy module has a unique way of dealing with
 the overall security of a system. Module selection should be
 based on a well thought out security policy which may require
 revision and reimplementation. Understanding the different
 security policy modules offered by the MAC
 framework will help administrators choose the best policies
 for their situations.
 The rest of this chapter covers the available modules,
 describes their use and configuration, and in some cases,
 provides insight on applicable situations.
Caution:
Implementing MAC is much like
	implementing a firewall since care must be taken to prevent
	being completely locked out of the system. The ability to
	revert back to a previous configuration should be considered
	and the implementation of MAC over a remote
	connection should be done with extreme caution.

15.8. Troubleshooting the MAC Framework
This section discusses common configuration errors and how
 to resolve them.
	The multilabel flag does not stay
	 enabled on the root (/)
	 partition:
	The following steps may resolve this transient
	 error:
	Edit /etc/fstab and set the
		root partition to ro for
		read-only.

	Reboot into single user mode.

	Run tunefs -l
		 enable on /.

	Reboot the system.

	Run mount -urw
		/ and change the
		ro back to rw in
		/etc/fstab and reboot the system
		again.

	Double-check the output from
		mount to ensure that
		multilabel has been properly set on
		the root file system.

	After establishing a secure environment with
	 MAC, Xorg no
	 longer starts:
	This could be caused by the MAC
	 partition policy or by a mislabeling
	 in one of the MAC labeling policies.
	 To debug, try the following:
	Check the error message. If the user is in the
		insecure class, the
		partition policy may be the
		culprit. Try setting the user's class back to the
		default class and rebuild the
		database with cap_mkdb. If this
		does not alleviate the problem, go to step two.

	Double-check that the label policies are set
		correctly for the user,
		Xorg, and the
		/dev entries.

	If neither of these resolve the problem, send the
		error message and a description of the environment to
		the FreeBSD general questions mailing list.

	The _secure_path: unable to stat
	 .login_conf error appears:
	This error can appear when a user attempts to switch
	 from the root
	 user to another user in the system. This message
	 usually occurs when the user has a higher label setting
	 than that of the user they are attempting to become.
	 For instance, if joe has a default label
	 of biba/low and root has a label of
	 biba/high, root cannot view
	 joe's home
	 directory. This will happen whether or not root has used
	 su to become joe as the Biba
	 integrity model will not permit root to view objects set
	 at a lower integrity level.

	The system no longer recognizes root:
	When this occurs, whoami returns
	 0 and su returns
	 who are you?.
This can happen if a labeling policy has been
	 disabled by sysctl(8) or the policy module was
	 unloaded. If the policy is disabled, the login
	 capabilities database needs to be reconfigured. Double
	 check /etc/login.conf to ensure
	 that all label options have been
	 removed and rebuild the database with
	 cap_mkdb.
This may also happen if a policy restricts access to
	 master.passwd. This is usually
	 caused by an administrator altering the file under a
	 label which conflicts with the general policy being used
	 by the system. In these cases, the user information
	 would be read by the system and access would be blocked
	 as the file has inherited the new label. Disable the
	 policy using sysctl(8) and everything should return
	 to normal.

Chapter 16. Security Event Auditing
Written by Tom Rhodes and Robert Watson. 16.1. Synopsis
The FreeBSD operating system includes support for security
 event auditing. Event auditing supports reliable, fine-grained,
 and configurable logging of a variety of security-relevant
 system events, including logins, configuration changes, and file
 and network access. These log records can be invaluable for
 live system monitoring, intrusion detection, and postmortem
 analysis. FreeBSD implements Sun™'s published Basic Security
 Module (BSM) Application Programming
 Interface (API) and file format, and is
 interoperable with the Solaris™ and Mac OS® X audit
 implementations.
This chapter focuses on the installation and configuration
 of event auditing. It explains audit policies and provides an
 example audit configuration.
After reading this chapter, you will know:
	What event auditing is and how it works.

	How to configure event auditing on FreeBSD for users and
	 processes.

	How to review the audit trail using the audit reduction
	 and review tools.

Before reading this chapter, you should:
	Understand UNIX® and FreeBSD basics
	 (Chapter 3, FreeBSD Basics).

	Be familiar with the basics of kernel
	 configuration/compilation (Chapter 8, Configuring the FreeBSD Kernel).

	Have some familiarity with security and how it pertains
	 to FreeBSD (Chapter 13, Security).

Warning:
The audit facility has some known limitations. Not all
	security-relevant system events are auditable and some login
	mechanisms, such as Xorg-based
	display managers and third-party daemons, do not properly
	configure auditing for user login sessions.
The security event auditing facility is able to generate
	very detailed logs of system activity. On a busy system,
	trail file data can be very large when configured for high
	detail, exceeding gigabytes a week in some configurations.
	Administrators should take into account the disk space
	requirements associated with high volume audit configurations.
	For example, it may be desirable to dedicate a file system to
	/var/audit so that other file systems are
	not affected if the audit file system becomes full.

16.3. Audit Configuration
User space support for event auditing is installed as part
 of the base FreeBSD operating system. Kernel support is available
 in the GENERIC kernel by default,
 and auditd(8) can be enabled
 by adding the following line to
 /etc/rc.conf:
auditd_enable="YES"
Then, start the audit daemon:
service auditd start
Users who prefer to compile a custom kernel must include the
 following line in their custom kernel configuration file:
options	AUDIT
16.3.1. Event Selection Expressions
Selection expressions are used in a number of places in
	the audit configuration to determine which events should be
	audited. Expressions contain a list of event classes to
	match. Selection expressions are evaluated from left to
	right, and two expressions are combined by appending one onto
	the other.
Table 16.1, “Default Audit Event Classes” summarizes the default
	audit event classes:
Table 16.1. Default Audit Event Classes
	Class Name	Description	Action
	all	all	Match all event classes.
	aa	authentication and authorization	
	ad	administrative	Administrative actions performed on the system as
		a whole.
	ap	application	Application defined action.
	cl	file close	Audit calls to the
		close system call.
	ex	exec	Audit program execution. Auditing of command
		line arguments and environmental variables is
		controlled via audit_control(5) using the
		argv and envv
		parameters to the policy
		setting.
	fa	file attribute access	Audit the access of object attributes such as
		stat(1) and pathconf(2).
	fc	file create	Audit events where a file is created as a
		result.
	fd	file delete	Audit events where file deletion occurs.
	fm	file attribute modify	Audit events where file attribute modification
		occurs, such as by chown(8), chflags(1), and
		flock(2).
	fr	file read	Audit events in which data is read or files are
		opened for reading.
	fw	file write	Audit events in which data is written or files
		are written or modified.
	io	ioctl	Audit use of the ioctl
		system call.
	ip	ipc	Audit various forms of Inter-Process
		Communication, including POSIX pipes and System V
		IPC operations.
	lo	login_logout	Audit login(1) and logout(1)
		events.
	na	non attributable	Audit non-attributable events.
	no	invalid class	Match no audit events.
	nt	network	Audit events related to network actions such as
		connect(2) and accept(2).
	ot	other	Audit miscellaneous events.
	pc	process	Audit process operations such as exec(3) and
		exit(3).

These audit event classes may be customized by modifying
	the audit_class and
	audit_event configuration files.
Each audit event class may be combined with a prefix
	indicating whether successful/failed operations are matched,
	and whether the entry is adding or removing matching for the
	class and type. Table 16.2, “Prefixes for Audit Event Classes” summarizes
	the available prefixes:
Table 16.2. Prefixes for Audit Event Classes
	Prefix	Action
	+	Audit successful events in this class.
	-	Audit failed events in this class.
	^	Audit neither successful nor failed events in
		this class.
	^+	Do not audit successful events in this
		class.
	^-	Do not audit failed events in this class.

If no prefix is present, both successful and failed
	instances of the event will be audited.
The following example selection string selects both
	successful and failed login/logout events, but only successful
	execution events:
lo,+ex
16.3.2. Configuration Files
The following configuration files for security event
	auditing are found in
	/etc/security:
	audit_class: contains the
	 definitions of the audit classes.

	audit_control: controls aspects
	 of the audit subsystem, such as default audit classes,
	 minimum disk space to leave on the audit log volume, and
	 maximum audit trail size.

	audit_event: textual names and
	 descriptions of system audit events and a list of which
	 classes each event is in.

	audit_user: user-specific audit
	 requirements to be combined with the global defaults at
	 login.

	audit_warn: a customizable shell
	 script used by auditd(8) to generate warning messages
	 in exceptional situations, such as when space for audit
	 records is running low or when the audit trail file has
	 been rotated.

Warning:
Audit configuration files should be edited and
	 maintained carefully, as errors in configuration may result
	 in improper logging of events.

In most cases, administrators will only need to modify
	audit_control and
	audit_user. The first file controls
	system-wide audit properties and policies and the second file
	may be used to fine-tune auditing by user.
16.3.2.1. The audit_control File
A number of defaults for the audit subsystem are
	 specified in audit_control:
dir:/var/audit
dist:off
flags:lo,aa
minfree:5
naflags:lo,aa
policy:cnt,argv
filesz:2M
expire-after:10M
The dir entry is used to set one or
	 more directories where audit logs will be stored. If more
	 than one directory entry appears, they will be used in order
	 as they fill. It is common to configure audit so that audit
	 logs are stored on a dedicated file system, in order to
	 prevent interference between the audit subsystem and other
	 subsystems if the file system fills.
If the dist field is set to
	 on or yes, hard links
	 will be created to all trail files in
	 /var/audit/dist.
The flags field sets the system-wide
	 default preselection mask for attributable events. In the
	 example above, successful and failed login/logout events as
	 well as authentication and authorization are audited for all
	 users.
The minfree entry defines the minimum
	 percentage of free space for the file system where the audit
	 trail is stored.
The naflags entry specifies audit
	 classes to be audited for non-attributed events, such as the
	 login/logout process and authentication and
	 authorization.
The policy entry specifies a
	 comma-separated list of policy flags controlling various
	 aspects of audit behavior. The cnt
	 indicates that the system should continue running despite an
	 auditing failure (this flag is highly recommended). The
	 other flag, argv, causes command line
	 arguments to the execve(2) system call to be audited as
	 part of command execution.
The filesz entry specifies the maximum
	 size for an audit trail before automatically terminating and
	 rotating the trail file. A value of 0
	 disables automatic log rotation. If the requested file size
	 is below the minimum of 512k, it will be ignored and a log
	 message will be generated.
The expire-after field specifies when
	 audit log files will expire and be removed.
16.3.2.2. The audit_user File
The administrator can specify further audit requirements
	 for specific users in audit_user.
	 Each line configures auditing for a user via two fields:
	 the alwaysaudit field specifies a set of
	 events that should always be audited for the user, and the
	 neveraudit field specifies a set of
	 events that should never be audited for the user.
The following example entries audit login/logout events
	 and successful command execution for root and file creation and
	 successful command execution for www. If used with the
	 default audit_control, the
	 lo entry for root is redundant, and
	 login/logout events will also be audited for www.
root:lo,+ex:no
www:fc,+ex:no
16.4. Working with Audit Trails
Since audit trails are stored in the BSM
 binary format, several built-in tools are available to modify or
 convert these trails to text. To convert trail files to a
 simple text format, use praudit. To reduce
 the audit trail file for analysis, archiving, or printing
 purposes, use auditreduce. This utility
 supports a variety of selection parameters, including event
 type, event class, user, date or time of the event, and the file
 path or object acted on.
For example, to dump the entire contents of a specified
 audit log in plain text:
praudit /var/audit/AUDITFILE
Where AUDITFILE is the audit log
 to dump.
Audit trails consist of a series of audit records made up of
 tokens, which praudit prints sequentially,
 one per line. Each token is of a specific type, such as
 header (an audit record header) or
 path (a file path from a name lookup). The
 following is an example of an
 execve event:
header,133,10,execve(2),0,Mon Sep 25 15:58:03 2006, + 384 msec
exec arg,finger,doug
path,/usr/bin/finger
attribute,555,root,wheel,90,24918,104944
subject,robert,root,wheel,root,wheel,38439,38032,42086,128.232.9.100
return,success,0
trailer,133
This audit represents a successful
 execve call, in which the command
 finger doug has been run. The
 exec arg token contains the processed command
 line presented by the shell to the kernel. The
 path token holds the path to the executable
 as looked up by the kernel. The attribute
 token describes the binary and includes the file mode. The
 subject token stores the audit user ID,
 effective user ID and group ID, real user ID and group ID,
 process ID, session ID, port ID, and login address. Notice that
 the audit user ID and real user ID differ as the user
 robert switched to the
 root account before
 running this command, but it is audited using the original
 authenticated user. The return token
 indicates the successful execution and the
 trailer concludes the record.
XML output format is also supported and
 can be selected by including -x.
Since audit logs may be very large, a subset of records can
 be selected using auditreduce. This example
 selects all audit records produced for the user
 trhodes stored in
 AUDITFILE:
auditreduce -u trhodes /var/audit/AUDITFILE | praudit
Members of the audit group have permission to
 read audit trails in /var/audit. By
 default, this group is empty, so only the root user can read audit trails.
 Users may be added to the audit group in order to
 delegate audit review rights. As the ability to track audit log
 contents provides significant insight into the behavior of users
 and processes, it is recommended that the delegation of audit
 review rights be performed with caution.
16.4.1. Live Monitoring Using Audit Pipes
Audit pipes are cloning pseudo-devices which allow
	applications to tap the live audit record stream. This is
	primarily of interest to authors of intrusion detection and
	system monitoring applications. However, the audit pipe
	device is a convenient way for the administrator to allow live
	monitoring without running into problems with audit trail file
	ownership or log rotation interrupting the event stream. To
	track the live audit event stream:
praudit /dev/auditpipe
By default, audit pipe device nodes are accessible only to
	the root user. To
	make them accessible to the members of the audit group, add a
	devfs rule to
	/etc/devfs.rules:
add path 'auditpipe*' mode 0440 group audit
See devfs.rules(5) for more information on
	configuring the devfs file system.
Warning:
It is easy to produce audit event feedback cycles, in
	 which the viewing of each audit event results in the
	 generation of more audit events. For example, if all
	 network I/O is audited, and
	 praudit is run from an
	 SSH session, a continuous stream of audit
	 events will be generated at a high rate, as each event being
	 printed will generate another event. For this reason, it is
	 advisable to run praudit on an audit pipe
	 device from sessions without fine-grained
	 I/O auditing.

16.4.2. Rotating and Compressing Audit Trail Files
Audit trails are written to by the kernel and
	managed by the audit daemon, auditd(8).
	Administrators should not attempt to use
	newsyslog.conf(5) or other tools to directly rotate
	audit logs. Instead, audit should
	be used to shut down auditing, reconfigure the audit system,
	and perform log rotation. The following command causes the
	audit daemon to create a new audit log and signal the kernel
	to switch to using the new log. The old log will be
	terminated and renamed, at which point it may then be
	manipulated by the administrator:
audit -n
If auditd(8) is not currently running, this command
	will fail and an error message will be produced.
Adding the following line to
	/etc/crontab will schedule this rotation
	every twelve hours:
0 */12 * * * root /usr/sbin/audit -n
The change will take effect once
	/etc/crontab is saved.
Automatic rotation of the audit trail file based on file
	size is possible using filesz in
	audit_control as described in Section 16.3.2.1, “The audit_control File”.
As audit trail files can become very large, it is often
	desirable to compress or otherwise archive trails once they
	have been closed by the audit daemon. The
	audit_warn script can be used to perform
	customized operations for a variety of audit-related events,
	including the clean termination of audit trails when they are
	rotated. For example, the following may be added to
	/etc/security/audit_warn to compress
	audit trails on close:
#
Compress audit trail files on close.
#
if ["$1" = closefile]; then
 gzip -9 $2
fi
Other archiving activities might include copying trail
	files to a centralized server, deleting old trail files, or
	reducing the audit trail to remove unneeded records. This
	script will be run only when audit trail files are cleanly
	terminated, so will not be run on trails left unterminated
	following an improper shutdown.
17.3. Resizing and Growing Disks
Originally contributed by Allan Jude. A disk's capacity can increase without any changes to the
 data already present. This happens commonly with virtual
 machines, when the virtual disk turns out to be too small and is
 enlarged. Sometimes a disk image is written to a
 USB memory stick, but does not use the full
 capacity. Here we describe how to resize or
 grow disk contents to take advantage of
 increased capacity.
Determine the device name of the disk to be resized by
 inspecting /var/run/dmesg.boot. In this
 example, there is only one SATA disk in the
 system, so the drive will appear as
 ada0.
List the partitions on the disk to see the current
 configuration:
gpart show ada0
=> 34 83886013 ada0 GPT (48G) [CORRUPT]
 34 128 1 freebsd-boot (64k)
 162 79691648 2 freebsd-ufs (38G)
 79691810 4194236 3 freebsd-swap (2G)
 83886046 1 - free - (512B)
Note:
If the disk was formatted with the
	GPT partitioning scheme, it may show
	as “corrupted” because the GPT
	backup partition table is no longer at the end of the
	drive. Fix the backup
	partition table with
	gpart:
gpart recover ada0
ada0 recovered

Now the additional space on the disk is available for
 use by a new partition, or an existing partition can be
 expanded:
gpart show ada0
=> 34 102399933 ada0 GPT (48G)
 34 128 1 freebsd-boot (64k)
 162 79691648 2 freebsd-ufs (38G)
 79691810 4194236 3 freebsd-swap (2G)
 83886046 18513921 - free - (8.8G)
Partitions can only be resized into contiguous free space.
 Here, the last partition on the disk is the swap partition, but
 the second partition is the one that needs to be resized. Swap
 partitions only contain temporary data, so it can safely be
 unmounted, deleted, and then recreate the third partition after
 resizing the second partition.
Disable the swap partition:
swapoff /dev/ada0p3
Delete the third partition, specified by the
 -i flag, from the disk
 ada0.

gpart delete -i 3 ada0
ada0p3 deleted
gpart show ada0
=> 34 102399933 ada0 GPT (48G)
 34 128 1 freebsd-boot (64k)
 162 79691648 2 freebsd-ufs (38G)
 79691810 22708157 - free - (10G)
Warning:
There is risk of data loss when modifying the partition
	table of a mounted file system. It is best to perform the
	following steps on an unmounted file system while running from
	a live CD-ROM or USB
	device. However, if absolutely necessary, a mounted file
	system can be resized after disabling GEOM safety
	features:
sysctl kern.geom.debugflags=16

Resize the partition, leaving room to recreate a swap
 partition of the desired size. The partition to resize is
 specified with -i, and the new desired size
 with -s. Optionally, alignment of the
 partition is controlled with -a. This only
 modifies the size of the partition. The file system in the
 partition will be expanded in a separate step.
gpart resize -i 2 -s 47G -a 4k ada0
ada0p2 resized
gpart show ada0
=> 34 102399933 ada0 GPT (48G)
 34 128 1 freebsd-boot (64k)
 162 98566144 2 freebsd-ufs (47G)
 98566306 3833661 - free - (1.8G)
Recreate the swap partition and activate it. If no size
 is specified with -s, all remaining space is
 used:
gpart add -t freebsd-swap -a 4k ada0
ada0p3 added
gpart show ada0
=> 34 102399933 ada0 GPT (48G)
 34 128 1 freebsd-boot (64k)
 162 98566144 2 freebsd-ufs (47G)
 98566306 3833661 3 freebsd-swap (1.8G)
swapon /dev/ada0p3
Grow the UFS file system to use the new
 capacity of the resized partition:
growfs /dev/ada0p2
Device is mounted read-write; resizing will result in temporary write suspension for /.
It's strongly recommended to make a backup before growing the file system.
OK to grow file system on /dev/ada0p2, mounted on /, from 38GB to 47GB? [Yes/No] Yes
super-block backups (for fsck -b #) at:
 80781312, 82063552, 83345792, 84628032, 85910272, 87192512, 88474752,
 89756992, 91039232, 92321472, 93603712, 94885952, 96168192, 97450432
If the file system is ZFS, the resize is
 triggered by running the online subcommand with
 -e:
zpool online -e zroot /dev/ada0p2
Both the partition and the file system on it have now been
 resized to use the newly-available disk space.
17.4. USB Storage Devices
Contributed by Marc Fonvieille. Many external storage solutions, such as hard drives,
 USB thumbdrives, and CD
 and DVD burners, use the Universal Serial Bus
 (USB). FreeBSD provides support for
 USB 1.x, 2.0, and 3.0 devices.
Note:
USB 3.0 support is not compatible with
	some hardware, including Haswell (Lynx point) chipsets. If
	FreeBSD boots with a failed with error 19
	message, disable xHCI/USB3 in the system
	BIOS.

Support for USB storage devices is built
 into the GENERIC kernel. For a custom
 kernel, be sure that the following lines are present in the
 kernel configuration file:
device scbus	# SCSI bus (required for ATA/SCSI)
device da	# Direct Access (disks)
device pass	# Passthrough device (direct ATA/SCSI access)
device uhci	# provides USB 1.x support
device ohci	# provides USB 1.x support
device ehci	# provides USB 2.0 support
device xhci	# provides USB 3.0 support
device usb	# USB Bus (required)
device umass	# Disks/Mass storage - Requires scbus and da
device cd	# needed for CD and DVD burners
FreeBSD uses the umass(4) driver which uses the
 SCSI subsystem to access
 USB storage devices. Since any
 USB device will be seen as a
 SCSI device by the system, if the
 USB device is a CD or
 DVD burner, do not
 include device atapicam in a custom kernel
 configuration file.
The rest of this section demonstrates how to verify that a
 USB storage device is recognized by FreeBSD and
 how to configure the device so that it can be used.
17.4.1. Device Configuration
To test the USB configuration, plug in
	the USB device. Use
	dmesg to confirm that the drive appears in
	the system message buffer. It should look something like
	this:
umass0: <STECH Simple Drive, class 0/0, rev 2.00/1.04, addr 3> on usbus0
umass0: SCSI over Bulk-Only; quirks = 0x0100
umass0:4:0:-1: Attached to scbus4
da0 at umass-sim0 bus 0 scbus4 target 0 lun 0
da0: <STECH Simple Drive 1.04> Fixed Direct Access SCSI-4 device
da0: Serial Number WD-WXE508CAN263
da0: 40.000MB/s transfers
da0: 152627MB (312581808 512 byte sectors: 255H 63S/T 19457C)
da0: quirks=0x2<NO_6_BYTE>
The brand, device node (da0), speed,
	and size will differ according to the device.
Since the USB device is seen as a
	SCSI one, camcontrol can
	be used to list the USB storage devices
	attached to the system:
camcontrol devlist
<STECH Simple Drive 1.04> at scbus4 target 0 lun 0 (pass3,da0)
Alternately, usbconfig can be used to
	list the device. Refer to usbconfig(8) for more
	information about this command.
usbconfig
ugen0.3: <Simple Drive STECH> at usbus0, cfg=0 md=HOST spd=HIGH (480Mbps) pwr=ON (2mA)
If the device has not been formatted, refer to Section 17.2, “Adding Disks” for instructions on how to format
	and create partitions on the USB drive. If
	the drive comes with a file system, it can be mounted by
	root using the
	instructions in Section 3.7, “Mounting and Unmounting File Systems”.
Warning:
Allowing untrusted users to mount arbitrary media, by
	 enabling vfs.usermount as described
	 below, should not be considered safe from a security point
	 of view. Most file systems were not built to safeguard
	 against malicious devices.

To make the device mountable as a normal user, one
	solution is to make all users of the device a member of the
	operator group
	using pw(8). Next, ensure that operator is able to read and
	write the device by adding these lines to
	/etc/devfs.rules:
[localrules=5]
add path 'da*' mode 0660 group operator
Note:
If internal SCSI disks are also
	 installed in the system, change the second line as
	 follows:
add path 'da[3-9]*' mode 0660 group operator
This will exclude the first three
	 SCSI disks (da0 to
	 da2)from belonging to the operator group. Replace
	 3 with the number of internal
	 SCSI disks. Refer to devfs.rules(5)
	 for more information about this file.

Next, enable the ruleset in
	/etc/rc.conf:
devfs_system_ruleset="localrules"
Then, instruct the system to allow regular users to mount
	file systems by adding the following line to
	/etc/sysctl.conf:
vfs.usermount=1
Since this only takes effect after the next reboot, use
	sysctl to set this variable now:
sysctl vfs.usermount=1
vfs.usermount: 0 -> 1
The final step is to create a directory where the file
	system is to be mounted. This directory needs to be owned by
	the user that is to mount the file system. One way to do that
	is for root to
	create a subdirectory owned by that user as /mnt/username.
	In the following example, replace
	username with the login name of the
	user and usergroup with the user's
	primary group:
mkdir /mnt/username
chown username:usergroup /mnt/username
Suppose a USB thumbdrive is plugged in,
	and a device /dev/da0s1 appears. If the
	device is formatted with a FAT file system,
	the user can mount it using:
% mount -t msdosfs -o -m=644,-M=755 /dev/da0s1 /mnt/username
Before the device can be unplugged, it
	must be unmounted first:
% umount /mnt/username
After device removal, the system message buffer will show
	messages similar to the following:
umass0: at uhub3, port 2, addr 3 (disconnected)
da0 at umass-sim0 bus 0 scbus4 target 0 lun 0
da0: <STECH Simple Drive 1.04> s/n WD-WXE508CAN263 detached
(da0:umass-sim0:0:0:0): Periph destroyed
17.4.2. Automounting Removable Media
USB devices can be automatically
	mounted by uncommenting this line in
	/etc/auto_master:
/media		-media		-nosuid
Then add these lines to
	/etc/devd.conf:
notify 100 {
	match "system" "GEOM";
	match "subsystem" "DEV";
	action "/usr/sbin/automount -c";
};
Reload the configuration if autofs(5)
	and devd(8) are already running:
service automount restart
service devd restart
autofs(5) can be set to start at boot by adding this
	line to /etc/rc.conf:
autofs_enable="YES"
autofs(5) requires devd(8) to be enabled, as it
	is by default.
Start the services immediately with:
service automount start
service automountd start
service autounmountd start
service devd start
Each file system that can be automatically mounted appears
	as a directory in /media/. The directory
	is named after the file system label. If the label is
	missing, the directory is named after the device node.
The file system is transparently mounted on the first
	access, and unmounted after a period of inactivity.
	Automounted drives can also be unmounted manually:
automount -fu
This mechanism is typically used for memory cards and
	USB memory sticks. It can be used with
	any block device, including optical drives or
	iSCSI LUNs.
17.6. Creating and Using DVD Media
Contributed by Marc Fonvieille. With inputs from Andy Polyakov. Compared to the CD, the
 DVD is the next generation of optical media
 storage technology. The DVD can hold more
 data than any CD and is the standard for
 video publishing.
Five physical recordable formats can be defined for a
 recordable DVD:
	DVD-R: This was the first DVD
	 recordable format available. The DVD-R standard is defined
	 by the DVD
	 Forum. This format is write once.

	DVD-RW: This is the rewritable
	 version of the DVD-R standard. A
	 DVD-RW can be rewritten about 1000
	 times.

	DVD-RAM: This is a rewritable format
	 which can be seen as a removable hard drive. However, this
	 media is not compatible with most
	 DVD-ROM drives and DVD-Video players as
	 only a few DVD writers support the
	 DVD-RAM format. Refer to Section 17.6.8, “Using a DVD-RAM” for more information on
	 DVD-RAM use.

	DVD+RW: This is a rewritable format
	 defined by the
	 DVD+RW Alliance. A
	 DVD+RW can be rewritten about 1000
	 times.

	DVD+R: This format is the write once variation of the
	 DVD+RW format.

A single layer recordable DVD can hold up
 to 4,700,000,000 bytes which is actually 4.38 GB or
 4485 MB as 1 kilobyte is 1024 bytes.
Note:
A distinction must be made between the physical media and
	the application. For example, a DVD-Video is a specific file
	layout that can be written on any recordable
	DVD physical media such as DVD-R, DVD+R, or
	DVD-RW. Before choosing the type of media,
	ensure that both the burner and the DVD-Video player are
	compatible with the media under consideration.

17.6.1. Configuration
To perform DVD recording, use
	growisofs(1). This command is part of the
	sysutils/dvd+rw-tools utilities which
	support all DVD media types.
These tools use the SCSI subsystem to
	access the devices, therefore ATAPI/CAM support must be loaded
	or statically compiled into the kernel. This support is not
	needed if the burner uses the USB
	interface. Refer to Section 17.4, “USB Storage Devices” for more
	details on USB device configuration.
DMA access must also be enabled for
	ATAPI devices, by adding the following line
	to /boot/loader.conf:
hw.ata.atapi_dma="1"
Before attempting to use
	dvd+rw-tools, consult the Hardware
	 Compatibility Notes.
Note:
For a graphical user interface, consider using
	 sysutils/k3b which provides a user
	 friendly interface to growisofs(1) and many other
	 burning tools.

17.6.2. Burning Data DVDs
Since growisofs(1) is a front-end to mkisofs, it will invoke
	mkisofs(8) to create the file system layout and perform
	the write on the DVD. This means that an
	image of the data does not need to be created before the
	burning process.
To burn to a DVD+R or a DVD-R the data in
	/path/to/data, use the following
	command:
growisofs -dvd-compat -Z /dev/cd0 -J -R /path/to/data
In this example, -J -R is passed to
	mkisofs(8) to create an ISO 9660 file system with Joliet
	and Rock Ridge extensions. Refer to mkisofs(8) for more
	details.
For the initial session recording, -Z is
	used for both single and multiple sessions. Replace
	/dev/cd0, with the name of the
	DVD device. Using
	-dvd-compat indicates that the disk will be
	closed and that the recording will be unappendable. This
	should also provide better media compatibility with
	DVD-ROM drives.
To burn a pre-mastered image, such as
	imagefile.iso, use:
growisofs -dvd-compat -Z /dev/cd0=imagefile.iso
The write speed should be detected and automatically set
	according to the media and the drive being used. To force the
	write speed, use -speed=. Refer to
	growisofs(1) for example usage.
Note:
In order to support working files larger than 4.38GB, an
	 UDF/ISO-9660 hybrid file system must be created by passing
	 -udf -iso-level 3 to mkisofs(8) and
	 all related programs, such as growisofs(1). This is
	 required only when creating an ISO image file or when
	 writing files directly to a disk. Since a disk created this
	 way must be mounted as an UDF file system with
	 mount_udf(8), it will be usable only on an UDF aware
	 operating system. Otherwise it will look as if it contains
	 corrupted files.
To create this type of ISO file:
% mkisofs -R -J -udf -iso-level 3 -o imagefile.iso /path/to/data
To burn files directly to a disk:
growisofs -dvd-compat -udf -iso-level 3 -Z /dev/cd0 -J -R /path/to/data
When an ISO image already contains large files, no
	 additional options are required for growisofs(1) to
	 burn that image on a disk.
Be sure to use an up-to-date version of
	 sysutils/cdrtools, which contains
	 mkisofs(8), as an older version may not contain large
	 files support. If the latest version does not work, install
	 sysutils/cdrtools-devel and read its
	 mkisofs(8).

17.6.3. Burning a DVD-Video
A DVD-Video is a specific file layout based on the ISO
	9660 and micro-UDF (M-UDF) specifications. Since DVD-Video
	presents a specific data structure hierarchy, a particular
	program such as multimedia/dvdauthor is
	needed to author the DVD.
If an image of the DVD-Video file system already exists,
	it can be burned in the same way as any other image. If
	dvdauthor was used to make the
	DVD and the result is in
	/path/to/video, the following command
	should be used to burn the DVD-Video:
growisofs -Z /dev/cd0 -dvd-video /path/to/video
-dvd-video is passed to mkisofs(8)
	to instruct it to create a DVD-Video file system layout.
	This option implies the -dvd-compat
	growisofs(1) option.
17.6.4. Using a DVD+RW
Unlike CD-RW, a virgin DVD+RW needs to
	be formatted before first use. It is
	recommended to let growisofs(1) take
	care of this automatically whenever appropriate. However, it
	is possible to use dvd+rw-format to format
	the DVD+RW:
dvd+rw-format /dev/cd0
Only perform this operation once and keep in mind that
	only virgin DVD+RW medias need to be
	formatted. Once formatted, the DVD+RW can
	be burned as usual.
To burn a totally new file system and not just append some
	data onto a DVD+RW, the media does not need
	to be blanked first. Instead, write over the previous
	recording like this:
growisofs -Z /dev/cd0 -J -R /path/to/newdata
The DVD+RW format supports appending
	data to a previous recording. This operation consists of
	merging a new session to the existing one as it is not
	considered to be multi-session writing. growisofs(1)
	will grow the ISO 9660 file system
	present on the media.
For example, to append data to a
	DVD+RW, use the following:
growisofs -M /dev/cd0 -J -R /path/to/nextdata
The same mkisofs(8) options used to burn the
	initial session should be used during next writes.
Note:
Use -dvd-compat for better media
	 compatibility with DVD-ROM drives. When
	 using DVD+RW, this option will not
	 prevent the addition of data.

To blank the media, use:
growisofs -Z /dev/cd0=/dev/zero
17.6.5. Using a DVD-RW
A DVD-RW accepts two disc formats:
	incremental sequential and restricted overwrite. By default,
	DVD-RW discs are in sequential
	format.
A virgin DVD-RW can be directly written
	without being formatted. However, a non-virgin
	DVD-RW in sequential format needs to be
	blanked before writing a new initial session.
To blank a DVD-RW in sequential
	mode:
dvd+rw-format -blank=full /dev/cd0
Note:
A full blanking using -blank=full will
	 take about one hour on a 1x media. A fast blanking can be
	 performed using -blank, if the
	 DVD-RW will be recorded in Disk-At-Once
	 (DAO) mode. To burn the DVD-RW in DAO
	 mode, use the command:
growisofs -use-the-force-luke=dao -Z /dev/cd0=imagefile.iso
Since growisofs(1) automatically attempts to detect
	 fast blanked media and engage DAO write,
	 -use-the-force-luke=dao should not be
	 required.
One should instead use restricted overwrite mode with
	 any DVD-RW as this format is more
	 flexible than the default of incremental sequential.

To write data on a sequential DVD-RW,
	use the same instructions as for the other
	DVD formats:
growisofs -Z /dev/cd0 -J -R /path/to/data
To append some data to a previous recording, use
	-M with growisofs(1). However, if data
	is appended on a DVD-RW in incremental
	sequential mode, a new session will be created on the disc and
	the result will be a multi-session disc.
A DVD-RW in restricted overwrite format
	does not need to be blanked before a new initial session.
	Instead, overwrite the disc with -Z. It is
	also possible to grow an existing ISO 9660 file system written
	on the disc with -M. The result will be a
	one-session DVD.
To put a DVD-RW in restricted overwrite
	format, the following command must be used:
dvd+rw-format /dev/cd0
To change back to sequential format, use:
dvd+rw-format -blank=full /dev/cd0
17.6.6. Multi-Session
Few DVD-ROM drives support
	multi-session DVDs and most of the time only read the first
	session. DVD+R, DVD-R and DVD-RW in
	sequential format can accept multiple sessions. The notion
	of multiple sessions does not exist for the
	DVD+RW and the DVD-RW
	restricted overwrite formats.
Using the following command after an initial non-closed
	session on a DVD+R, DVD-R, or DVD-RW in
	sequential format, will add a new session to the disc:
growisofs -M /dev/cd0 -J -R /path/to/nextdata
Using this command with a DVD+RW or a
	DVD-RW in restricted overwrite mode will
	append data while merging the new session to the existing one.
	The result will be a single-session disc. Use this method to
	add data after an initial write on these types of
	media.
Note:
Since some space on the media is used between each
	 session to mark the end and start of sessions, one should
	 add sessions with a large amount of data to optimize media
	 space. The number of sessions is limited to 154 for a
	 DVD+R, about 2000 for a DVD-R, and 127 for a DVD+R Double
	 Layer.

17.6.7. For More Information
To obtain more information about a DVD,
	use dvd+rw-mediainfo
	 /dev/cd0 while the
	disc in the specified drive.
More information about
	dvd+rw-tools can be found in
	growisofs(1), on the dvd+rw-tools
	 web site, and in the cdwrite
	 mailing list archives.
Note:
When creating a problem report related to the use of
	 dvd+rw-tools, always include the
	 output of dvd+rw-mediainfo.

17.6.8. Using a DVD-RAM
DVD-RAM writers can use either a
	SCSI or ATAPI interface.
	For ATAPI devices, DMA access has to be
	enabled by adding the following line to
	/boot/loader.conf:
hw.ata.atapi_dma="1"
A DVD-RAM can be seen as a removable
	hard drive. Like any other hard drive, the
	DVD-RAM must be formatted before it can be
	used. In this example, the whole disk space will be formatted
	with a standard UFS2 file system:
dd if=/dev/zero of=/dev/acd0 bs=2k count=1
bsdlabel -Bw acd0
newfs /dev/acd0
The DVD device,
	acd0, must be changed according to the
	configuration.
Once the DVD-RAM has been formatted, it
	can be mounted as a normal hard drive:
mount /dev/acd0 /mnt
Once mounted, the DVD-RAM will be both
	readable and writeable.
17.10. File System Snapshots
Contributed by Tom Rhodes. FreeBSD offers a feature in conjunction with
 Soft Updates: file system
 snapshots.
UFS snapshots allow a user to create images of specified
 file systems, and treat them as a file. Snapshot files must be
 created in the file system that the action is performed on, and
 a user may create no more than 20 snapshots per file system.
 Active snapshots are recorded in the superblock so they are
 persistent across unmount and remount operations along with
 system reboots. When a snapshot is no longer required, it can
 be removed using rm(1). While snapshots may be removed in
 any order, all the used space may not be acquired because
 another snapshot will possibly claim some of the released
 blocks.
The un-alterable snapshot file flag is set
 by mksnap_ffs(8) after initial creation of a snapshot file.
 unlink(1) makes an exception for snapshot files since it
 allows them to be removed.
Snapshots are created using mount(8). To place a
 snapshot of /var in the
 file /var/snapshot/snap, use the following
 command:
mount -u -o snapshot /var/snapshot/snap /var
Alternatively, use mksnap_ffs(8) to create the
 snapshot:
mksnap_ffs /var /var/snapshot/snap
One can find snapshot files on a file system, such as
 /var, using
 find(1):
find /var -flags snapshot
Once a snapshot has been created, it has several
 uses:
	Some administrators will use a snapshot file for backup
	 purposes, because the snapshot can be transferred to
	 CDs or tape.

	The file system integrity checker, fsck(8), may be
	 run on the snapshot. Assuming that the file system was
	 clean when it was mounted, this should always provide a
	 clean and unchanging result.

	Running dump(8) on the snapshot will produce a dump
	 file that is consistent with the file system and the
	 timestamp of the snapshot. dump(8) can also take a
	 snapshot, create a dump image, and then remove the snapshot
	 in one command by using -L.

	The snapshot can be mounted as a frozen image of the
	 file system. To mount(8) the snapshot
	 /var/snapshot/snap run:
mdconfig -a -t vnode -o readonly -f /var/snapshot/snap -u 4
mount -r /dev/md4 /mnt

The frozen /var is now available
 through /mnt. Everything will initially be
 in the same state it was during the snapshot creation time. The
 only exception is that any earlier snapshots will appear as zero
 length files. To unmount the snapshot, use:
umount /mnt
mdconfig -d -u 4
For more information about softupdates and
 file system snapshots, including technical papers, visit
 Marshall Kirk McKusick's website at http://www.mckusick.com/.
17.11. Disk Quotas
Disk quotas can be used to limit the amount of disk space or
 the number of files a user or members of a group may allocate on
 a per-file system basis. This prevents one user or group of
 users from consuming all of the available disk space.
This section describes how to configure disk quotas for the
 UFS file system. To configure quotas on the
 ZFS file system, refer to Section 19.4.8, “Dataset, User, and Group Quotas”
17.11.1. Enabling Disk Quotas
To determine if the FreeBSD kernel provides support for disk
	quotas:
% sysctl kern.features.ufs_quota
kern.features.ufs_quota: 1
In this example, the 1 indicates quota
	support. If the value is instead 0, add
	the following line to a custom kernel configuration file and
	rebuild the kernel using the instructions in Chapter 8, Configuring the FreeBSD Kernel:
options QUOTA
Next, enable disk quotas in
	/etc/rc.conf:
quota_enable="YES"
Normally on bootup, the quota integrity of each file
	system is checked by quotacheck(8). This program insures
	that the data in the quota database properly reflects the data
	on the file system. This is a time consuming process that
	will significantly affect the time the system takes to boot.
	To skip this step, add this variable to
	/etc/rc.conf:
check_quotas="NO"
Finally, edit /etc/fstab to enable
	disk quotas on a per-file system basis. To enable per-user
	quotas on a file system, add userquota to the
	options field in the /etc/fstab entry for
	the file system to enable quotas on. For example:
/dev/da1s2g /home ufs rw,userquota 1 2
To enable group quotas, use groupquota
	instead. To enable both user and group quotas, separate the
	options with a comma:
/dev/da1s2g /home ufs rw,userquota,groupquota 1 2
By default, quota files are stored in the root directory
	of the file system as quota.user and
	quota.group. Refer to fstab(5) for
	more information. Specifying an alternate location for the
	quota files is not recommended.
Once the configuration is complete, reboot the system and
	/etc/rc will automatically run the
	appropriate commands to create the initial quota files for all
	of the quotas enabled in
	/etc/fstab.
In the normal course of operations, there should be no
	need to manually run quotacheck(8), quotaon(8), or
	quotaoff(8). However, one should read these manual pages
	to be familiar with their operation.
17.11.2. Setting Quota Limits
To
	verify that quotas are enabled, run:
quota -v
There should be a one line summary of disk usage and
	current quota limits for each file system that quotas are
	enabled on.
The system is now ready to be assigned quota limits with
	edquota.
Several options are available to enforce limits on the
	amount of disk space a user or group may allocate, and how
	many files they may create. Allocations can be limited based
	on disk space (block quotas), number of files (inode quotas),
	or a combination of both. Each limit is further broken down
	into two categories: hard and soft limits.
A hard limit may not be exceeded. Once a user reaches a
	hard limit, no further allocations can be made on that file
	system by that user. For example, if the user has a hard
	limit of 500 kbytes on a file system and is currently using
	490 kbytes, the user can only allocate an additional 10
	kbytes. Attempting to allocate an additional 11 kbytes will
	fail.
Soft limits can be exceeded for a limited amount of time,
	known as the grace period, which is one week by default. If a
	user stays over their limit longer than the grace period, the
	soft limit turns into a hard limit and no further allocations
	are allowed. When the user drops back below the soft limit,
	the grace period is reset.
In the following example, the quota for the test account is being edited.
	When edquota is invoked, the editor
	specified by EDITOR is opened in order to edit
	the quota limits. The default editor is set to
	vi.
edquota -u test
Quotas for user test:
/usr: kbytes in use: 65, limits (soft = 50, hard = 75)
 inodes in use: 7, limits (soft = 50, hard = 60)
/usr/var: kbytes in use: 0, limits (soft = 50, hard = 75)
 inodes in use: 0, limits (soft = 50, hard = 60)
There are normally two lines for each file system that has
	quotas enabled. One line represents the block limits and the
	other represents the inode limits. Change the value to modify
	the quota limit. For example, to raise the block limit on
	/usr to a soft limit of
	500 and a hard limit of
	600, change the values in that line as
	follows:
/usr: kbytes in use: 65, limits (soft = 500, hard = 600)
The new quota limits take effect upon exiting the
	editor.
Sometimes it is desirable to set quota limits on a range
	of users. This can be done by first assigning the desired
	quota limit to a user. Then, use -p to
	duplicate that quota to a specified range of user IDs
	(UIDs). The following command will
	duplicate those quota limits for UIDs
	10,000 through
	19,999:
edquota -p test 10000-19999
For more information, refer to edquota(8).
17.11.3. Checking Quota Limits and Disk Usage
To check individual user or group quotas and disk usage,
	use quota(1). A user may only examine their own quota
	and the quota of a group they are a member of. Only the
	superuser may view all user and group quotas. To get a
	summary of all quotas and disk usage for file systems with
	quotas enabled, use repquota(8).
Normally, file systems that the user is not using any disk
	space on will not show in the output of
	quota, even if the user has a quota limit
	assigned for that file system. Use -v to
	display those file systems. The following is sample output
	from quota -v for a user that has quota
	limits on two file systems.
Disk quotas for user test (uid 1002):
 Filesystem usage quota limit grace files quota limit grace
 /usr 65* 50 75 5days 7 50 60
 /usr/var 0 50 75 0 50 60
In this example, the user is currently 15 kbytes over the
	soft limit of 50 kbytes on /usr and has 5
	days of grace period left. The asterisk *
	indicates that the user is currently over the quota
	limit.
17.11.4. Quotas over NFS
Quotas are enforced by the quota subsystem on the
	NFS server. The rpc.rquotad(8) daemon
	makes quota information available to quota
	on NFS clients, allowing users on those
	machines to see their quota statistics.
On the NFS server, enable
	rpc.rquotad by removing the
	# from this line in
	/etc/inetd.conf:
rquotad/1 dgram rpc/udp wait root /usr/libexec/rpc.rquotad rpc.rquotad
Then, restart inetd:
service inetd restart
17.12. Encrypting Disk Partitions
Contributed by Lucky Green. FreeBSD offers excellent online protections against
 unauthorized data access. File permissions and Mandatory Access Control (MAC) help
 prevent unauthorized users from accessing data while the
 operating system is active and the computer is powered up.
 However, the permissions enforced by the operating system are
 irrelevant if an attacker has physical access to a computer and
 can move the computer's hard drive to another system to copy and
 analyze the data.
Regardless of how an attacker may have come into possession
 of a hard drive or powered-down computer, the
 GEOM-based cryptographic subsystems built
 into FreeBSD are able to protect the data on the computer's file
 systems against even highly-motivated attackers with significant
 resources. Unlike encryption methods that encrypt individual
 files, the built-in gbde and
 geli utilities can be used to transparently
 encrypt entire file systems. No cleartext ever touches the hard
 drive's platter.
This chapter demonstrates how to create an encrypted file
 system on FreeBSD. It first demonstrates the process using
 gbde and then demonstrates the same example
 using geli.
17.12.1. Disk Encryption with
	gbde
The objective of the gbde(4) facility is to provide a
	formidable challenge for an attacker to gain access to the
	contents of a cold storage device.
	However, if the computer is compromised while up and running
	and the storage device is actively attached, or the attacker
	has access to a valid passphrase, it offers no protection to
	the contents of the storage device. Thus, it is important to
	provide physical security while the system is running and to
	protect the passphrase used by the encryption
	mechanism.
This facility provides several barriers to protect the
	data stored in each disk sector. It encrypts the contents of
	a disk sector using 128-bit AES in
	CBC mode. Each sector on the disk is
	encrypted with a different AES key. For
	more information on the cryptographic design, including how
	the sector keys are derived from the user-supplied passphrase,
	refer to gbde(4).
FreeBSD provides a kernel module for
	gbde which can be loaded with this
	command:
kldload geom_bde
If using a custom kernel configuration file, ensure it
	contains this line:
options GEOM_BDE
The following example demonstrates adding a new hard drive
	to a system that will hold a single encrypted partition that
	will be mounted as /private.
Procedure 17.3. Encrypting a Partition with
	 gbde
	Add the New Hard Drive
Install the new drive to the system as explained in
	 Section 17.2, “Adding Disks”. For the purposes of this
	 example, a new hard drive partition has been added as
	 /dev/ad4s1c and
	 /dev/ad0s1*
	 represents the existing standard FreeBSD partitions.
ls /dev/ad*
/dev/ad0 /dev/ad0s1b /dev/ad0s1e /dev/ad4s1
/dev/ad0s1 /dev/ad0s1c /dev/ad0s1f /dev/ad4s1c
/dev/ad0s1a /dev/ad0s1d /dev/ad4

	Create a Directory to Hold gbde
	 Lock Files
mkdir /etc/gbde
The gbde lock file
	 contains information that gbde
	 requires to access encrypted partitions. Without access
	 to the lock file, gbde will not
	 be able to decrypt the data contained in the encrypted
	 partition without significant manual intervention which is
	 not supported by the software. Each encrypted partition
	 uses a separate lock file.

	Initialize the gbde
	 Partition
A gbde partition must be
	 initialized before it can be used. This initialization
	 needs to be performed only once. This command will open
	 the default editor, in order to set various configuration
	 options in a template. For use with the
	 UFS file system, set the sector_size to
	 2048:
gbde init /dev/ad4s1c -i -L /etc/gbde/ad4s1c.lock
$FreeBSD: src/sbin/gbde/template.txt,v 1.1.36.1 2009/08/03 08:13:06 kensmith Exp $
#
Sector size is the smallest unit of data which can be read or written.
Making it too small decreases performance and decreases available space.
Making it too large may prevent filesystems from working. 512 is the
minimum and always safe. For UFS, use the fragment size
#
sector_size	=	2048
[...]
Once the edit is saved, the user will be asked twice
	 to type the passphrase used to secure the data. The
	 passphrase must be the same both times. The ability of
	 gbde to protect data depends
	 entirely on the quality of the passphrase. For tips on
	 how to select a secure passphrase that is easy to
	 remember, see http://world.std.com/~reinhold/diceware.htm.
This initialization creates a lock file for the
	 gbde partition. In this
	 example, it is stored as
	 /etc/gbde/ad4s1c.lock. Lock files
	 must end in “.lock” in order to be correctly
	 detected by the /etc/rc.d/gbde start
	 up script.
Caution:
Lock files must be backed up
	 together with the contents of any encrypted partitions.
	 Without the lock file, the legitimate owner will be
	 unable to access the data on the encrypted
	 partition.

	Attach the Encrypted Partition to the
	 Kernel
gbde attach /dev/ad4s1c -l /etc/gbde/ad4s1c.lock
This command will prompt to input the passphrase that
	 was selected during the initialization of the encrypted
	 partition. The new encrypted device will appear in
	 /dev as
	 /dev/device_name.bde:
ls /dev/ad*
/dev/ad0 /dev/ad0s1b /dev/ad0s1e /dev/ad4s1
/dev/ad0s1 /dev/ad0s1c /dev/ad0s1f /dev/ad4s1c
/dev/ad0s1a /dev/ad0s1d /dev/ad4 /dev/ad4s1c.bde

	Create a File System on the Encrypted
	 Device
Once the encrypted device has been attached to the
	 kernel, a file system can be created on the device. This
	 example creates a UFS file system with
	 soft updates enabled. Be sure to specify the partition
	 which has a
	 *.bde
	 extension:
newfs -U /dev/ad4s1c.bde

	Mount the Encrypted Partition
Create a mount point and mount the encrypted file
	 system:
mkdir /private
mount /dev/ad4s1c.bde /private

	Verify That the Encrypted File System is
	 Available
The encrypted file system should now be visible and
	 available for use:
% df -H
Filesystem Size Used Avail Capacity Mounted on
/dev/ad0s1a 1037M 72M 883M 8% /
/devfs 1.0K 1.0K 0B 100% /dev
/dev/ad0s1f 8.1G 55K 7.5G 0% /home
/dev/ad0s1e 1037M 1.1M 953M 0% /tmp
/dev/ad0s1d 6.1G 1.9G 3.7G 35% /usr
/dev/ad4s1c.bde 150G 4.1K 138G 0% /private

After each boot, any encrypted file systems must be
	manually re-attached to the kernel, checked for errors, and
	mounted, before the file systems can be used. To configure
	these steps, add the following lines to
	/etc/rc.conf:
gbde_autoattach_all="YES"
gbde_devices="ad4s1c"
gbde_lockdir="/etc/gbde"
This requires that the passphrase be entered at the
	console at boot time. After typing the correct passphrase,
	the encrypted partition will be mounted automatically.
	Additional gbde boot options are
	available and listed in rc.conf(5).
Note:
sysinstall is incompatible
	 with gbde-encrypted devices. All
	 *.bde devices must be detached from the
	 kernel before starting sysinstall
	 or it will crash during its initial probing for devices. To
	 detach the encrypted device used in the example, use the
	 following command:
gbde detach /dev/ad4s1c

17.12.2. Disk Encryption with geli
Contributed by Daniel Gerzo. An alternative cryptographic GEOM class
	is available using geli. This control
	utility adds some features and uses a different scheme for
	doing cryptographic work. It provides the following
	features:
	Utilizes the crypto(9) framework and
	 automatically uses cryptographic hardware when it is
	 available.

	Supports multiple cryptographic algorithms such as
	 AES, Blowfish, and
	 3DES.

	Allows the root partition to be encrypted. The
	 passphrase used to access the encrypted root partition
	 will be requested during system boot.

	Allows the use of two independent keys.

	It is fast as it performs simple sector-to-sector
	 encryption.

	Allows backup and restore of master keys. If a user
	 destroys their keys, it is still possible to get access to
	 the data by restoring keys from the backup.

	Allows a disk to attach with a random, one-time key
	 which is useful for swap partitions and temporary file
	 systems.

More features and usage examples can be found in
	geli(8).
The following example describes how to generate a key file
	which will be used as part of the master key for the encrypted
	provider mounted under /private. The key
	file will provide some random data used to encrypt the master
	key. The master key will also be protected by a passphrase.
	The provider's sector size will be 4kB. The example describes
	how to attach to the geli provider, create
	a file system on it, mount it, work with it, and finally, how
	to detach it.
Procedure 17.4. Encrypting a Partition with
	 geli
	Load geli Support
Support for geli is available as a
	 loadable kernel module. To configure the system to
	 automatically load the module at boot time, add the
	 following line to
	 /boot/loader.conf:
geom_eli_load="YES"
To load the kernel module now:
kldload geom_eli
For a custom kernel, ensure the kernel configuration
	 file contains these lines:
options GEOM_ELI
device crypto

	Generate the Master Key
The following commands generate a master key
	 (/root/da2.key) that is protected
	 with a passphrase. The data source for the key file is
	 /dev/random and the sector size of
	 the provider (/dev/da2.eli) is 4kB as
	 a bigger sector size provides better performance:
dd if=/dev/random of=/root/da2.key bs=64 count=1
geli init -s 4096 -K /root/da2.key /dev/da2
Enter new passphrase:
Reenter new passphrase:
It is not mandatory to use both a passphrase and a key
	 file as either method of securing the master key can be
	 used in isolation.
If the key file is given as “-”, standard
	 input will be used. For example, this command generates
	 three key files:
cat keyfile1 keyfile2 keyfile3 | geli init -K - /dev/da2

	Attach the Provider with the Generated Key
To attach the provider, specify the key file, the name
	 of the disk, and the passphrase:
geli attach -k /root/da2.key /dev/da2
Enter passphrase:
This creates a new device with an
	 .eli extension:
ls /dev/da2*
/dev/da2 /dev/da2.eli

	Create the New File System
Next, format the device with the
	 UFS file system and mount it on an
	 existing mount point:
dd if=/dev/random of=/dev/da2.eli bs=1m
newfs /dev/da2.eli
mount /dev/da2.eli /private
The encrypted file system should now be available for
	 use:
df -H
Filesystem Size Used Avail Capacity Mounted on
/dev/ad0s1a 248M 89M 139M 38% /
/devfs 1.0K 1.0K 0B 100% /dev
/dev/ad0s1f 7.7G 2.3G 4.9G 32% /usr
/dev/ad0s1d 989M 1.5M 909M 0% /tmp
/dev/ad0s1e 3.9G 1.3G 2.3G 35% /var
/dev/da2.eli 150G 4.1K 138G 0% /private

Once the work on the encrypted partition is done, and the
	/private partition is no longer needed,
	it is prudent to put the device into cold storage by
	unmounting and detaching the geli encrypted
	partition from the kernel:
umount /private
geli detach da2.eli
A rc.d script is provided to
	simplify the mounting of geli-encrypted
	devices at boot time. For this example, add these lines to
	/etc/rc.conf:
geli_devices="da2"
geli_da2_flags="-k /root/da2.key"
This configures /dev/da2 as a
	geli provider with a master key of
	/root/da2.key. The system will
	automatically detach the provider from the kernel before the
	system shuts down. During the startup process, the script
	will prompt for the passphrase before attaching the provider.
	Other kernel messages might be shown before and after the
	password prompt. If the boot process seems to stall, look
	carefully for the password prompt among the other messages.
	Once the correct passphrase is entered, the provider is
	attached. The file system is then mounted, typically by an
	entry in /etc/fstab. Refer to Section 3.7, “Mounting and Unmounting File Systems” for instructions on how to
	configure a file system to mount at boot time.
18.2. RAID0 - Striping
Written by Tom Rhodes and Murray Stokely. Striping combines several disk drives into a single volume.
 Striping can be performed through the use of hardware
 RAID controllers. The
 GEOM disk subsystem provides software support
 for disk striping, also known as RAID0,
 without the need for a RAID disk
 controller.
In RAID0, data is split into blocks that
 are written across all the drives in the array. As seen in the
 following illustration, instead of having to wait on the system
 to write 256k to one disk, RAID0 can
 simultaneously write 64k to each of the four disks in the array,
 offering superior I/O performance. This
 performance can be enhanced further by using multiple disk
 controllers.
[image: Disk Striping Illustration]
Each disk in a RAID0 stripe must be of
 the same size, since I/O requests are
 interleaved to read or write to multiple disks in
 parallel.
Note:
RAID0 does not
	provide any redundancy. This means that if one disk in the
	array fails, all of the data on the disks is lost. If the
	data is important, implement a backup strategy that regularly
	saves backups to a remote system or device.

The process for creating a software,
 GEOM-based RAID0 on a FreeBSD
 system using commodity disks is as follows. Once the stripe is
 created, refer to gstripe(8) for more information on how
 to control an existing stripe.
Procedure 18.1. Creating a Stripe of Unformatted ATA
	Disks
	Load the geom_stripe.ko
	 module:
kldload geom_stripe

	Ensure that a suitable mount point exists. If this
	 volume will become a root partition, then temporarily use
	 another mount point such as
	 /mnt.

	Determine the device names for the disks which will
	 be striped, and create the new stripe device. For example,
	 to stripe two unused and unpartitioned
	 ATA disks with device names of
	 /dev/ad2 and
	 /dev/ad3:
gstripe label -v st0 /dev/ad2 /dev/ad3
Metadata value stored on /dev/ad2.
Metadata value stored on /dev/ad3.
Done.

	Write a standard label, also known as a partition table,
	 on the new volume and install the default bootstrap
	 code:
bsdlabel -wB /dev/stripe/st0

	This process should create two other devices in
	 /dev/stripe in addition to
	 st0. Those include
	 st0a and st0c. At
	 this point, a UFS file system can be
	 created on st0a using
	 newfs:
newfs -U /dev/stripe/st0a
Many numbers will glide across the screen, and after a
	 few seconds, the process will be complete. The volume has
	 been created and is ready to be mounted.

	To manually mount the created disk stripe:
mount /dev/stripe/st0a /mnt

	To mount this striped file system automatically during
	 the boot process, place the volume information in
	 /etc/fstab. In this example, a
	 permanent mount point, named stripe, is
	 created:
mkdir /stripe
echo "/dev/stripe/st0a /stripe ufs rw 2 2" \
>> /etc/fstab

	The geom_stripe.ko module must also
	 be automatically loaded during system initialization, by
	 adding a line to
	 /boot/loader.conf:
sysrc -f /boot/loader.conf geom_stripe_load=YES

18.3. RAID1 - Mirroring
RAID1, or
 mirroring, is the technique of writing
 the same data to more than one disk drive. Mirrors are usually
 used to guard against data loss due to drive failure. Each
 drive in a mirror contains an identical copy of the data. When
 an individual drive fails, the mirror continues to work,
 providing data from the drives that are still functioning. The
 computer keeps running, and the administrator has time to
 replace the failed drive without user interruption.
Two common situations are illustrated in these examples.
 The first creates a mirror out of two new drives and uses it as
 a replacement for an existing single drive. The second example
 creates a mirror on a single new drive, copies the old drive's
 data to it, then inserts the old drive into the mirror. While
 this procedure is slightly more complicated, it only requires
 one new drive.
Traditionally, the two drives in a mirror are identical in
 model and capacity, but gmirror(8) does not require that.
 Mirrors created with dissimilar drives will have a capacity
 equal to that of the smallest drive in the mirror. Extra space
 on larger drives will be unused. Drives inserted into the
 mirror later must have at least as much capacity as the smallest
 drive already in the mirror.
Warning:
The mirroring procedures shown here are non-destructive,
	but as with any major disk operation, make a full backup
	first.

Warning:
While dump(8) is used in these procedures
	to copy file systems, it does not work on file systems with
	soft updates journaling. See tunefs(8) for information
	on detecting and disabling soft updates journaling.

18.3.1. Metadata Issues
Many disk systems store metadata at the end of each disk.
	Old metadata should be erased before reusing the disk for a
	mirror. Most problems are caused by two particular types of
	leftover metadata: GPT partition tables and
	old metadata from a previous mirror.
GPT metadata can be erased with
	gpart(8). This example erases both primary and backup
	GPT partition tables from disk
	ada8:
gpart destroy -F ada8
A disk can be removed from an active mirror and the
	metadata erased in one step using gmirror(8). Here, the
	example disk ada8 is removed from the
	active mirror gm4:
gmirror remove gm4 ada8
If the mirror is not running, but old mirror metadata is
	still on the disk, use gmirror clear to
	remove it:
gmirror clear ada8
gmirror(8) stores one block of metadata at the end of
	the disk. Because GPT partition schemes
	also store metadata at the end of the disk, mirroring entire
	GPT disks with gmirror(8) is not
	recommended. MBR partitioning is used here
	because it only stores a partition table at the start of the
	disk and does not conflict with the mirror metadata.
18.3.2. Creating a Mirror with Two New Disks
In this example, FreeBSD has already been installed on a
	single disk, ada0. Two new disks,
	ada1 and ada2, have
	been connected to the system. A new mirror will be created on
	these two disks and used to replace the old single
	disk.
The geom_mirror.ko kernel module must
	either be built into the kernel or loaded at boot- or
	run-time. Manually load the kernel module now:
gmirror load
Create the mirror with the two new drives:
gmirror label -v gm0 /dev/ada1 /dev/ada2
gm0 is a user-chosen device name
	assigned to the new mirror. After the mirror has been
	started, this device name appears in
	/dev/mirror/.
MBR and
	bsdlabel partition tables can now
	be created on the mirror with gpart(8). This example
	uses a traditional file system layout, with partitions for
	/, swap, /var,
	/tmp, and /usr. A
	single / and a swap partition
	will also work.
Partitions on the mirror do not have to be the same size
	as those on the existing disk, but they must be large enough
	to hold all the data already present on
	ada0.
gpart create -s MBR mirror/gm0
gpart add -t freebsd -a 4k mirror/gm0
gpart show mirror/gm0
=> 63 156301423 mirror/gm0 MBR (74G)
 63 63 - free - (31k)
 126 156301299 1 freebsd (74G)
 156301425 61 - free - (30k)
gpart create -s BSD mirror/gm0s1
gpart add -t freebsd-ufs -a 4k -s 2g mirror/gm0s1
gpart add -t freebsd-swap -a 4k -s 4g mirror/gm0s1
gpart add -t freebsd-ufs -a 4k -s 2g mirror/gm0s1
gpart add -t freebsd-ufs -a 4k -s 1g mirror/gm0s1
gpart add -t freebsd-ufs -a 4k mirror/gm0s1
gpart show mirror/gm0s1
=> 0 156301299 mirror/gm0s1 BSD (74G)
 0 2 - free - (1.0k)
 2 4194304 1 freebsd-ufs (2.0G)
 4194306 8388608 2 freebsd-swap (4.0G)
 12582914 4194304 4 freebsd-ufs (2.0G)
 16777218 2097152 5 freebsd-ufs (1.0G)
 18874370 137426928 6 freebsd-ufs (65G)
 156301298 1 - free - (512B)
Make the mirror bootable by installing bootcode in the
	MBR and bsdlabel and setting the active
	slice:
gpart bootcode -b /boot/mbr mirror/gm0
gpart set -a active -i 1 mirror/gm0
gpart bootcode -b /boot/boot mirror/gm0s1
Format the file systems on the new mirror, enabling
	soft-updates.
newfs -U /dev/mirror/gm0s1a
newfs -U /dev/mirror/gm0s1d
newfs -U /dev/mirror/gm0s1e
newfs -U /dev/mirror/gm0s1f
File systems from the original ada0
	disk can now be copied onto the mirror with dump(8) and
	restore(8).
mount /dev/mirror/gm0s1a /mnt
dump -C16 -b64 -0aL -f - / | (cd /mnt && restore -rf -)
mount /dev/mirror/gm0s1d /mnt/var
mount /dev/mirror/gm0s1e /mnt/tmp
mount /dev/mirror/gm0s1f /mnt/usr
dump -C16 -b64 -0aL -f - /var | (cd /mnt/var && restore -rf -)
dump -C16 -b64 -0aL -f - /tmp | (cd /mnt/tmp && restore -rf -)
dump -C16 -b64 -0aL -f - /usr | (cd /mnt/usr && restore -rf -)
Edit /mnt/etc/fstab to point to
	the new mirror file systems:
# Device		Mountpoint	FStype	Options	Dump	Pass#
/dev/mirror/gm0s1a	/		ufs	rw	1	1
/dev/mirror/gm0s1b	none		swap	sw	0	0
/dev/mirror/gm0s1d	/var		ufs	rw	2	2
/dev/mirror/gm0s1e	/tmp		ufs	rw	2	2
/dev/mirror/gm0s1f	/usr		ufs	rw	2	2
If the geom_mirror.ko kernel module
	has not been built into the kernel,
	/mnt/boot/loader.conf is edited to load
	the module at boot:
geom_mirror_load="YES"
Reboot the system to test the new mirror and verify that
	all data has been copied. The BIOS will
	see the mirror as two individual drives rather than a mirror.
	Because the drives are identical, it does not matter which is
	selected to boot.
See Section 18.3.4, “Troubleshooting” if there are
	problems booting. Powering down and disconnecting the
	original ada0 disk will allow it to be
	kept as an offline backup.
In use, the mirror will behave just like the original
	single drive.
18.3.3. Creating a Mirror with an Existing Drive
In this example, FreeBSD has already been installed on a
	single disk, ada0. A new disk,
	ada1, has been connected to the system.
	A one-disk mirror will be created on the new disk, the
	existing system copied onto it, and then the old disk will be
	inserted into the mirror. This slightly complex procedure is
	required because gmirror needs to put a
	512-byte block of metadata at the end of each disk, and the
	existing ada0 has usually had all of its
	space already allocated.
Load the geom_mirror.ko kernel
	module:
gmirror load
Check the media size of the original disk with
	diskinfo:
diskinfo -v ada0 | head -n3
/dev/ada0
	512 # sectorsize
	1000204821504 # mediasize in bytes (931G)
Create a mirror on the new disk. To make certain that the
	mirror capacity is not any larger than the original
	ada0 drive, gnop(8) is used to
	create a fake drive of the exact same size. This drive does
	not store any data, but is used only to limit the size of the
	mirror. When gmirror(8) creates the mirror, it will
	restrict the capacity to the size of
	gzero.nop, even if the new
	ada1 drive has more space. Note that the
	1000204821504 in the second line is
	equal to ada0's media size as shown by
	diskinfo above.
geom zero load
gnop create -s 1000204821504 gzero
gmirror label -v gm0 gzero.nop ada1
gmirror forget gm0
Since gzero.nop does not store any
	data, the mirror does not see it as connected. The mirror is
	told to “forget” unconnected components, removing
	references to gzero.nop. The result is a
	mirror device containing only a single disk,
	ada1.
After creating gm0, view the
	partition table on ada0. This output is
	from a 1 TB drive. If there is some unallocated space at
	the end of the drive, the contents may be copied directly from
	ada0 to the new mirror.
However, if the output shows that all of the space on the
	disk is allocated, as in the following listing, there is no
	space available for the 512-byte mirror metadata at the end of
	the disk.
gpart show ada0
=> 63 1953525105 ada0 MBR (931G)
 63 1953525105 1 freebsd [active] (931G)
In this case, the partition table must be edited to reduce
	the capacity by one sector on mirror/gm0.
	The procedure will be explained later.
In either case, partition tables on the primary disk
	should be first copied using gpart backup
	and gpart restore.
gpart backup ada0 > table.ada0
gpart backup ada0s1 > table.ada0s1
These commands create two files,
	table.ada0 and
	table.ada0s1. This example is from a
	1 TB drive:
cat table.ada0
MBR 4
1 freebsd 63 1953525105 [active]
cat table.ada0s1
BSD 8
1 freebsd-ufs 0 4194304
2 freebsd-swap 4194304 33554432
4 freebsd-ufs 37748736 50331648
5 freebsd-ufs 88080384 41943040
6 freebsd-ufs 130023424 838860800
7 freebsd-ufs 968884224 984640881
If no free space is shown at the end of the disk, the size
	of both the slice and the last partition must be reduced by
	one sector. Edit the two files, reducing the size of both the
	slice and last partition by one. These are the last numbers
	in each listing.
cat table.ada0
MBR 4
1 freebsd 63 1953525104 [active]
cat table.ada0s1
BSD 8
1 freebsd-ufs 0 4194304
2 freebsd-swap 4194304 33554432
4 freebsd-ufs 37748736 50331648
5 freebsd-ufs 88080384 41943040
6 freebsd-ufs 130023424 838860800
7 freebsd-ufs 968884224 984640880
If at least one sector was unallocated at the end of the
	disk, these two files can be used without modification.
Now restore the partition table into
	mirror/gm0:
gpart restore mirror/gm0 < table.ada0
gpart restore mirror/gm0s1 < table.ada0s1
Check the partition table with
	gpart show. This example has
	gm0s1a for /,
	gm0s1d for /var,
	gm0s1e for /usr,
	gm0s1f for /data1,
	and gm0s1g for
	/data2.
gpart show mirror/gm0
=> 63 1953525104 mirror/gm0 MBR (931G)
 63 1953525042 1 freebsd [active] (931G)
 1953525105 62 - free - (31k)

gpart show mirror/gm0s1
=> 0 1953525042 mirror/gm0s1 BSD (931G)
 0 2097152 1 freebsd-ufs (1.0G)
 2097152 16777216 2 freebsd-swap (8.0G)
 18874368 41943040 4 freebsd-ufs (20G)
 60817408 20971520 5 freebsd-ufs (10G)
 81788928 629145600 6 freebsd-ufs (300G)
 710934528 1242590514 7 freebsd-ufs (592G)
 1953525042 63 - free - (31k)
Both the slice and the last partition must have at least
	one free block at the end of the disk.
Create file systems on these new partitions. The number
	of partitions will vary to match the original disk,
	ada0.
newfs -U /dev/mirror/gm0s1a
newfs -U /dev/mirror/gm0s1d
newfs -U /dev/mirror/gm0s1e
newfs -U /dev/mirror/gm0s1f
newfs -U /dev/mirror/gm0s1g
Make the mirror bootable by installing bootcode in the
	MBR and bsdlabel and setting the active
	slice:
gpart bootcode -b /boot/mbr mirror/gm0
gpart set -a active -i 1 mirror/gm0
gpart bootcode -b /boot/boot mirror/gm0s1
Adjust /etc/fstab to use the new
	partitions on the mirror. Back up this file first by copying
	it to /etc/fstab.orig.
cp /etc/fstab /etc/fstab.orig
Edit /etc/fstab, replacing
	/dev/ada0 with
	mirror/gm0.
# Device		Mountpoint	FStype	Options	Dump	Pass#
/dev/mirror/gm0s1a	/		ufs	rw	1	1
/dev/mirror/gm0s1b	none		swap	sw	0	0
/dev/mirror/gm0s1d	/var		ufs	rw	2	2
/dev/mirror/gm0s1e	/usr		ufs	rw	2	2
/dev/mirror/gm0s1f	/data1		ufs	rw	2	2
/dev/mirror/gm0s1g	/data2		ufs	rw	2	2
If the geom_mirror.ko kernel module
	has not been built into the kernel, edit
	/boot/loader.conf to load it at
	boot:
geom_mirror_load="YES"
File systems from the original disk can now be copied onto
	the mirror with dump(8) and restore(8). Each file
	system dumped with dump -L will create a
	snapshot first, which can take some time.
mount /dev/mirror/gm0s1a /mnt
dump -C16 -b64 -0aL -f - / | (cd /mnt && restore -rf -)
mount /dev/mirror/gm0s1d /mnt/var
mount /dev/mirror/gm0s1e /mnt/usr
mount /dev/mirror/gm0s1f /mnt/data1
mount /dev/mirror/gm0s1g /mnt/data2
dump -C16 -b64 -0aL -f - /usr | (cd /mnt/usr && restore -rf -)
dump -C16 -b64 -0aL -f - /var | (cd /mnt/var && restore -rf -)
dump -C16 -b64 -0aL -f - /data1 | (cd /mnt/data1 && restore -rf -)
dump -C16 -b64 -0aL -f - /data2 | (cd /mnt/data2 && restore -rf -)
Restart the system, booting from
	ada1. If everything is working, the
	system will boot from mirror/gm0, which
	now contains the same data as ada0 had
	previously. See Section 18.3.4, “Troubleshooting” if
	there are problems booting.
At this point, the mirror still consists of only the
	single ada1 disk.
After booting from mirror/gm0
	successfully, the final step is inserting
	ada0 into the mirror.
Important:
When ada0 is inserted into the
	 mirror, its former contents will be overwritten by data from
	 the mirror. Make certain that
	 mirror/gm0 has the same contents as
	 ada0 before adding
	 ada0 to the mirror. If the contents
	 previously copied by dump(8) and restore(8) are
	 not identical to what was on ada0,
	 revert /etc/fstab to mount the file
	 systems on ada0, reboot, and start the
	 whole procedure again.

gmirror insert gm0 ada0
GEOM_MIRROR: Device gm0: rebuilding provider ada0
Synchronization between the two disks will start
	immediately. Use gmirror status to view
	the progress.
gmirror status
 Name Status Components
mirror/gm0 DEGRADED ada1 (ACTIVE)
 ada0 (SYNCHRONIZING, 64%)
After a while, synchronization will finish.
GEOM_MIRROR: Device gm0: rebuilding provider ada0 finished.
gmirror status
 Name Status Components
mirror/gm0 COMPLETE ada1 (ACTIVE)
 ada0 (ACTIVE)
mirror/gm0 now consists
	of the two disks ada0 and
	ada1, and the contents are automatically
	synchronized with each other. In use,
	mirror/gm0 will behave just like the
	original single drive.
18.3.4. Troubleshooting
If the system no longer boots, BIOS
	settings may have to be changed to boot from one of the new
	mirrored drives. Either mirror drive can be used for booting,
	as they contain identical data.
If the boot stops with this message, something is wrong
	with the mirror device:
Mounting from ufs:/dev/mirror/gm0s1a failed with error 19.

Loader variables:
 vfs.root.mountfrom=ufs:/dev/mirror/gm0s1a
 vfs.root.mountfrom.options=rw

Manual root filesystem specification:
 <fstype>:<device> [options]
 Mount <device> using filesystem <fstype>
 and with the specified (optional) option list.

 eg. ufs:/dev/da0s1a
 zfs:tank
 cd9660:/dev/acd0 ro
 (which is equivalent to: mount -t cd9660 -o ro /dev/acd0 /)

 ? List valid disk boot devices
 . Yield 1 second (for background tasks)
 <empty line> Abort manual input

mountroot>
Forgetting to load the geom_mirror.ko
	module in /boot/loader.conf can cause
	this problem. To fix it, boot from a FreeBSD
	installation media and choose Shell at the
	first prompt. Then load the mirror module and mount the
	mirror device:
gmirror load
mount /dev/mirror/gm0s1a /mnt
Edit /mnt/boot/loader.conf, adding a
	line to load the mirror module:
geom_mirror_load="YES"
Save the file and reboot.
Other problems that cause error 19
	require more effort to fix. Although the system should boot
	from ada0, another prompt to select a
	shell will appear if /etc/fstab is
	incorrect. Enter ufs:/dev/ada0s1a at the
	boot loader prompt and press Enter. Undo the
	edits in /etc/fstab then mount the file
	systems from the original disk (ada0)
	instead of the mirror. Reboot the system and try the
	procedure again.
Enter full pathname of shell or RETURN for /bin/sh:
cp /etc/fstab.orig /etc/fstab
reboot
18.3.5. Recovering from Disk Failure
The benefit of disk mirroring is that an individual disk
	can fail without causing the mirror to lose any data. In the
	above example, if ada0 fails, the mirror
	will continue to work, providing data from the remaining
	working drive, ada1.
To replace the failed drive, shut down the system and
	physically replace the failed drive with a new drive of equal
	or greater capacity. Manufacturers use somewhat arbitrary
	values when rating drives in gigabytes, and the only way to
	really be sure is to compare the total count of sectors shown
	by diskinfo -v. A drive with larger
	capacity than the mirror will work, although the extra space
	on the new drive will not be used.
After the computer is powered back up, the mirror will be
	running in a “degraded” mode with only one drive.
	The mirror is told to forget drives that are not currently
	connected:
gmirror forget gm0
Any old metadata should be cleared from the replacement
	disk using the instructions in
	Section 18.3.1, “Metadata Issues”. Then the replacement
	disk, ada4 for this example, is inserted
	into the mirror:
gmirror insert gm0 /dev/ada4
Resynchronization begins when the new drive is inserted
	into the mirror. This process of copying mirror data to a new
	drive can take a while. Performance of the mirror will be
	greatly reduced during the copy, so inserting new drives is
	best done when there is low demand on the computer.
Progress can be monitored with gmirror
	 status, which shows drives that are being
	synchronized and the percentage of completion. During
	resynchronization, the status will be
	DEGRADED, changing to
	COMPLETE when the process is
	finished.
18.4. RAID3 - Byte-level Striping with
	Dedicated Parity
Written by Mark Gladman and Daniel Gerzo. Based on documentation by Tom Rhodes and Murray Stokely. RAID3 is a method used to combine several
 disk drives into a single volume with a dedicated parity disk.
 In a RAID3 system, data is split up into a
 number of bytes that are written across all the drives in the
 array except for one disk which acts as a dedicated parity disk.
 This means that disk reads from a RAID3
 implementation access all disks in the array. Performance can
 be enhanced by using multiple disk controllers. The
 RAID3 array provides a fault tolerance of 1
 drive, while providing a capacity of 1 - 1/n times the total
 capacity of all drives in the array, where n is the number of
 hard drives in the array. Such a configuration is mostly
 suitable for storing data of larger sizes such as multimedia
 files.
At least 3 physical hard drives are required to build a
 RAID3 array. Each disk must be of the same
 size, since I/O requests are interleaved to
 read or write to multiple disks in parallel. Also, due to the
 nature of RAID3, the number of drives must be
 equal to 3, 5, 9, 17, and so on, or 2^n + 1.
This section demonstrates how to create a software
 RAID3 on a FreeBSD system.
Note:
While it is theoretically possible to boot from a
	RAID3 array on FreeBSD, that configuration is
	uncommon and is not advised.

18.4.1. Creating a Dedicated RAID3
	Array
In FreeBSD, support for RAID3 is
	implemented by the graid3(8) GEOM
	class. Creating a dedicated RAID3 array on
	FreeBSD requires the following steps.
	First, load the geom_raid3.ko
	 kernel module by issuing one of the following
	 commands:
graid3 load
or:
kldload geom_raid3

	Ensure that a suitable mount point exists. This
	 command creates a new directory to use as the mount
	 point:
mkdir /multimedia

	Determine the device names for the disks which will be
	 added to the array, and create the new
	 RAID3 device. The final device listed
	 will act as the dedicated parity disk. This example uses
	 three unpartitioned ATA drives:
	 ada1 and
	 ada2 for
	 data, and
	 ada3 for
	 parity.
graid3 label -v gr0 /dev/ada1 /dev/ada2 /dev/ada3
Metadata value stored on /dev/ada1.
Metadata value stored on /dev/ada2.
Metadata value stored on /dev/ada3.
Done.

	Partition the newly created gr0
	 device and put a UFS file system on
	 it:
gpart create -s GPT /dev/raid3/gr0
gpart add -t freebsd-ufs /dev/raid3/gr0
newfs -j /dev/raid3/gr0p1
Many numbers will glide across the screen, and after a
	 bit of time, the process will be complete. The volume has
	 been created and is ready to be mounted:
mount /dev/raid3/gr0p1 /multimedia/
The RAID3 array is now ready to
	 use.

Additional configuration is needed to retain this setup
	across system reboots.
	The geom_raid3.ko module must be
	 loaded before the array can be mounted. To automatically
	 load the kernel module during system initialization, add
	 the following line to
	 /boot/loader.conf:
geom_raid3_load="YES"

	The following volume information must be added to
	 /etc/fstab in order to
	 automatically mount the array's file system during the
	 system boot process:
/dev/raid3/gr0p1	/multimedia	ufs	rw	2	2

18.7. Labeling Disk Devices
During system initialization, the FreeBSD kernel creates
 device nodes as devices are found. This method of probing for
 devices raises some issues. For instance, what if a new disk
 device is added via USB? It is likely that
 a flash device may be handed the device name of
 da0 and the original
 da0 shifted to
 da1. This will cause issues mounting
 file systems if they are listed in
 /etc/fstab which may also prevent the
 system from booting.
One solution is to chain SCSI devices
 in order so a new device added to the SCSI
 card will be issued unused device numbers. But what about
 USB devices which may replace the primary
 SCSI disk? This happens because
 USB devices are usually probed before the
 SCSI card. One solution is to only insert
 these devices after the system has been booted. Another method
 is to use only a single ATA drive and never
 list the SCSI devices in
 /etc/fstab.
A better solution is to use glabel to
 label the disk devices and use the labels in
 /etc/fstab. Because
 glabel stores the label in the last sector of
 a given provider, the label will remain persistent across
 reboots. By using this label as a device, the file system may
 always be mounted regardless of what device node it is accessed
 through.
Note:
glabel can create both transient and
	permanent labels. Only permanent labels are consistent across
	reboots. Refer to glabel(8) for more information on the
	differences between labels.

18.7.1. Label Types and Examples
Permanent labels can be a generic or a file system label.
	Permanent file system labels can be created with
	tunefs(8) or newfs(8). These types of labels are
	created in a sub-directory of /dev, and
	will be named according to the file system type. For example,
	UFS2 file system labels will be created in
	/dev/ufs. Generic permanent labels can
	be created with glabel label. These are
	not file system specific and will be created in
	/dev/label.
Temporary labels are destroyed at the next reboot. These
	labels are created in /dev/label and are
	suited to experimentation. A temporary label can be created
	using glabel create.
To create a permanent label for a
	UFS2 file system without destroying any
	data, issue the following command:
tunefs -L home /dev/da3
A label should now exist in /dev/ufs
	which may be added to /etc/fstab:
/dev/ufs/home		/home ufs rw 2 2
Note:
The file system must not be mounted while attempting
	 to run tunefs.

Now the file system may be mounted:
mount /home
From this point on, so long as the
	geom_label.ko kernel module is loaded at
	boot with /boot/loader.conf or the
	GEOM_LABEL kernel option is present,
	the device node may change without any ill effect on the
	system.
File systems may also be created with a default label
	by using the -L flag with
	newfs. Refer to newfs(8) for
	more information.
The following command can be used to destroy the
	label:
glabel destroy home
The following example shows how to label the partitions of
	a boot disk.
Example 18.1. Labeling Partitions on the Boot Disk
By permanently labeling the partitions on the boot disk,
	 the system should be able to continue to boot normally, even
	 if the disk is moved to another controller or transferred to
	 a different system. For this example, it is assumed that a
	 single ATA disk is used, which is
	 currently recognized by the system as
	 ad0. It is also assumed that the
	 standard FreeBSD partition scheme is used, with
	 /,
	 /var,
	 /usr and
	 /tmp, as
	 well as a swap partition.
Reboot the system, and at the loader(8) prompt,
	 press 4 to boot into single user mode.
	 Then enter the following commands:
glabel label rootfs /dev/ad0s1a
GEOM_LABEL: Label for provider /dev/ad0s1a is label/rootfs
glabel label var /dev/ad0s1d
GEOM_LABEL: Label for provider /dev/ad0s1d is label/var
glabel label usr /dev/ad0s1f
GEOM_LABEL: Label for provider /dev/ad0s1f is label/usr
glabel label tmp /dev/ad0s1e
GEOM_LABEL: Label for provider /dev/ad0s1e is label/tmp
glabel label swap /dev/ad0s1b
GEOM_LABEL: Label for provider /dev/ad0s1b is label/swap
exit
The system will continue with multi-user boot. After
	 the boot completes, edit /etc/fstab and
	 replace the conventional device names, with their respective
	 labels. The final /etc/fstab will
	 look like this:
Device Mountpoint FStype Options Dump Pass#
/dev/label/swap none swap sw 0 0
/dev/label/rootfs / ufs rw 1 1
/dev/label/tmp /tmp ufs rw 2 2
/dev/label/usr /usr ufs rw 2 2
/dev/label/var /var ufs rw 2 2
The system can now be rebooted. If everything went
	 well, it will come up normally and mount
	 will show:
mount
/dev/label/rootfs on / (ufs, local)
devfs on /dev (devfs, local)
/dev/label/tmp on /tmp (ufs, local, soft-updates)
/dev/label/usr on /usr (ufs, local, soft-updates)
/dev/label/var on /var (ufs, local, soft-updates)

The glabel(8) class
	supports a label type for UFS file
	systems, based on the unique file system id,
	ufsid. These labels may be found in
	/dev/ufsid and are
	created automatically during system startup. It is possible
	to use ufsid labels to mount partitions
	using /etc/fstab. Use glabel
	 status to receive a list of file systems and their
	corresponding ufsid labels:
% glabel status
 Name Status Components
ufsid/486b6fc38d330916 N/A ad4s1d
ufsid/486b6fc16926168e N/A ad4s1f
In the above example, ad4s1d
	represents /var,
	while ad4s1f represents
	/usr.
	Using the ufsid values shown, these
	partitions may now be mounted with the following entries in
	/etc/fstab:
/dev/ufsid/486b6fc38d330916 /var ufs rw 2 2
/dev/ufsid/486b6fc16926168e /usr ufs rw 2 2
Any partitions with ufsid labels can be
	mounted in this way, eliminating the need to manually create
	permanent labels, while still enjoying the benefits of device
	name independent mounting.
18.8. UFS Journaling Through GEOM
Support for journals on
 UFS file systems is available on FreeBSD. The
 implementation is provided through the GEOM
 subsystem and is configured using gjournal.
 Unlike other file system journaling implementations, the
 gjournal method is block based and not
 implemented as part of the file system. It is a
 GEOM extension.
Journaling stores a log of file system transactions, such as
 changes that make up a complete disk write operation, before
 meta-data and file writes are committed to the disk. This
 transaction log can later be replayed to redo file system
 transactions, preventing file system inconsistencies.
This method provides another mechanism to protect against
 data loss and inconsistencies of the file system. Unlike Soft
 Updates, which tracks and enforces meta-data updates, and
 snapshots, which create an image of the file system, a log is
 stored in disk space specifically for this task. For better
 performance, the journal may be stored on another disk. In this
 configuration, the journal provider or storage device should be
 listed after the device to enable journaling on.
The GENERIC kernel provides support for
 gjournal. To automatically load the
 geom_journal.ko kernel module at boot time,
 add the following line to
 /boot/loader.conf:
geom_journal_load="YES"
If a custom kernel is used, ensure the following line is in
 the kernel configuration file:
options	GEOM_JOURNAL
Once the module is loaded, a journal can be created on a new
 file system using the following steps. In this example,
 da4 is a new SCSI
 disk:
gjournal load
gjournal label /dev/da4
This will load the module and create a
 /dev/da4.journal device node on
 /dev/da4.
A UFS file system may now be created on
 the journaled device, then mounted on an existing mount
 point:
newfs -O 2 -J /dev/da4.journal
mount /dev/da4.journal /mnt
Note:
In the case of several slices, a journal will be created
	for each individual slice. For instance, if
	ad4s1 and ad4s2 are
	both slices, then gjournal will create
	ad4s1.journal and
	ad4s2.journal.

Journaling may also be enabled on current file systems by
 using tunefs. However,
 always make a backup before attempting to
 alter an existing file system. In most cases,
 gjournal will fail if it is unable to create
 the journal, but this does not protect against data loss
 incurred as a result of misusing tunefs.
 Refer to gjournal(8) and tunefs(8) for more
 information about these commands.
It is possible to journal the boot disk of a FreeBSD system.
 Refer to the article Implementing UFS
	Journaling on a Desktop PC for detailed
 instructions.
Chapter 19. The Z File System (ZFS)
Written by Tom Rhodes, Allan Jude, Benedict Reuschling and Warren Block. The Z File System, or
 ZFS, is an advanced file system designed to
 overcome many of the major problems found in previous
 designs.
Originally developed at Sun™, ongoing open source
 ZFS development has moved to the OpenZFS Project.
ZFS has three major design goals:
	Data integrity: All data includes a
	checksum of the data.
	When data is written, the checksum is calculated and written
	along with it. When that data is later read back, the
	checksum is calculated again. If the checksums do not match,
	a data error has been detected. ZFS will
	attempt to automatically correct errors when data redundancy
	is available.

	Pooled storage: physical storage devices are added to a
	pool, and storage space is allocated from that shared pool.
	Space is available to all file systems, and can be increased
	by adding new storage devices to the pool.

	Performance: multiple caching mechanisms provide increased
	performance. ARC is an
	advanced memory-based read cache. A second level of
	disk-based read cache can be added with
	L2ARC, and disk-based
	synchronous write cache is available with
	ZIL.

A complete list of features and terminology is shown in
 Section 19.8, “ZFS Features and Terminology”.
19.1. What Makes ZFS Different
ZFS is significantly different from any
 previous file system because it is more than just a file system.
 Combining the traditionally separate roles of volume manager and
 file system provides ZFS with unique
 advantages. The file system is now aware of the underlying
 structure of the disks. Traditional file systems could only be
 created on a single disk at a time. If there were two disks
 then two separate file systems would have to be created. In a
 traditional hardware RAID configuration, this
 problem was avoided by presenting the operating system with a
 single logical disk made up of the space provided by a number of
 physical disks, on top of which the operating system placed a
 file system. Even in the case of software
 RAID solutions like those provided by
 GEOM, the UFS file system
 living on top of the RAID transform believed
 that it was dealing with a single device.
 ZFS's combination of the volume manager and
 the file system solves this and allows the creation of many file
 systems all sharing a pool of available storage. One of the
 biggest advantages to ZFS's awareness of the
 physical layout of the disks is that existing file systems can
 be grown automatically when additional disks are added to the
 pool. This new space is then made available to all of the file
 systems. ZFS also has a number of different
 properties that can be applied to each file system, giving many
 advantages to creating a number of different file systems and
 datasets rather than a single monolithic file system.
19.2. Quick Start Guide
There is a startup mechanism that allows FreeBSD to mount
 ZFS pools during system initialization. To
 enable it, add this line to
 /etc/rc.conf:
zfs_enable="YES"
Then start the service:
service zfs start
The examples in this section assume three
 SCSI disks with the device names
 da0,
 da1, and
 da2. Users
 of SATA hardware should instead use
 ada device
 names.
19.2.1. Single Disk Pool
To create a simple, non-redundant pool using a single
	disk device:
zpool create example /dev/da0
To view the new pool, review the output of
	df:
df
Filesystem 1K-blocks Used Avail Capacity Mounted on
/dev/ad0s1a 2026030 235230 1628718 13% /
devfs 1 1 0 100% /dev
/dev/ad0s1d 54098308 1032846 48737598 2% /usr
example 17547136 0 17547136 0% /example
This output shows that the example pool
	has been created and mounted. It is now accessible as a file
	system. Files can be created on it and users can browse
	it:
cd /example
ls
touch testfile
ls -al
total 4
drwxr-xr-x 2 root wheel 3 Aug 29 23:15 .
drwxr-xr-x 21 root wheel 512 Aug 29 23:12 ..
-rw-r--r-- 1 root wheel 0 Aug 29 23:15 testfile
However, this pool is not taking advantage of any
	ZFS features. To create a dataset on this
	pool with compression enabled:
zfs create example/compressed
zfs set compression=gzip example/compressed
The example/compressed dataset is now a
	ZFS compressed file system. Try copying
	some large files to
	/example/compressed.
Compression can be disabled with:
zfs set compression=off example/compressed
To unmount a file system, use
	zfs umount and then verify with
	df:
zfs umount example/compressed
df
Filesystem 1K-blocks Used Avail Capacity Mounted on
/dev/ad0s1a 2026030 235232 1628716 13% /
devfs 1 1 0 100% /dev
/dev/ad0s1d 54098308 1032864 48737580 2% /usr
example 17547008 0 17547008 0% /example
To re-mount the file system to make it accessible again,
	use zfs mount and verify with
	df:
zfs mount example/compressed
df
Filesystem 1K-blocks Used Avail Capacity Mounted on
/dev/ad0s1a 2026030 235234 1628714 13% /
devfs 1 1 0 100% /dev
/dev/ad0s1d 54098308 1032864 48737580 2% /usr
example 17547008 0 17547008 0% /example
example/compressed 17547008 0 17547008 0% /example/compressed
The pool and file system may also be observed by viewing
	the output from mount:
mount
/dev/ad0s1a on / (ufs, local)
devfs on /dev (devfs, local)
/dev/ad0s1d on /usr (ufs, local, soft-updates)
example on /example (zfs, local)
example/compressed on /example/compressed (zfs, local)
After creation, ZFS datasets can be
	used like any file systems. However, many other features are
	available which can be set on a per-dataset basis. In the
	example below, a new file system called
	data is created. Important files will be
	stored here, so it is configured to keep two copies of each
	data block:
zfs create example/data
zfs set copies=2 example/data
It is now possible to see the data and space utilization
	by issuing df:
df
Filesystem 1K-blocks Used Avail Capacity Mounted on
/dev/ad0s1a 2026030 235234 1628714 13% /
devfs 1 1 0 100% /dev
/dev/ad0s1d 54098308 1032864 48737580 2% /usr
example 17547008 0 17547008 0% /example
example/compressed 17547008 0 17547008 0% /example/compressed
example/data 17547008 0 17547008 0% /example/data
Notice that each file system on the pool has the same
	amount of available space. This is the reason for using
	df in these examples, to show that the file
	systems use only the amount of space they need and all draw
	from the same pool. ZFS eliminates
	concepts such as volumes and partitions, and allows multiple
	file systems to occupy the same pool.
To destroy the file systems and then destroy the pool as
	it is no longer needed:
zfs destroy example/compressed
zfs destroy example/data
zpool destroy example
19.2.2. RAID-Z
Disks fail. One method of avoiding data loss from disk
	failure is to implement RAID.
	ZFS supports this feature in its pool
	design. RAID-Z pools require three or more
	disks but provide more usable space than mirrored
	pools.
This example creates a RAID-Z pool,
	specifying the disks to add to the pool:
zpool create storage raidz da0 da1 da2
Note:
Sun™ recommends that the number of devices used in a
	 RAID-Z configuration be between three and
	 nine. For environments requiring a single pool consisting
	 of 10 disks or more, consider breaking it up into smaller
	 RAID-Z groups. If only two disks are
	 available and redundancy is a requirement, consider using a
	 ZFS mirror. Refer to zpool(8) for
	 more details.

The previous example created the
	storage zpool. This example makes a new
	file system called home in that
	pool:
zfs create storage/home
Compression and keeping extra copies of directories
	and files can be enabled:
zfs set copies=2 storage/home
zfs set compression=gzip storage/home
To make this the new home directory for users, copy the
	user data to this directory and create the appropriate
	symbolic links:
cp -rp /home/* /storage/home
rm -rf /home /usr/home
ln -s /storage/home /home
ln -s /storage/home /usr/home
Users data is now stored on the freshly-created
	/storage/home. Test by adding a new user
	and logging in as that user.
Try creating a file system snapshot which can be rolled
	back later:
zfs snapshot storage/home@08-30-08
Snapshots can only be made of a full file system, not a
	single directory or file.
The @ character is a delimiter between
	the file system name or the volume name. If an important
	directory has been accidentally deleted, the file system can
	be backed up, then rolled back to an earlier snapshot when the
	directory still existed:
zfs rollback storage/home@08-30-08
To list all available snapshots, run
	ls in the file system's
	.zfs/snapshot directory. For example, to
	see the previously taken snapshot:
ls /storage/home/.zfs/snapshot
It is possible to write a script to perform regular
	snapshots on user data. However, over time, snapshots can
	consume a great deal of disk space. The previous snapshot can
	be removed using the command:
zfs destroy storage/home@08-30-08
After testing, /storage/home can be
	made the real /home using this
	command:
zfs set mountpoint=/home storage/home
Run df and mount to
	confirm that the system now treats the file system as the real
	/home:
mount
/dev/ad0s1a on / (ufs, local)
devfs on /dev (devfs, local)
/dev/ad0s1d on /usr (ufs, local, soft-updates)
storage on /storage (zfs, local)
storage/home on /home (zfs, local)
df
Filesystem 1K-blocks Used Avail Capacity Mounted on
/dev/ad0s1a 2026030 235240 1628708 13% /
devfs 1 1 0 100% /dev
/dev/ad0s1d 54098308 1032826 48737618 2% /usr
storage 26320512 0 26320512 0% /storage
storage/home 26320512 0 26320512 0% /home
This completes the RAID-Z
	configuration. Daily status updates about the file systems
	created can be generated as part of the nightly
	periodic(8) runs. Add this line to
	/etc/periodic.conf:
daily_status_zfs_enable="YES"
19.2.3. Recovering RAID-Z
Every software RAID has a method of
	monitoring its state. The status of
	RAID-Z devices may be viewed with this
	command:
zpool status -x
If all pools are
	Online and everything
	is normal, the message shows:
all pools are healthy
If there is an issue, perhaps a disk is in the
	Offline state, the
	pool state will look similar to:
 pool: storage
 state: DEGRADED
status: One or more devices has been taken offline by the administrator.
	Sufficient replicas exist for the pool to continue functioning in a
	degraded state.
action: Online the device using 'zpool online' or replace the device with
	'zpool replace'.
 scrub: none requested
config:

	NAME STATE READ WRITE CKSUM
	storage DEGRADED 0 0 0
	 raidz1 DEGRADED 0 0 0
	 da0 ONLINE 0 0 0
	 da1 OFFLINE 0 0 0
	 da2 ONLINE 0 0 0

errors: No known data errors
This indicates that the device was previously taken
	offline by the administrator with this command:
zpool offline storage da1
Now the system can be powered down to replace
	da1. When the system is back online,
	the failed disk can replaced in the pool:
zpool replace storage da1
From here, the status may be checked again, this time
	without -x so that all pools are
	shown:
zpool status storage
 pool: storage
 state: ONLINE
 scrub: resilver completed with 0 errors on Sat Aug 30 19:44:11 2008
config:

	NAME STATE READ WRITE CKSUM
	storage ONLINE 0 0 0
	 raidz1 ONLINE 0 0 0
	 da0 ONLINE 0 0 0
	 da1 ONLINE 0 0 0
	 da2 ONLINE 0 0 0

errors: No known data errors
In this example, everything is normal.
19.2.4. Data Verification
ZFS uses checksums to verify the
	integrity of stored data. These are enabled automatically
	upon creation of file systems.
Warning:
Checksums can be disabled, but it is
	 not recommended! Checksums take very
	 little storage space and provide data integrity. Many
	 ZFS features will not work properly with
	 checksums disabled. There is no noticeable performance gain
	 from disabling these checksums.

Checksum verification is known as
	scrubbing. Verify the data integrity of
	the storage pool with this command:
zpool scrub storage
The duration of a scrub depends on the amount of data
	stored. Larger amounts of data will take proportionally
	longer to verify. Scrubs are very I/O
	intensive, and only one scrub is allowed to run at a time.
	After the scrub completes, the status can be viewed with
	status:
zpool status storage
 pool: storage
 state: ONLINE
 scrub: scrub completed with 0 errors on Sat Jan 26 19:57:37 2013
config:

	NAME STATE READ WRITE CKSUM
	storage ONLINE 0 0 0
	 raidz1 ONLINE 0 0 0
	 da0 ONLINE 0 0 0
	 da1 ONLINE 0 0 0
	 da2 ONLINE 0 0 0

errors: No known data errors
The completion date of the last scrub operation is
	displayed to help track when another scrub is required.
	Routine scrubs help protect data from silent corruption and
	ensure the integrity of the pool.
Refer to zfs(8) and zpool(8) for other
	ZFS options.
19.3. zpool Administration
ZFS administration is divided between two
 main utilities. The zpool utility controls
 the operation of the pool and deals with adding, removing,
 replacing, and managing disks. The
 zfs utility
 deals with creating, destroying, and managing datasets,
 both file systems and
 volumes.
19.3.1. Creating and Destroying Storage Pools
Creating a ZFS storage pool
	(zpool) involves making a number of
	decisions that are relatively permanent because the structure
	of the pool cannot be changed after the pool has been created.
	The most important decision is what types of vdevs into which
	to group the physical disks. See the list of
	vdev types for details
	about the possible options. After the pool has been created,
	most vdev types do not allow additional disks to be added to
	the vdev. The exceptions are mirrors, which allow additional
	disks to be added to the vdev, and stripes, which can be
	upgraded to mirrors by attaching an additional disk to the
	vdev. Although additional vdevs can be added to expand a
	pool, the layout of the pool cannot be changed after pool
	creation. Instead, the data must be backed up and the
	pool destroyed and recreated.
Create a simple mirror pool:
zpool create mypool mirror /dev/ada1 /dev/ada2
zpool status
 pool: mypool
 state: ONLINE
 scan: none requested
config:

 NAME STATE READ WRITE CKSUM
 mypool ONLINE 0 0 0
 mirror-0 ONLINE 0 0 0
 ada1 ONLINE 0 0 0
 ada2 ONLINE 0 0 0

errors: No known data errors
Multiple vdevs can be created at once. Specify multiple
	groups of disks separated by the vdev type keyword,
	mirror in this example:
zpool create mypool mirror /dev/ada1 /dev/ada2 mirror /dev/ada3 /dev/ada4
 pool: mypool
 state: ONLINE
 scan: none requested
config:

 NAME STATE READ WRITE CKSUM
 mypool ONLINE 0 0 0
 mirror-0 ONLINE 0 0 0
 ada1 ONLINE 0 0 0
 ada2 ONLINE 0 0 0
 mirror-1 ONLINE 0 0 0
 ada3 ONLINE 0 0 0
 ada4 ONLINE 0 0 0

errors: No known data errors
Pools can also be constructed using partitions rather than
	whole disks. Putting ZFS in a separate
	partition allows the same disk to have other partitions for
	other purposes. In particular, partitions with bootcode and
	file systems needed for booting can be added. This allows
	booting from disks that are also members of a pool. There is
	no performance penalty on FreeBSD when using a partition rather
	than a whole disk. Using partitions also allows the
	administrator to under-provision the
	disks, using less than the full capacity. If a future
	replacement disk of the same nominal size as the original
	actually has a slightly smaller capacity, the smaller
	partition will still fit, and the replacement disk can still
	be used.
Create a
	RAID-Z2 pool using
	partitions:
zpool create mypool raidz2 /dev/ada0p3 /dev/ada1p3 /dev/ada2p3 /dev/ada3p3 /dev/ada4p3 /dev/ada5p3
zpool status
 pool: mypool
 state: ONLINE
 scan: none requested
config:

 NAME STATE READ WRITE CKSUM
 mypool ONLINE 0 0 0
 raidz2-0 ONLINE 0 0 0
 ada0p3 ONLINE 0 0 0
 ada1p3 ONLINE 0 0 0
 ada2p3 ONLINE 0 0 0
 ada3p3 ONLINE 0 0 0
 ada4p3 ONLINE 0 0 0
 ada5p3 ONLINE 0 0 0

errors: No known data errors
A pool that is no longer needed can be destroyed so that
	the disks can be reused. Destroying a pool involves first
	unmounting all of the datasets in that pool. If the datasets
	are in use, the unmount operation will fail and the pool will
	not be destroyed. The destruction of the pool can be forced
	with -f, but this can cause undefined
	behavior in applications which had open files on those
	datasets.
19.3.2. Adding and Removing Devices
There are two cases for adding disks to a zpool: attaching
	a disk to an existing vdev with
	zpool attach, or adding vdevs to the pool
	with zpool add. Only some
	vdev types allow disks to
	be added to the vdev after creation.
A pool created with a single disk lacks redundancy.
	Corruption can be detected but
	not repaired, because there is no other copy of the data.

	The copies property may
	be able to recover from a small failure such as a bad sector,
	but does not provide the same level of protection as mirroring
	or RAID-Z. Starting with a pool consisting
	of a single disk vdev, zpool attach can be
	used to add an additional disk to the vdev, creating a mirror.
	zpool attach can also be used to add
	additional disks to a mirror group, increasing redundancy and
	read performance. If the disks being used for the pool are
	partitioned, replicate the layout of the first disk on to the
	second, gpart backup and
	gpart restore can be used to make this
	process easier.
Upgrade the single disk (stripe) vdev
	ada0p3 to a mirror by attaching
	ada1p3:
zpool status
 pool: mypool
 state: ONLINE
 scan: none requested
config:

 NAME STATE READ WRITE CKSUM
 mypool ONLINE 0 0 0
 ada0p3 ONLINE 0 0 0

errors: No known data errors
zpool attach mypool ada0p3 ada1p3
Make sure to wait until resilver is done before rebooting.

If you boot from pool 'mypool', you may need to update
boot code on newly attached disk 'ada1p3'.

Assuming you use GPT partitioning and 'da0' is your new boot disk
you may use the following command:

 gpart bootcode -b /boot/pmbr -p /boot/gptzfsboot -i 1 da0
gpart bootcode -b /boot/pmbr -p /boot/gptzfsboot -i 1 ada1
bootcode written to ada1
zpool status
 pool: mypool
 state: ONLINE
status: One or more devices is currently being resilvered. The pool will
 continue to function, possibly in a degraded state.
action: Wait for the resilver to complete.
 scan: resilver in progress since Fri May 30 08:19:19 2014
 527M scanned out of 781M at 47.9M/s, 0h0m to go
 527M resilvered, 67.53% done
config:

 NAME STATE READ WRITE CKSUM
 mypool ONLINE 0 0 0
 mirror-0 ONLINE 0 0 0
 ada0p3 ONLINE 0 0 0
 ada1p3 ONLINE 0 0 0 (resilvering)

errors: No known data errors
zpool status
 pool: mypool
 state: ONLINE
 scan: resilvered 781M in 0h0m with 0 errors on Fri May 30 08:15:58 2014
config:

 NAME STATE READ WRITE CKSUM
 mypool ONLINE 0 0 0
 mirror-0 ONLINE 0 0 0
 ada0p3 ONLINE 0 0 0
 ada1p3 ONLINE 0 0 0

errors: No known data errors
When adding disks to the existing vdev is not an option,
	as for RAID-Z, an alternative method is to
	add another vdev to the pool. Additional vdevs provide higher
	performance, distributing writes across the vdevs. Each vdev
	is responsible for providing its own redundancy. It is
	possible, but discouraged, to mix vdev types, like
	mirror and RAID-Z.
	Adding a non-redundant vdev to a pool containing mirror or
	RAID-Z vdevs risks the data on the entire
	pool. Writes are distributed, so the failure of the
	non-redundant disk will result in the loss of a fraction of
	every block that has been written to the pool.
Data is striped across each of the vdevs. For example,
	with two mirror vdevs, this is effectively a
	RAID 10 that stripes writes across two sets
	of mirrors. Space is allocated so that each vdev reaches 100%
	full at the same time. There is a performance penalty if the
	vdevs have different amounts of free space, as a
	disproportionate amount of the data is written to the less
	full vdev.
When attaching additional devices to a boot pool, remember
	to update the bootcode.
Attach a second mirror group (ada2p3
	and ada3p3) to the existing
	mirror:
zpool status
 pool: mypool
 state: ONLINE
 scan: resilvered 781M in 0h0m with 0 errors on Fri May 30 08:19:35 2014
config:

 NAME STATE READ WRITE CKSUM
 mypool ONLINE 0 0 0
 mirror-0 ONLINE 0 0 0
 ada0p3 ONLINE 0 0 0
 ada1p3 ONLINE 0 0 0

errors: No known data errors
zpool add mypool mirror ada2p3 ada3p3
gpart bootcode -b /boot/pmbr -p /boot/gptzfsboot -i 1 ada2
bootcode written to ada2
gpart bootcode -b /boot/pmbr -p /boot/gptzfsboot -i 1 ada3
bootcode written to ada3
zpool status
 pool: mypool
 state: ONLINE
 scan: scrub repaired 0 in 0h0m with 0 errors on Fri May 30 08:29:51 2014
config:

 NAME STATE READ WRITE CKSUM
 mypool ONLINE 0 0 0
 mirror-0 ONLINE 0 0 0
 ada0p3 ONLINE 0 0 0
 ada1p3 ONLINE 0 0 0
 mirror-1 ONLINE 0 0 0
 ada2p3 ONLINE 0 0 0
 ada3p3 ONLINE 0 0 0

errors: No known data errors
Currently, vdevs cannot be removed from a pool, and disks
	can only be removed from a mirror if there is enough remaining
	redundancy. If only one disk in a mirror group remains, it
	ceases to be a mirror and reverts to being a stripe, risking
	the entire pool if that remaining disk fails.
Remove a disk from a three-way mirror group:
zpool status
 pool: mypool
 state: ONLINE
 scan: scrub repaired 0 in 0h0m with 0 errors on Fri May 30 08:29:51 2014
config:

 NAME STATE READ WRITE CKSUM
 mypool ONLINE 0 0 0
 mirror-0 ONLINE 0 0 0
 ada0p3 ONLINE 0 0 0
 ada1p3 ONLINE 0 0 0
 ada2p3 ONLINE 0 0 0

errors: No known data errors
zpool detach mypool ada2p3
zpool status
 pool: mypool
 state: ONLINE
 scan: scrub repaired 0 in 0h0m with 0 errors on Fri May 30 08:29:51 2014
config:

 NAME STATE READ WRITE CKSUM
 mypool ONLINE 0 0 0
 mirror-0 ONLINE 0 0 0
 ada0p3 ONLINE 0 0 0
 ada1p3 ONLINE 0 0 0

errors: No known data errors
19.3.3. Checking the Status of a Pool
Pool status is important. If a drive goes offline or a
	read, write, or checksum error is detected, the corresponding
	error count increases. The status output
	shows the configuration and status of each device in the pool
	and the status of the entire pool. Actions that need to be
	taken and details about the last scrub
	are also shown.
zpool status
 pool: mypool
 state: ONLINE
 scan: scrub repaired 0 in 2h25m with 0 errors on Sat Sep 14 04:25:50 2013
config:

 NAME STATE READ WRITE CKSUM
 mypool ONLINE 0 0 0
 raidz2-0 ONLINE 0 0 0
 ada0p3 ONLINE 0 0 0
 ada1p3 ONLINE 0 0 0
 ada2p3 ONLINE 0 0 0
 ada3p3 ONLINE 0 0 0
 ada4p3 ONLINE 0 0 0
 ada5p3 ONLINE 0 0 0

errors: No known data errors
19.3.4. Clearing Errors
When an error is detected, the read, write, or checksum
	counts are incremented. The error message can be cleared and
	the counts reset with zpool clear
	 mypool. Clearing the
	error state can be important for automated scripts that alert
	the administrator when the pool encounters an error. Further
	errors may not be reported if the old errors are not
	cleared.
19.3.5. Replacing a Functioning Device
There are a number of situations where it may be
	desirable to replace one disk with a different disk. When
	replacing a working disk, the process keeps the old disk
	online during the replacement. The pool never enters a
	degraded state,
	reducing the risk of data loss.
	zpool replace copies all of the data from
	the old disk to the new one. After the operation completes,
	the old disk is disconnected from the vdev. If the new disk
	is larger than the old disk, it may be possible to grow the
	zpool, using the new space. See Growing a Pool.
Replace a functioning device in the pool:
zpool status
 pool: mypool
 state: ONLINE
 scan: none requested
config:

 NAME STATE READ WRITE CKSUM
 mypool ONLINE 0 0 0
 mirror-0 ONLINE 0 0 0
 ada0p3 ONLINE 0 0 0
 ada1p3 ONLINE 0 0 0

errors: No known data errors
zpool replace mypool ada1p3 ada2p3
Make sure to wait until resilver is done before rebooting.

If you boot from pool 'zroot', you may need to update
boot code on newly attached disk 'ada2p3'.

Assuming you use GPT partitioning and 'da0' is your new boot disk
you may use the following command:

 gpart bootcode -b /boot/pmbr -p /boot/gptzfsboot -i 1 da0
gpart bootcode -b /boot/pmbr -p /boot/gptzfsboot -i 1 ada2
zpool status
 pool: mypool
 state: ONLINE
status: One or more devices is currently being resilvered. The pool will
 continue to function, possibly in a degraded state.
action: Wait for the resilver to complete.
 scan: resilver in progress since Mon Jun 2 14:21:35 2014
 604M scanned out of 781M at 46.5M/s, 0h0m to go
 604M resilvered, 77.39% done
config:

 NAME STATE READ WRITE CKSUM
 mypool ONLINE 0 0 0
 mirror-0 ONLINE 0 0 0
 ada0p3 ONLINE 0 0 0
 replacing-1 ONLINE 0 0 0
 ada1p3 ONLINE 0 0 0
 ada2p3 ONLINE 0 0 0 (resilvering)

errors: No known data errors
zpool status
 pool: mypool
 state: ONLINE
 scan: resilvered 781M in 0h0m with 0 errors on Mon Jun 2 14:21:52 2014
config:

 NAME STATE READ WRITE CKSUM
 mypool ONLINE 0 0 0
 mirror-0 ONLINE 0 0 0
 ada0p3 ONLINE 0 0 0
 ada2p3 ONLINE 0 0 0

errors: No known data errors
19.3.6. Dealing with Failed Devices
When a disk in a pool fails, the vdev to which the disk
	belongs enters the
	degraded state. All
	of the data is still available, but performance may be reduced
	because missing data must be calculated from the available
	redundancy. To restore the vdev to a fully functional state,
	the failed physical device must be replaced.
	ZFS is then instructed to begin the
	resilver operation.
	Data that was on the failed device is recalculated from
	available redundancy and written to the replacement device.
	After completion, the vdev returns to
	online status.
If the vdev does not have any redundancy, or if multiple
	devices have failed and there is not enough redundancy to
	compensate, the pool enters the
	faulted state. If a
	sufficient number of devices cannot be reconnected to the
	pool, the pool becomes inoperative and data must be restored
	from backups.
When replacing a failed disk, the name of the failed disk
	is replaced with the GUID of the device.
	A new device name parameter for
	zpool replace is not required if the
	replacement device has the same device name.
Replace a failed disk using
	zpool replace:
zpool status
 pool: mypool
 state: DEGRADED
status: One or more devices could not be opened. Sufficient replicas exist for
 the pool to continue functioning in a degraded state.
action: Attach the missing device and online it using 'zpool online'.
 see: http://illumos.org/msg/ZFS-8000-2Q
 scan: none requested
config:

 NAME STATE READ WRITE CKSUM
 mypool DEGRADED 0 0 0
 mirror-0 DEGRADED 0 0 0
 ada0p3 ONLINE 0 0 0
 316502962686821739 UNAVAIL 0 0 0 was /dev/ada1p3

errors: No known data errors
zpool replace mypool 316502962686821739 ada2p3
zpool status
 pool: mypool
 state: DEGRADED
status: One or more devices is currently being resilvered. The pool will
 continue to function, possibly in a degraded state.
action: Wait for the resilver to complete.
 scan: resilver in progress since Mon Jun 2 14:52:21 2014
 641M scanned out of 781M at 49.3M/s, 0h0m to go
 640M resilvered, 82.04% done
config:

 NAME STATE READ WRITE CKSUM
 mypool DEGRADED 0 0 0
 mirror-0 DEGRADED 0 0 0
 ada0p3 ONLINE 0 0 0
 replacing-1 UNAVAIL 0 0 0
 15732067398082357289 UNAVAIL 0 0 0 was /dev/ada1p3/old
 ada2p3 ONLINE 0 0 0 (resilvering)

errors: No known data errors
zpool status
 pool: mypool
 state: ONLINE
 scan: resilvered 781M in 0h0m with 0 errors on Mon Jun 2 14:52:38 2014
config:

 NAME STATE READ WRITE CKSUM
 mypool ONLINE 0 0 0
 mirror-0 ONLINE 0 0 0
 ada0p3 ONLINE 0 0 0
 ada2p3 ONLINE 0 0 0

errors: No known data errors
19.3.7. Scrubbing a Pool
It is recommended that pools be
	scrubbed regularly,
	ideally at least once every month. The
	scrub operation is very disk-intensive and
	will reduce performance while running. Avoid high-demand
	periods when scheduling scrub or use vfs.zfs.scrub_delay
	to adjust the relative priority of the
	scrub to prevent it interfering with other
	workloads.
zpool scrub mypool
zpool status
 pool: mypool
 state: ONLINE
 scan: scrub in progress since Wed Feb 19 20:52:54 2014
 116G scanned out of 8.60T at 649M/s, 3h48m to go
 0 repaired, 1.32% done
config:

 NAME STATE READ WRITE CKSUM
 mypool ONLINE 0 0 0
 raidz2-0 ONLINE 0 0 0
 ada0p3 ONLINE 0 0 0
 ada1p3 ONLINE 0 0 0
 ada2p3 ONLINE 0 0 0
 ada3p3 ONLINE 0 0 0
 ada4p3 ONLINE 0 0 0
 ada5p3 ONLINE 0 0 0

errors: No known data errors
In the event that a scrub operation needs to be cancelled,
	issue zpool scrub -s
	 mypool.
19.3.8. Self-Healing
The checksums stored with data blocks enable the file
	system to self-heal. This feature will
	automatically repair data whose checksum does not match the
	one recorded on another device that is part of the storage
	pool. For example, a mirror with two disks where one drive is
	starting to malfunction and cannot properly store the data any
	more. This is even worse when the data has not been accessed
	for a long time, as with long term archive storage.
	Traditional file systems need to run algorithms that check and
	repair the data like fsck(8). These commands take time,
	and in severe cases, an administrator has to manually decide
	which repair operation must be performed. When
	ZFS detects a data block with a checksum
	that does not match, it tries to read the data from the mirror
	disk. If that disk can provide the correct data, it will not
	only give that data to the application requesting it, but also
	correct the wrong data on the disk that had the bad checksum.
	This happens without any interaction from a system
	administrator during normal pool operation.
The next example demonstrates this self-healing behavior.
	A mirrored pool of disks /dev/ada0 and
	/dev/ada1 is created.
zpool create healer mirror /dev/ada0 /dev/ada1
zpool status healer
 pool: healer
 state: ONLINE
 scan: none requested
config:

 NAME STATE READ WRITE CKSUM
 healer ONLINE 0 0 0
 mirror-0 ONLINE 0 0 0
 ada0 ONLINE 0 0 0
 ada1 ONLINE 0 0 0

errors: No known data errors
zpool list
NAME SIZE ALLOC FREE CKPOINT EXPANDSZ FRAG CAP DEDUP HEALTH ALTROOT
healer 960M 92.5K 960M - - 0% 0% 1.00x ONLINE -
Some important data that to be protected from data errors
	using the self-healing feature is copied to the pool. A
	checksum of the pool is created for later comparison.
cp /some/important/data /healer
zfs list
NAME SIZE ALLOC FREE CAP DEDUP HEALTH ALTROOT
healer 960M 67.7M 892M 7% 1.00x ONLINE -
sha1 /healer > checksum.txt
cat checksum.txt
SHA1 (/healer) = 2753eff56d77d9a536ece6694bf0a82740344d1f
Data corruption is simulated by writing random data to the
	beginning of one of the disks in the mirror. To prevent
	ZFS from healing the data as soon as it is
	detected, the pool is exported before the corruption and
	imported again afterwards.
Warning:
This is a dangerous operation that can destroy vital
	 data. It is shown here for demonstrational purposes only
	 and should not be attempted during normal operation of a
	 storage pool. Nor should this intentional corruption
	 example be run on any disk with a different file system on
	 it. Do not use any other disk device names other than the
	 ones that are part of the pool. Make certain that proper
	 backups of the pool are created before running the
	 command!

zpool export healer
dd if=/dev/random of=/dev/ada1 bs=1m count=200
200+0 records in
200+0 records out
209715200 bytes transferred in 62.992162 secs (3329227 bytes/sec)
zpool import healer
The pool status shows that one device has experienced an
	error. Note that applications reading data from the pool did
	not receive any incorrect data. ZFS
	provided data from the ada0 device with
	the correct checksums. The device with the wrong checksum can
	be found easily as the CKSUM column
	contains a nonzero value.
zpool status healer
 pool: healer
 state: ONLINE
 status: One or more devices has experienced an unrecoverable error. An
 attempt was made to correct the error. Applications are unaffected.
 action: Determine if the device needs to be replaced, and clear the errors
 using 'zpool clear' or replace the device with 'zpool replace'.
 see: http://illumos.org/msg/ZFS-8000-4J
 scan: none requested
 config:

 NAME STATE READ WRITE CKSUM
 healer ONLINE 0 0 0
 mirror-0 ONLINE 0 0 0
 ada0 ONLINE 0 0 0
 ada1 ONLINE 0 0 1

errors: No known data errors
The error was detected and handled by using the redundancy
	present in the unaffected ada0 mirror
	disk. A checksum comparison with the original one will reveal
	whether the pool is consistent again.
sha1 /healer >> checksum.txt
cat checksum.txt
SHA1 (/healer) = 2753eff56d77d9a536ece6694bf0a82740344d1f
SHA1 (/healer) = 2753eff56d77d9a536ece6694bf0a82740344d1f
The two checksums that were generated before and after the
	intentional tampering with the pool data still match. This
	shows how ZFS is capable of detecting and
	correcting any errors automatically when the checksums differ.
	Note that this is only possible when there is enough
	redundancy present in the pool. A pool consisting of a single
	device has no self-healing capabilities. That is also the
	reason why checksums are so important in
	ZFS and should not be disabled for any
	reason. No fsck(8) or similar file system consistency
	check program is required to detect and correct this and the
	pool was still available during the time there was a problem.
	A scrub operation is now required to overwrite the corrupted
	data on ada1.
zpool scrub healer
zpool status healer
 pool: healer
 state: ONLINE
status: One or more devices has experienced an unrecoverable error. An
 attempt was made to correct the error. Applications are unaffected.
action: Determine if the device needs to be replaced, and clear the errors
 using 'zpool clear' or replace the device with 'zpool replace'.
 see: http://illumos.org/msg/ZFS-8000-4J
 scan: scrub in progress since Mon Dec 10 12:23:30 2012
 10.4M scanned out of 67.0M at 267K/s, 0h3m to go
 9.63M repaired, 15.56% done
config:

 NAME STATE READ WRITE CKSUM
 healer ONLINE 0 0 0
 mirror-0 ONLINE 0 0 0
 ada0 ONLINE 0 0 0
 ada1 ONLINE 0 0 627 (repairing)

errors: No known data errors
The scrub operation reads data from
	ada0 and rewrites any data with an
	incorrect checksum on ada1. This is
	indicated by the (repairing) output from
	zpool status. After the operation is
	complete, the pool status changes to:
zpool status healer
 pool: healer
 state: ONLINE
status: One or more devices has experienced an unrecoverable error. An
 attempt was made to correct the error. Applications are unaffected.
action: Determine if the device needs to be replaced, and clear the errors
 using 'zpool clear' or replace the device with 'zpool replace'.
 see: http://illumos.org/msg/ZFS-8000-4J
 scan: scrub repaired 66.5M in 0h2m with 0 errors on Mon Dec 10 12:26:25 2012
config:

 NAME STATE READ WRITE CKSUM
 healer ONLINE 0 0 0
 mirror-0 ONLINE 0 0 0
 ada0 ONLINE 0 0 0
 ada1 ONLINE 0 0 2.72K

errors: No known data errors
After the scrub operation completes and all the data
	has been synchronized from ada0 to
	ada1, the error messages can be
	cleared from the pool
	status by running zpool clear.
zpool clear healer
zpool status healer
 pool: healer
 state: ONLINE
 scan: scrub repaired 66.5M in 0h2m with 0 errors on Mon Dec 10 12:26:25 2012
config:

 NAME STATE READ WRITE CKSUM
 healer ONLINE 0 0 0
 mirror-0 ONLINE 0 0 0
 ada0 ONLINE 0 0 0
 ada1 ONLINE 0 0 0

errors: No known data errors
The pool is now back to a fully working state and all the
	errors have been cleared.
19.3.9. Growing a Pool
The usable size of a redundant pool is limited by the
	capacity of the smallest device in each vdev. The smallest
	device can be replaced with a larger device. After completing
	a replace or
	resilver operation,
	the pool can grow to use the capacity of the new device. For
	example, consider a mirror of a 1 TB drive and a
	2 TB drive. The usable space is 1 TB. When the
	1 TB drive is replaced with another 2 TB drive, the
	resilvering process copies the existing data onto the new
	drive. Because
	both of the devices now have 2 TB capacity, the mirror's
	available space can be grown to 2 TB.
Expansion is triggered by using
	zpool online -e on each device. After
	expansion of all devices, the additional space becomes
	available to the pool.
19.3.10. Importing and Exporting Pools
Pools are exported before moving them
	to another system. All datasets are unmounted, and each
	device is marked as exported but still locked so it cannot be
	used by other disk subsystems. This allows pools to be
	imported on other machines, other
	operating systems that support ZFS, and
	even different hardware architectures (with some caveats, see
	zpool(8)). When a dataset has open files,
	zpool export -f can be used to force the
	export of a pool. Use this with caution. The datasets are
	forcibly unmounted, potentially resulting in unexpected
	behavior by the applications which had open files on those
	datasets.
Export a pool that is not in use:
zpool export mypool
Importing a pool automatically mounts the datasets. This
	may not be the desired behavior, and can be prevented with
	zpool import -N.
	zpool import -o sets temporary properties
	for this import only.
	zpool import altroot= allows importing a
	pool with a base mount point instead of the root of the file
	system. If the pool was last used on a different system and
	was not properly exported, an import might have to be forced
	with zpool import -f.
	zpool import -a imports all pools that do
	not appear to be in use by another system.
List all available pools for import:
zpool import
 pool: mypool
 id: 9930174748043525076
 state: ONLINE
 action: The pool can be imported using its name or numeric identifier.
 config:

 mypool ONLINE
 ada2p3 ONLINE
Import the pool with an alternative root directory:
zpool import -o altroot=/mnt mypool
zfs list
zfs list
NAME USED AVAIL REFER MOUNTPOINT
mypool 110K 47.0G 31K /mnt/mypool
19.3.11. Upgrading a Storage Pool
After upgrading FreeBSD, or if a pool has been imported from
	a system using an older version of ZFS, the
	pool can be manually upgraded to the latest version of
	ZFS to support newer features. Consider
	whether the pool may ever need to be imported on an older
	system before upgrading. Upgrading is a one-way process.
	Older pools can be upgraded, but pools with newer features
	cannot be downgraded.
Upgrade a v28 pool to support
	Feature Flags:
zpool status
 pool: mypool
 state: ONLINE
status: The pool is formatted using a legacy on-disk format. The pool can
 still be used, but some features are unavailable.
action: Upgrade the pool using 'zpool upgrade'. Once this is done, the
 pool will no longer be accessible on software that does not support feat
 flags.
 scan: none requested
config:

 NAME STATE READ WRITE CKSUM
 mypool ONLINE 0 0 0
 mirror-0 ONLINE 0 0 0
	 ada0 ONLINE 0 0 0
	 ada1 ONLINE 0 0 0

errors: No known data errors
zpool upgrade
This system supports ZFS pool feature flags.

The following pools are formatted with legacy version numbers and can
be upgraded to use feature flags. After being upgraded, these pools
will no longer be accessible by software that does not support feature
flags.

VER POOL
--- ------------
28 mypool

Use 'zpool upgrade -v' for a list of available legacy versions.
Every feature flags pool has all supported features enabled.
zpool upgrade mypool
This system supports ZFS pool feature flags.

Successfully upgraded 'mypool' from version 28 to feature flags.
Enabled the following features on 'mypool':
 async_destroy
 empty_bpobj
 lz4_compress
 multi_vdev_crash_dump
The newer features of ZFS will not be
	available until zpool upgrade has
	completed. zpool upgrade -v can be used to
	see what new features will be provided by upgrading, as well
	as which features are already supported.
Upgrade a pool to support additional feature flags:
zpool status
 pool: mypool
 state: ONLINE
status: Some supported features are not enabled on the pool. The pool can
 still be used, but some features are unavailable.
action: Enable all features using 'zpool upgrade'. Once this is done,
 the pool may no longer be accessible by software that does not support
 the features. See zpool-features(7) for details.
 scan: none requested
config:

 NAME STATE READ WRITE CKSUM
 mypool ONLINE 0 0 0
 mirror-0 ONLINE 0 0 0
	 ada0 ONLINE 0 0 0
	 ada1 ONLINE 0 0 0

errors: No known data errors
zpool upgrade
This system supports ZFS pool feature flags.

All pools are formatted using feature flags.

Some supported features are not enabled on the following pools. Once a
feature is enabled the pool may become incompatible with software
that does not support the feature. See zpool-features(7) for details.

POOL FEATURE

zstore
 multi_vdev_crash_dump
 spacemap_histogram
 enabled_txg
 hole_birth
 extensible_dataset
 bookmarks
 filesystem_limits
zpool upgrade mypool
This system supports ZFS pool feature flags.

Enabled the following features on 'mypool':
 spacemap_histogram
 enabled_txg
 hole_birth
 extensible_dataset
 bookmarks
 filesystem_limits
Warning:
The boot code on systems that boot from a pool must be
	 updated to support the new pool version. Use
	 gpart bootcode on the partition that
	 contains the boot code. There are two types of bootcode
	 available, depending on way the system boots:
	 GPT (the most common option) and
	 EFI (for more modern systems).
For legacy boot using GPT, use the following
	 command:
gpart bootcode -b /boot/pmbr -p /boot/gptzfsboot -i 1 ada1
For systems using EFI to boot, execute the following
	 command:
gpart bootcode -p /boot/boot1.efifat -i 1 ada1
Apply the bootcode to all bootable disks in the pool.
	 See gpart(8) for more information.

19.3.12. Displaying Recorded Pool History
Commands that modify the pool are recorded. Recorded
	actions include the creation of datasets, changing properties,
	or replacement of a disk. This history is useful for
	reviewing how a pool was created and which user performed a
	specific action and when. History is not kept in a log file,
	but is part of the pool itself. The command to review this
	history is aptly named
	zpool history:
zpool history
History for 'tank':
2013-02-26.23:02:35 zpool create tank mirror /dev/ada0 /dev/ada1
2013-02-27.18:50:58 zfs set atime=off tank
2013-02-27.18:51:09 zfs set checksum=fletcher4 tank
2013-02-27.18:51:18 zfs create tank/backup
The output shows zpool and
	zfs commands that were executed on the pool
	along with a timestamp. Only commands that alter the pool in
	some way are recorded. Commands like
	zfs list are not included. When no pool
	name is specified, the history of all pools is
	displayed.
zpool history can show even more
	information when the options -i or
	-l are provided. -i
	displays user-initiated events as well as internally logged
	ZFS events.
zpool history -i
History for 'tank':
2013-02-26.23:02:35 [internal pool create txg:5] pool spa 28; zfs spa 28; zpl 5;uts 9.1-RELEASE 901000 amd64
2013-02-27.18:50:53 [internal property set txg:50] atime=0 dataset = 21
2013-02-27.18:50:58 zfs set atime=off tank
2013-02-27.18:51:04 [internal property set txg:53] checksum=7 dataset = 21
2013-02-27.18:51:09 zfs set checksum=fletcher4 tank
2013-02-27.18:51:13 [internal create txg:55] dataset = 39
2013-02-27.18:51:18 zfs create tank/backup
More details can be shown by adding -l.
	History records are shown in a long format, including
	information like the name of the user who issued the command
	and the hostname on which the change was made.
zpool history -l
History for 'tank':
2013-02-26.23:02:35 zpool create tank mirror /dev/ada0 /dev/ada1 [user 0 (root) on :global]
2013-02-27.18:50:58 zfs set atime=off tank [user 0 (root) on myzfsbox:global]
2013-02-27.18:51:09 zfs set checksum=fletcher4 tank [user 0 (root) on myzfsbox:global]
2013-02-27.18:51:18 zfs create tank/backup [user 0 (root) on myzfsbox:global]
The output shows that the
	root user created
	the mirrored pool with disks
	/dev/ada0 and
	/dev/ada1. The hostname
	myzfsbox is also
	shown in the commands after the pool's creation. The hostname
	display becomes important when the pool is exported from one
	system and imported on another. The commands that are issued
	on the other system can clearly be distinguished by the
	hostname that is recorded for each command.
Both options to zpool history can be
	combined to give the most detailed information possible for
	any given pool. Pool history provides valuable information
	when tracking down the actions that were performed or when
	more detailed output is needed for debugging.
19.3.13. Performance Monitoring
A built-in monitoring system can display pool
	I/O statistics in real time. It shows the
	amount of free and used space on the pool, how many read and
	write operations are being performed per second, and how much
	I/O bandwidth is currently being utilized.
	By default, all pools in the system are monitored and
	displayed. A pool name can be provided to limit monitoring to
	just that pool. A basic example:
zpool iostat
 capacity operations bandwidth
pool alloc free read write read write
---------- ----- ----- ----- ----- ----- -----
data 288G 1.53T 2 11 11.3K 57.1K
To continuously monitor I/O activity, a
	number can be specified as the last parameter, indicating a
	interval in seconds to wait between updates. The next
	statistic line is printed after each interval. Press
	Ctrl+C to stop this continuous monitoring.
	Alternatively, give a second number on the command line after
	the interval to specify the total number of statistics to
	display.
Even more detailed I/O statistics can
	be displayed with -v. Each device in the
	pool is shown with a statistics line. This is useful in
	seeing how many read and write operations are being performed
	on each device, and can help determine if any individual
	device is slowing down the pool. This example shows a
	mirrored pool with two devices:
zpool iostat -v
 capacity operations bandwidth
pool alloc free read write read write
----------------------- ----- ----- ----- ----- ----- -----
data 288G 1.53T 2 12 9.23K 61.5K
 mirror 288G 1.53T 2 12 9.23K 61.5K
 ada1 - - 0 4 5.61K 61.7K
 ada2 - - 1 4 5.04K 61.7K
----------------------- ----- ----- ----- ----- ----- -----
19.3.14. Splitting a Storage Pool
A pool consisting of one or more mirror vdevs can be split
	into two pools. Unless otherwise specified, the last member
	of each mirror is detached and used to create a new pool
	containing the same data. The operation should first be
	attempted with -n. The details of the
	proposed operation are displayed without it actually being
	performed. This helps confirm that the operation will do what
	the user intends.
19.6. Advanced Topics
19.6.1. Tuning
There are a number of tunables that can be adjusted to
	make ZFS perform best for different
	workloads.
	vfs.zfs.arc_max
	 - Maximum size of the ARC.
	 The default is all RAM but 1 GB,
	 or 5/8 of all RAM, whichever is more.
	 However, a lower value should be used if the system will
	 be running any other daemons or processes that may require
	 memory. This value can be adjusted at runtime with
	 sysctl(8) and can be set in
	 /boot/loader.conf or
	 /etc/sysctl.conf.

	vfs.zfs.arc_meta_limit
	 - Limit the portion of the
	 ARC
	 that can be used to store metadata. The default is one
	 fourth of vfs.zfs.arc_max. Increasing
	 this value will improve performance if the workload
	 involves operations on a large number of files and
	 directories, or frequent metadata operations, at the cost
	 of less file data fitting in the ARC.
	 This value can be adjusted at runtime with sysctl(8)
	 and can be set in
	 /boot/loader.conf or
	 /etc/sysctl.conf.

	vfs.zfs.arc_min
	 - Minimum size of the ARC.
	 The default is one half of
	 vfs.zfs.arc_meta_limit. Adjust this
	 value to prevent other applications from pressuring out
	 the entire ARC.
	 This value can be adjusted at runtime with sysctl(8)
	 and can be set in
	 /boot/loader.conf or
	 /etc/sysctl.conf.

	vfs.zfs.vdev.cache.size
	 - A preallocated amount of memory reserved as a cache for
	 each device in the pool. The total amount of memory used
	 will be this value multiplied by the number of devices.
	 This value can only be adjusted at boot time, and is set
	 in /boot/loader.conf.

	vfs.zfs.min_auto_ashift
	 - Minimum ashift (sector size) that
	 will be used automatically at pool creation time. The
	 value is a power of two. The default value of
	 9 represents
	 2^9 = 512, a sector size of 512 bytes.
	 To avoid write amplification and get
	 the best performance, set this value to the largest sector
	 size used by a device in the pool.
Many drives have 4 KB sectors. Using the default
	 ashift of 9 with
	 these drives results in write amplification on these
	 devices. Data that could be contained in a single
	 4 KB write must instead be written in eight 512-byte
	 writes. ZFS tries to read the native
	 sector size from all devices when creating a pool, but
	 many drives with 4 KB sectors report that their
	 sectors are 512 bytes for compatibility. Setting
	 vfs.zfs.min_auto_ashift to
	 12 (2^12 = 4096)
	 before creating a pool forces ZFS to
	 use 4 KB blocks for best performance on these
	 drives.
Forcing 4 KB blocks is also useful on pools where
	 disk upgrades are planned. Future disks are likely to use
	 4 KB sectors, and ashift values
	 cannot be changed after a pool is created.
In some specific cases, the smaller 512-byte block
	 size might be preferable. When used with 512-byte disks
	 for databases, or as storage for virtual machines, less
	 data is transferred during small random reads. This can
	 provide better performance, especially when using a
	 smaller ZFS record size.

	vfs.zfs.prefetch_disable
	 - Disable prefetch. A value of 0 is
	 enabled and 1 is disabled. The default
	 is 0, unless the system has less than
	 4 GB of RAM. Prefetch works by
	 reading larger blocks than were requested into the
	 ARC
	 in hopes that the data will be needed soon. If the
	 workload has a large number of random reads, disabling
	 prefetch may actually improve performance by reducing
	 unnecessary reads. This value can be adjusted at any time
	 with sysctl(8).

	vfs.zfs.vdev.trim_on_init
	 - Control whether new devices added to the pool have the
	 TRIM command run on them. This ensures
	 the best performance and longevity for
	 SSDs, but takes extra time. If the
	 device has already been secure erased, disabling this
	 setting will make the addition of the new device faster.
	 This value can be adjusted at any time with
	 sysctl(8).

	vfs.zfs.vdev.max_pending
	 - Limit the number of pending I/O requests per device.
	 A higher value will keep the device command queue full
	 and may give higher throughput. A lower value will reduce
	 latency. This value can be adjusted at any time with
	 sysctl(8).

	vfs.zfs.top_maxinflight
	 - Maxmimum number of outstanding I/Os per top-level
	 vdev. Limits the
	 depth of the command queue to prevent high latency. The
	 limit is per top-level vdev, meaning the limit applies to
	 each mirror,
	 RAID-Z, or
	 other vdev independently. This value can be adjusted at
	 any time with sysctl(8).

	vfs.zfs.l2arc_write_max
	 - Limit the amount of data written to the L2ARC
	 per second. This tunable is designed to extend the
	 longevity of SSDs by limiting the
	 amount of data written to the device. This value can be
	 adjusted at any time with sysctl(8).

	vfs.zfs.l2arc_write_boost
	 - The value of this tunable is added to vfs.zfs.l2arc_write_max
	 and increases the write speed to the
	 SSD until the first block is evicted
	 from the L2ARC.
	 This “Turbo Warmup Phase” is designed to
	 reduce the performance loss from an empty L2ARC
	 after a reboot. This value can be adjusted at any time
	 with sysctl(8).

	vfs.zfs.scrub_delay
	 - Number of ticks to delay between each I/O during a
	 scrub.
	 To ensure that a scrub does not
	 interfere with the normal operation of the pool, if any
	 other I/O is happening the
	 scrub will delay between each command.
	 This value controls the limit on the total
	 IOPS (I/Os Per Second) generated by the
	 scrub. The granularity of the setting
	 is determined by the value of kern.hz
	 which defaults to 1000 ticks per second. This setting may
	 be changed, resulting in a different effective
	 IOPS limit. The default value is
	 4, resulting in a limit of:
	 1000 ticks/sec / 4 =
	 250 IOPS. Using a value of
	 20 would give a limit of:
	 1000 ticks/sec / 20 =
	 50 IOPS. The speed of
	 scrub is only limited when there has
	 been recent activity on the pool, as determined by vfs.zfs.scan_idle.
	 This value can be adjusted at any time with
	 sysctl(8).

	vfs.zfs.resilver_delay
	 - Number of milliseconds of delay inserted between
	 each I/O during a
	 resilver. To
	 ensure that a resilver does not interfere with the normal
	 operation of the pool, if any other I/O is happening the
	 resilver will delay between each command. This value
	 controls the limit of total IOPS (I/Os
	 Per Second) generated by the resilver. The granularity of
	 the setting is determined by the value of
	 kern.hz which defaults to 1000 ticks
	 per second. This setting may be changed, resulting in a
	 different effective IOPS limit. The
	 default value is 2, resulting in a limit of:
	 1000 ticks/sec / 2 =
	 500 IOPS. Returning the pool to
	 an Online state may
	 be more important if another device failing could
	 Fault the pool,
	 causing data loss. A value of 0 will give the resilver
	 operation the same priority as other operations, speeding
	 the healing process. The speed of resilver is only
	 limited when there has been other recent activity on the
	 pool, as determined by vfs.zfs.scan_idle.
	 This value can be adjusted at any time with
	 sysctl(8).

	vfs.zfs.scan_idle
	 - Number of milliseconds since the last operation before
	 the pool is considered idle. When the pool is idle the
	 rate limiting for scrub
	 and
	 resilver are
	 disabled. This value can be adjusted at any time with
	 sysctl(8).

	vfs.zfs.txg.timeout
	 - Maximum number of seconds between
	 transaction groups.
	 The current transaction group will be written to the pool
	 and a fresh transaction group started if this amount of
	 time has elapsed since the previous transaction group. A
	 transaction group my be triggered earlier if enough data
	 is written. The default value is 5 seconds. A larger
	 value may improve read performance by delaying
	 asynchronous writes, but this may cause uneven performance
	 when the transaction group is written. This value can be
	 adjusted at any time with sysctl(8).

19.6.2. ZFS on i386
Some of the features provided by ZFS
	are memory intensive, and may require tuning for maximum
	efficiency on systems with limited
	RAM.
19.6.2.1. Memory
As a bare minimum, the total system memory should be at
	 least one gigabyte. The amount of recommended
	 RAM depends upon the size of the pool and
	 which ZFS features are used. A general
	 rule of thumb is 1 GB of RAM for every 1 TB of
	 storage. If the deduplication feature is used, a general
	 rule of thumb is 5 GB of RAM per TB of storage to be
	 deduplicated. While some users successfully use
	 ZFS with less RAM,
	 systems under heavy load may panic due to memory exhaustion.
	 Further tuning may be required for systems with less than
	 the recommended RAM requirements.
19.6.2.2. Kernel Configuration
Due to the address space limitations of the
	 i386™ platform, ZFS users on the
	 i386™ architecture must add this option to a
	 custom kernel configuration file, rebuild the kernel, and
	 reboot:
options KVA_PAGES=512
This expands the kernel address space, allowing
	 the vm.kvm_size tunable to be pushed
	 beyond the currently imposed limit of 1 GB, or the
	 limit of 2 GB for PAE. To find the
	 most suitable value for this option, divide the desired
	 address space in megabytes by four. In this example, it
	 is 512 for 2 GB.
19.6.2.3. Loader Tunables
The kmem address space can be
	 increased on all FreeBSD architectures. On a test system with
	 1 GB of physical memory, success was achieved with
	 these options added to
	 /boot/loader.conf, and the system
	 restarted:
vm.kmem_size="330M"
vm.kmem_size_max="330M"
vfs.zfs.arc_max="40M"
vfs.zfs.vdev.cache.size="5M"
For a more detailed list of recommendations for
	 ZFS-related tuning, see https://wiki.freebsd.org/ZFSTuningGuide.
19.8. ZFS Features and Terminology
ZFS is a fundamentally different file
 system because it is more than just a file system.
 ZFS combines the roles of file system and
 volume manager, enabling additional storage devices to be added
 to a live system and having the new space available on all of
 the existing file systems in that pool immediately. By
 combining the traditionally separate roles,
 ZFS is able to overcome previous limitations
 that prevented RAID groups being able to
 grow. Each top level device in a pool is called a
 vdev, which can be a simple disk or a
 RAID transformation such as a mirror or
 RAID-Z array. ZFS file
 systems (called datasets) each have access
 to the combined free space of the entire pool. As blocks are
 allocated from the pool, the space available to each file system
 decreases. This approach avoids the common pitfall with
 extensive partitioning where free space becomes fragmented
 across the partitions.
	pool	A storage pool is the most
	 basic building block of ZFS. A pool
	 is made up of one or more vdevs, the underlying devices
	 that store the data. A pool is then used to create one
	 or more file systems (datasets) or block devices
	 (volumes). These datasets and volumes share the pool of
	 remaining free space. Each pool is uniquely identified
	 by a name and a GUID. The features
	 available are determined by the ZFS
	 version number on the pool.
	
	vdev Types	A pool is made up of one or more vdevs, which
	 themselves can be a single disk or a group of disks, in
	 the case of a RAID transform. When
	 multiple vdevs are used, ZFS spreads
	 data across the vdevs to increase performance and
	 maximize usable space.

	 	Disk
		 - The most basic type of vdev is a standard block
		 device. This can be an entire disk (such as
		 /dev/ada0
		 or
		 /dev/da0)
		 or a partition
		 (/dev/ada0p3).
		 On FreeBSD, there is no performance penalty for using
		 a partition rather than the entire disk. This
		 differs from recommendations made by the Solaris
		 documentation.

	File
		 - In addition to disks, ZFS
		 pools can be backed by regular files, this is
		 especially useful for testing and experimentation.
		 Use the full path to the file as the device path
		 in zpool create. All vdevs
		 must be at least 128 MB in size.

	Mirror
		 - When creating a mirror, specify the
		 mirror keyword followed by the
		 list of member devices for the mirror. A mirror
		 consists of two or more devices, all data will be
		 written to all member devices. A mirror vdev will
		 only hold as much data as its smallest member. A
		 mirror vdev can withstand the failure of all but
		 one of its members without losing any data.
Note:
A regular single disk vdev can be upgraded
		 to a mirror vdev at any time with
		 zpool
			attach.

	RAID-Z
		 - ZFS implements
		 RAID-Z, a variation on standard
		 RAID-5 that offers better
		 distribution of parity and eliminates the
		 “RAID-5 write
		 hole” in which the data and parity
		 information become inconsistent after an
		 unexpected restart. ZFS
		 supports three levels of RAID-Z
		 which provide varying levels of redundancy in
		 exchange for decreasing levels of usable storage.
		 The types are named RAID-Z1
		 through RAID-Z3 based on the
		 number of parity devices in the array and the
		 number of disks which can fail while the pool
		 remains operational.
In a RAID-Z1 configuration
		 with four disks, each 1 TB, usable storage is
		 3 TB and the pool will still be able to
		 operate in degraded mode with one faulted disk.
		 If an additional disk goes offline before the
		 faulted disk is replaced and resilvered, all data
		 in the pool can be lost.
In a RAID-Z3 configuration
		 with eight disks of 1 TB, the volume will
		 provide 5 TB of usable space and still be
		 able to operate with three faulted disks. Sun™
		 recommends no more than nine disks in a single
		 vdev. If the configuration has more disks, it is
		 recommended to divide them into separate vdevs and
		 the pool data will be striped across them.
A configuration of two
		 RAID-Z2 vdevs consisting of 8
		 disks each would create something similar to a
		 RAID-60 array. A
		 RAID-Z group's storage capacity
		 is approximately the size of the smallest disk
		 multiplied by the number of non-parity disks.
		 Four 1 TB disks in RAID-Z1
		 has an effective size of approximately 3 TB,
		 and an array of eight 1 TB disks in
		 RAID-Z3 will yield 5 TB of
		 usable space.

	Spare
		 - ZFS has a special pseudo-vdev
		 type for keeping track of available hot spares.
		 Note that installed hot spares are not deployed
		 automatically; they must manually be configured to
		 replace the failed device using
		 zfs replace.

	Log
		 - ZFS Log Devices, also known
		 as ZFS Intent Log (ZIL)
		 move the intent log from the regular pool devices
		 to a dedicated device, typically an
		 SSD. Having a dedicated log
		 device can significantly improve the performance
		 of applications with a high volume of synchronous
		 writes, especially databases. Log devices can be
		 mirrored, but RAID-Z is not
		 supported. If multiple log devices are used,
		 writes will be load balanced across them.

	Cache
		 - Adding a cache vdev to a pool will add the
		 storage of the cache to the L2ARC.
		 Cache devices cannot be mirrored. Since a cache
		 device only stores additional copies of existing
		 data, there is no risk of data loss.

	Transaction Group
	 (TXG)	Transaction Groups are the way changed blocks are
	 grouped together and eventually written to the pool.
	 Transaction groups are the atomic unit that
	 ZFS uses to assert consistency. Each
	 transaction group is assigned a unique 64-bit
	 consecutive identifier. There can be up to three active
	 transaction groups at a time, one in each of these three
	 states:

	 	Open - When a new
		 transaction group is created, it is in the open
		 state, and accepts new writes. There is always
		 a transaction group in the open state, however the
		 transaction group may refuse new writes if it has
		 reached a limit. Once the open transaction group
		 has reached a limit, or the vfs.zfs.txg.timeout
		 has been reached, the transaction group advances
		 to the next state.

	Quiescing - A short state
		 that allows any pending operations to finish while
		 not blocking the creation of a new open
		 transaction group. Once all of the transactions
		 in the group have completed, the transaction group
		 advances to the final state.

	Syncing - All of the data
		 in the transaction group is written to stable
		 storage. This process will in turn modify other
		 data, such as metadata and space maps, that will
		 also need to be written to stable storage. The
		 process of syncing involves multiple passes. The
		 first, all of the changed data blocks, is the
		 biggest, followed by the metadata, which may take
		 multiple passes to complete. Since allocating
		 space for the data blocks generates new metadata,
		 the syncing state cannot finish until a pass
		 completes that does not allocate any additional
		 space. The syncing state is also where
		 synctasks are completed.
		 Synctasks are administrative operations, such as
		 creating or destroying snapshots and datasets,
		 that modify the uberblock are completed. Once the
		 sync state is complete, the transaction group in
		 the quiescing state is advanced to the syncing
		 state.

	 All administrative functions, such as snapshot
	 are written as part of the transaction group. When a
	 synctask is created, it is added to the currently open
	 transaction group, and that group is advanced as quickly
	 as possible to the syncing state to reduce the
	 latency of administrative commands.
	Adaptive Replacement
	 Cache (ARC)	ZFS uses an Adaptive Replacement
	 Cache (ARC), rather than a more
	 traditional Least Recently Used (LRU)
	 cache. An LRU cache is a simple list
	 of items in the cache, sorted by when each object was
	 most recently used. New items are added to the top of
	 the list. When the cache is full, items from the
	 bottom of the list are evicted to make room for more
	 active objects. An ARC consists of
	 four lists; the Most Recently Used
	 (MRU) and Most Frequently Used
	 (MFU) objects, plus a ghost list for
	 each. These ghost lists track recently evicted objects
	 to prevent them from being added back to the cache.
	 This increases the cache hit ratio by avoiding objects
	 that have a history of only being used occasionally.
	 Another advantage of using both an
	 MRU and MFU is
	 that scanning an entire file system would normally evict
	 all data from an MRU or
	 LRU cache in favor of this freshly
	 accessed content. With ZFS, there is
	 also an MFU that only tracks the most
	 frequently used objects, and the cache of the most
	 commonly accessed blocks remains.
	L2ARC	L2ARC is the second level
	 of the ZFS caching system. The
	 primary ARC is stored in
	 RAM. Since the amount of
	 available RAM is often limited,
	 ZFS can also use
	 cache vdevs.
	 Solid State Disks (SSDs) are often
	 used as these cache devices due to their higher speed
	 and lower latency compared to traditional spinning
	 disks. L2ARC is entirely optional,
	 but having one will significantly increase read speeds
	 for files that are cached on the SSD
	 instead of having to be read from the regular disks.
	 L2ARC can also speed up deduplication
	 because a DDT that does not fit in
	 RAM but does fit in the
	 L2ARC will be much faster than a
	 DDT that must be read from disk. The
	 rate at which data is added to the cache devices is
	 limited to prevent prematurely wearing out
	 SSDs with too many writes. Until the
	 cache is full (the first block has been evicted to make
	 room), writing to the L2ARC is
	 limited to the sum of the write limit and the boost
	 limit, and afterwards limited to the write limit. A
	 pair of sysctl(8) values control these rate limits.
	 vfs.zfs.l2arc_write_max
	 controls how many bytes are written to the cache per
	 second, while vfs.zfs.l2arc_write_boost
	 adds to this limit during the
	 “Turbo Warmup Phase” (Write Boost).
	ZIL	ZIL accelerates synchronous
	 transactions by using storage devices like
	 SSDs that are faster than those used
	 in the main storage pool. When an application requests
	 a synchronous write (a guarantee that the data has been
	 safely stored to disk rather than merely cached to be
	 written later), the data is written to the faster
	 ZIL storage, then later flushed out
	 to the regular disks. This greatly reduces latency and
	 improves performance. Only synchronous workloads like
	 databases will benefit from a ZIL.
	 Regular asynchronous writes such as copying files will
	 not use the ZIL at all.
	Copy-On-Write	Unlike a traditional file system, when data is
	 overwritten on ZFS, the new data is
	 written to a different block rather than overwriting the
	 old data in place. Only when this write is complete is
	 the metadata then updated to point to the new location.
	 In the event of a shorn write (a system crash or power
	 loss in the middle of writing a file), the entire
	 original contents of the file are still available and
	 the incomplete write is discarded. This also means that
	 ZFS does not require a fsck(8)
	 after an unexpected shutdown.
	Dataset	Dataset is the generic term
	 for a ZFS file system, volume,
	 snapshot or clone. Each dataset has a unique name in
	 the format
	 poolname/path@snapshot.
	 The root of the pool is technically a dataset as well.
	 Child datasets are named hierarchically like
	 directories. For example,
	 mypool/home, the home
	 dataset, is a child of mypool
	 and inherits properties from it. This can be expanded
	 further by creating
	 mypool/home/user. This
	 grandchild dataset will inherit properties from the
	 parent and grandparent. Properties on a child can be
	 set to override the defaults inherited from the parents
	 and grandparents. Administration of datasets and their
	 children can be
	 delegated.
	File system	A ZFS dataset is most often used
	 as a file system. Like most other file systems, a
	 ZFS file system is mounted somewhere
	 in the systems directory hierarchy and contains files
	 and directories of its own with permissions, flags, and
	 other metadata.
	Volume	In additional to regular file system datasets,
	 ZFS can also create volumes, which
	 are block devices. Volumes have many of the same
	 features, including copy-on-write, snapshots, clones,
	 and checksumming. Volumes can be useful for running
	 other file system formats on top of
	 ZFS, such as UFS
	 virtualization, or exporting iSCSI
	 extents.
	Snapshot	The
	 copy-on-write
	 (COW) design of
	 ZFS allows for nearly instantaneous,
	 consistent snapshots with arbitrary names. After taking
	 a snapshot of a dataset, or a recursive snapshot of a
	 parent dataset that will include all child datasets, new
	 data is written to new blocks, but the old blocks are
	 not reclaimed as free space. The snapshot contains
	 the original version of the file system, and the live
	 file system contains any changes made since the snapshot
	 was taken. No additional space is used. As new data is
	 written to the live file system, new blocks are
	 allocated to store this data. The apparent size of the
	 snapshot will grow as the blocks are no longer used in
	 the live file system, but only in the snapshot. These
	 snapshots can be mounted read only to allow for the
	 recovery of previous versions of files. It is also
	 possible to
	 rollback a live
	 file system to a specific snapshot, undoing any changes
	 that took place after the snapshot was taken. Each
	 block in the pool has a reference counter which keeps
	 track of how many snapshots, clones, datasets, or
	 volumes make use of that block. As files and snapshots
	 are deleted, the reference count is decremented. When a
	 block is no longer referenced, it is reclaimed as free
	 space. Snapshots can also be marked with a
	 hold. When a
	 snapshot is held, any attempt to destroy it will return
	 an EBUSY error. Each snapshot can
	 have multiple holds, each with a unique name. The
	 release command
	 removes the hold so the snapshot can deleted. Snapshots
	 can be taken on volumes, but they can only be cloned or
	 rolled back, not mounted independently.
	Clone	Snapshots can also be cloned. A clone is a
	 writable version of a snapshot, allowing the file system
	 to be forked as a new dataset. As with a snapshot, a
	 clone initially consumes no additional space. As
	 new data is written to a clone and new blocks are
	 allocated, the apparent size of the clone grows. When
	 blocks are overwritten in the cloned file system or
	 volume, the reference count on the previous block is
	 decremented. The snapshot upon which a clone is based
	 cannot be deleted because the clone depends on it. The
	 snapshot is the parent, and the clone is the child.
	 Clones can be promoted, reversing
	 this dependency and making the clone the parent and the
	 previous parent the child. This operation requires no
	 additional space. Because the amount of space used by
	 the parent and child is reversed, existing quotas and
	 reservations might be affected.
	Checksum	Every block that is allocated is also checksummed.
	 The checksum algorithm used is a per-dataset property,
	 see set.
	 The checksum of each block is transparently validated as
	 it is read, allowing ZFS to detect
	 silent corruption. If the data that is read does not
	 match the expected checksum, ZFS will
	 attempt to recover the data from any available
	 redundancy, like mirrors or RAID-Z).
	 Validation of all checksums can be triggered with scrub.
	 Checksum algorithms include:

	 	fletcher2

	fletcher4

	sha256

	 The fletcher algorithms are faster,
	 but sha256 is a strong cryptographic
	 hash and has a much lower chance of collisions at the
	 cost of some performance. Checksums can be disabled,
	 but it is not recommended.
	Compression	Each dataset has a compression property, which
	 defaults to off. This property can be set to one of a
	 number of compression algorithms. This will cause all
	 new data that is written to the dataset to be
	 compressed. Beyond a reduction in space used, read and
	 write throughput often increases because fewer blocks
	 are read or written.

	 	LZ4 -
		 Added in ZFS pool version
		 5000 (feature flags), LZ4 is
		 now the recommended compression algorithm.
		 LZ4 compresses approximately
		 50% faster than LZJB when
		 operating on compressible data, and is over three
		 times faster when operating on uncompressible
		 data. LZ4 also decompresses
		 approximately 80% faster than
		 LZJB. On modern
		 CPUs, LZ4
		 can often compress at over 500 MB/s, and
		 decompress at over 1.5 GB/s (per single CPU
		 core).

	LZJB -
		 The default compression algorithm. Created by
		 Jeff Bonwick (one of the original creators of
		 ZFS). LZJB
		 offers good compression with less
		 CPU overhead compared to
		 GZIP. In the future, the
		 default compression algorithm will likely change
		 to LZ4.

	GZIP -
		 A popular stream compression algorithm available
		 in ZFS. One of the main
		 advantages of using GZIP is its
		 configurable level of compression. When setting
		 the compress property, the
		 administrator can choose the level of compression,
		 ranging from gzip1, the lowest
		 level of compression, to gzip9,
		 the highest level of compression. This gives the
		 administrator control over how much
		 CPU time to trade for saved
		 disk space.

	ZLE -
		 Zero Length Encoding is a special compression
		 algorithm that only compresses continuous runs of
		 zeros. This compression algorithm is only useful
		 when the dataset contains large blocks of
		 zeros.

	Copies	When set to a value greater than 1, the
	 copies property instructs
	 ZFS to maintain multiple copies of
	 each block in the
	 File System
	 or
	 Volume. Setting
	 this property on important datasets provides additional
	 redundancy from which to recover a block that does not
	 match its checksum. In pools without redundancy, the
	 copies feature is the only form of redundancy. The
	 copies feature can recover from a single bad sector or
	 other forms of minor corruption, but it does not protect
	 the pool from the loss of an entire disk.
	Deduplication	Checksums make it possible to detect duplicate
	 blocks of data as they are written. With deduplication,
	 the reference count of an existing, identical block is
	 increased, saving storage space. To detect duplicate
	 blocks, a deduplication table (DDT)
	 is kept in memory. The table contains a list of unique
	 checksums, the location of those blocks, and a reference
	 count. When new data is written, the checksum is
	 calculated and compared to the list. If a match is
	 found, the existing block is used. The
	 SHA256 checksum algorithm is used
	 with deduplication to provide a secure cryptographic
	 hash. Deduplication is tunable. If
	 dedup is on, then
	 a matching checksum is assumed to mean that the data is
	 identical. If dedup is set to
	 verify, then the data in the two
	 blocks will be checked byte-for-byte to ensure it is
	 actually identical. If the data is not identical, the
	 hash collision will be noted and the two blocks will be
	 stored separately. Because DDT must
	 store the hash of each unique block, it consumes a very
	 large amount of memory. A general rule of thumb is
	 5-6 GB of ram per 1 TB of deduplicated data).
	 In situations where it is not practical to have enough
	 RAM to keep the entire
	 DDT in memory, performance will
	 suffer greatly as the DDT must be
	 read from disk before each new block is written.
	 Deduplication can use L2ARC to store
	 the DDT, providing a middle ground
	 between fast system memory and slower disks. Consider
	 using compression instead, which often provides nearly
	 as much space savings without the additional memory
	 requirement.
	Scrub	Instead of a consistency check like fsck(8),
	 ZFS has scrub.
	 scrub reads all data blocks stored on
	 the pool and verifies their checksums against the known
	 good checksums stored in the metadata. A periodic check
	 of all the data stored on the pool ensures the recovery
	 of any corrupted blocks before they are needed. A scrub
	 is not required after an unclean shutdown, but is
	 recommended at least once every three months. The
	 checksum of each block is verified as blocks are read
	 during normal use, but a scrub makes certain that even
	 infrequently used blocks are checked for silent
	 corruption. Data security is improved, especially in
	 archival storage situations. The relative priority of
	 scrub can be adjusted with vfs.zfs.scrub_delay
	 to prevent the scrub from degrading the performance of
	 other workloads on the pool.
	Dataset Quota	ZFS provides very fast and
	 accurate dataset, user, and group space accounting in
	 addition to quotas and space reservations. This gives
	 the administrator fine grained control over how space is
	 allocated and allows space to be reserved for critical
	 file systems.

	 ZFS supports different types of
		quotas: the dataset quota, the reference
		 quota (refquota), the
		user
		 quota, and the
		group
		 quota.

	 Quotas limit the amount of space that a dataset
		and all of its descendants, including snapshots of the
		dataset, child datasets, and the snapshots of those
		datasets, can consume.

	 Note:
Quotas cannot be set on volumes, as the
		 volsize property acts as an
		 implicit quota.

	Reference
	 Quota	A reference quota limits the amount of space a
	 dataset can consume by enforcing a hard limit. However,
	 this hard limit includes only space that the dataset
	 references and does not include space used by
	 descendants, such as file systems or snapshots.
	User
	 Quota	User quotas are useful to limit the amount of space
	 that can be used by the specified user.
	Group
	 Quota	The group quota limits the amount of space that a
	 specified group can consume.
	Dataset
	 Reservation	The reservation property makes
	 it possible to guarantee a minimum amount of space for a
	 specific dataset and its descendants. If a 10 GB
	 reservation is set on
	 storage/home/bob, and another
	 dataset tries to use all of the free space, at least
	 10 GB of space is reserved for this dataset. If a
	 snapshot is taken of
	 storage/home/bob, the space used by
	 that snapshot is counted against the reservation. The
	 refreservation
	 property works in a similar way, but it
	 excludes descendants like
	 snapshots.

	 Reservations of any sort are useful in many
		situations, such as planning and testing the
		suitability of disk space allocation in a new system,
		or ensuring that enough space is available on file
		systems for audio logs or system recovery procedures
		and files.

	
	Reference
	 Reservation	The refreservation property
	 makes it possible to guarantee a minimum amount of
	 space for the use of a specific dataset
	 excluding its descendants. This
	 means that if a 10 GB reservation is set on
	 storage/home/bob, and another
	 dataset tries to use all of the free space, at least
	 10 GB of space is reserved for this dataset. In
	 contrast to a regular
	 reservation,
	 space used by snapshots and descendant datasets is not
	 counted against the reservation. For example, if a
	 snapshot is taken of
	 storage/home/bob, enough disk space
	 must exist outside of the
	 refreservation amount for the
	 operation to succeed. Descendants of the main data set
	 are not counted in the refreservation
	 amount and so do not encroach on the space set.
	Resilver	When a disk fails and is replaced, the new disk
	 must be filled with the data that was lost. The process
	 of using the parity information distributed across the
	 remaining drives to calculate and write the missing data
	 to the new drive is called
	 resilvering.
	Online	A pool or vdev in the Online
	 state has all of its member devices connected and fully
	 operational. Individual devices in the
	 Online state are functioning
	 normally.
	Offline	Individual devices can be put in an
	 Offline state by the administrator if
	 there is sufficient redundancy to avoid putting the pool
	 or vdev into a
	 Faulted state.
	 An administrator may choose to offline a disk in
	 preparation for replacing it, or to make it easier to
	 identify.
	Degraded	A pool or vdev in the Degraded
	 state has one or more disks that have been disconnected
	 or have failed. The pool is still usable, but if
	 additional devices fail, the pool could become
	 unrecoverable. Reconnecting the missing devices or
	 replacing the failed disks will return the pool to an
	 Online state
	 after the reconnected or new device has completed the
	 Resilver
	 process.
	Faulted	A pool or vdev in the Faulted
	 state is no longer operational. The data on it can no
	 longer be accessed. A pool or vdev enters the
	 Faulted state when the number of
	 missing or failed devices exceeds the level of
	 redundancy in the vdev. If missing devices can be
	 reconnected, the pool will return to a
	 Online state. If
	 there is insufficient redundancy to compensate for the
	 number of failed disks, then the contents of the pool
	 are lost and must be restored from backups.

Chapter 20. Other File Systems
Written
	by Tom Rhodes. 20.1. Synopsis
File systems are an integral part of any operating system.
 They allow users to upload and store files, provide access to
 data, and make hard drives useful. Different operating systems
 differ in their native file system. Traditionally, the native
 FreeBSD file system has been the Unix File System
 UFS which has been modernized as
 UFS2. Since FreeBSD 7.0, the Z File System
 (ZFS) is also available as a native file
 system. See Chapter 19, The Z File System (ZFS) for more information.
In addition to its native file systems, FreeBSD supports a
 multitude of other file systems so that data from other
 operating systems can be accessed locally, such as data stored
 on locally attached USB storage devices,
 flash drives, and hard disks. This includes support for the
 Linux® Extended File System (EXT).
There are different levels of FreeBSD support for the various
 file systems. Some require a kernel module to be loaded and
 others may require a toolset to be installed. Some non-native
 file system support is full read-write while others are
 read-only.
After reading this chapter, you will know:
	The difference between native and supported file
	 systems.

	Which file systems are supported by FreeBSD.

	How to enable, configure, access, and make use of
	 non-native file systems.

Before reading this chapter, you should:
	Understand UNIX® and
	 FreeBSD basics.

	Be familiar with the basics of kernel configuration and
	 compilation.

	Feel comfortable installing
	 software in FreeBSD.

	Have some familiarity with disks, storage, and device names in
	 FreeBSD.

20.2. Linux® File Systems
FreeBSD provides built-in support for several Linux® file
 systems. This section demonstrates how to load support for and
 how to mount the supported Linux® file systems.
20.2.1. ext2
Kernel support for ext2 file systems has
	been available since FreeBSD 2.2. In FreeBSD 8.x and
	earlier, the code is licensed under the
	GPL. Since FreeBSD 9.0, the code has
	been rewritten and is now BSD
	licensed.
The ext2fs(5) driver allows the FreeBSD kernel to both
	read and write to ext2 file systems.
Note:
This driver can also be used to access ext3 and ext4
	 file systems. The ext2fs(5) filesystem has full read
	 and write support for ext4 as of FreeBSD 12.0-RELEASE.
	 Additionally, extended attributes and ACLs are also
	 supported, while journalling and encryption are not.
	 Starting with FreeBSD 12.1-RELEASE, a DTrace provider will
	 be available as well. Prior versions of FreeBSD can access
	 ext4 in read and write mode using
	 sysutils/fusefs-ext2.

To access an ext file system, first
	load the kernel loadable module:
kldload ext2fs
Then, mount the ext volume by specifying its FreeBSD
	partition name and an existing mount point. This example
	mounts /dev/ad1s1 on
	/mnt:
mount -t ext2fs /dev/ad1s1 /mnt
Chapter 21. Virtualization
Contributed by Murray Stokely. bhyve section by Allan Jude. Xen section by Benedict Reuschling. 21.1. Synopsis
Virtualization software allows multiple operating systems to
 run simultaneously on the same computer. Such software systems
 for PCs often involve a host operating system
 which runs the virtualization software and supports any number
 of guest operating systems.
After reading this chapter, you will know:
	The difference between a host operating system and a
	 guest operating system.

	How to install FreeBSD on an Intel®-based Apple®
	 Mac® computer.

	How to install FreeBSD on Microsoft® Windows® with
	 Virtual PC.

	How to install FreeBSD as a guest in
	 bhyve.

	How to tune a FreeBSD system for best performance under
	 virtualization.

Before reading this chapter, you should:
	Understand the basics of UNIX®
	 and FreeBSD.

	Know how to install
	 FreeBSD.

	Know how to set up a
	 network connection.

	Know how to install additional
	 third-party software.

21.3. FreeBSD as a Guest on Virtual PC
 for Windows®
Virtual PC for Windows® is a
 Microsoft® software product available for free download. See
 this website for the system
	requirements. Once
 Virtual PC has been installed on
 Microsoft® Windows®, the user can configure a virtual machine
 and then install the desired guest operating system.
21.3.1. Installing FreeBSD on
	Virtual PC
The first step in installing FreeBSD on
	Virtual PC is to create a new
	virtual machine for installing FreeBSD. Select
	Create a virtual machine when
	prompted:

Select Other as the
	Operating system when
	prompted:

Then, choose a reasonable amount of disk and memory
	depending on the plans for this virtual FreeBSD instance.
	4GB of disk space and 512MB of RAM work well for most uses
	of FreeBSD under Virtual PC:

Save and finish the configuration:

Select the FreeBSD virtual machine and click
	Settings, then set the type of networking
	and a network interface:

After the FreeBSD virtual machine has been created, FreeBSD can
	be installed on it. This is best done with an official FreeBSD
	CD/DVD or with an
	ISO image downloaded from an official
	FTP site. Copy the appropriate
	ISO image to the local Windows® filesystem
	or insert a CD/DVD in
	the CD drive, then double click on the FreeBSD
	virtual machine to boot. Then, click CD
	and choose Capture ISO Image... on the
	Virtual PC window. This will bring
	up a window where the CD-ROM drive in the
	virtual machine can be associated with an
	ISO file on disk or with the real
	CD-ROM drive.

Once this association with the CD-ROM
	source has been made, reboot the FreeBSD virtual machine by
	clicking Action and
	Reset.
	Virtual PC will reboot with a
	special BIOS that first checks for a
	CD-ROM.

In this case it will find the FreeBSD installation media
	and begin a normal FreeBSD installation. Continue with the
	installation, but do not attempt to configure
	Xorg at this time.

When the installation is finished, remember to eject the
	CD/DVD or release the
	ISO image. Finally, reboot into the newly
	installed FreeBSD virtual machine.

21.3.2. Configuring FreeBSD on Virtual
	 PC
After FreeBSD has been successfully installed on
	Microsoft® Windows® with
	Virtual PC, there are a number of
	configuration steps that can be taken to optimize the system
	for virtualized operation.
	Set Boot Loader Variables
The most important step is to reduce the
	 kern.hz tunable to reduce the CPU
	 utilization of FreeBSD under the
	 Virtual PC environment. This
	 is accomplished by adding the following line to
	 /boot/loader.conf:
kern.hz=100
Without this setting, an idle FreeBSD
	 Virtual PC guest OS will
	 use roughly 40% of the CPU of a single processor
	 computer. After this change, the usage will be
	 closer to 3%.

	Create a New Kernel Configuration File
All of the SCSI, FireWire, and USB device drivers can
	 be removed from a custom kernel configuration file.
	 Virtual PC provides a virtual
	 network adapter used by the de(4) driver, so all
	 network devices except for de(4) and miibus(4)
	 can be removed from the kernel.

	Configure Networking
The most basic networking setup uses DHCP to connect
	 the virtual machine to the same local area network as the
	 Microsoft® Windows® host. This can be accomplished by
	 adding ifconfig_de0="DHCP" to
	 /etc/rc.conf. More advanced
	 networking setups are described in
	 Chapter 31, Advanced Networking.

21.6. FreeBSD as a Host with
 VirtualBox
VirtualBox™ is an actively
 developed, complete virtualization package, that is available
 for most operating systems including Windows®, Mac OS®, Linux®
 and FreeBSD. It is equally capable of running Windows® or
 UNIX®-like guests. It is released as open source software, but
 with closed-source components available in a separate extension
 pack. These components include support for USB 2.0 devices.
 More information may be found on the “Downloads”
	page of the VirtualBox™
	wiki. Currently, these extensions are not available
 for FreeBSD.
21.6.1. Installing VirtualBox™
VirtualBox™ is available as a
	FreeBSD package or port in
	emulators/virtualbox-ose. The port can be
	installed using these commands:
cd /usr/ports/emulators/virtualbox-ose
make install clean
One useful option in the port's configuration menu is the
	GuestAdditions suite of programs. These
	provide a number of useful features in guest operating
	systems, like mouse pointer integration (allowing the mouse to
	be shared between host and guest without the need to press a
	special keyboard shortcut to switch) and faster video
	rendering, especially in Windows® guests. The guest
	additions are available in the Devices
	menu, after the installation of the guest is finished.
A few configuration changes are needed before
	VirtualBox™ is started for the
	first time. The port installs a kernel module in
	/boot/modules which
	must be loaded into the running kernel:
kldload vboxdrv
To ensure the module is always loaded after a reboot,
	add this line to
	/boot/loader.conf:
vboxdrv_load="YES"
To use the kernel modules that allow bridged or host-only
	networking, add this line to
	/etc/rc.conf and reboot the
	computer:
vboxnet_enable="YES"
The vboxusers
	group is created during installation of
	VirtualBox™. All users that need
	access to VirtualBox™ will have to
	be added as members of this group. pw can
	be used to add new members:
pw groupmod vboxusers -m yourusername
The default permissions for
	/dev/vboxnetctl are restrictive and need
	to be changed for bridged networking:
chown root:vboxusers /dev/vboxnetctl
chmod 0660 /dev/vboxnetctl
To make this permissions change permanent, add these
	lines to /etc/devfs.conf:
own vboxnetctl root:vboxusers
perm vboxnetctl 0660
To launch VirtualBox™,
	type from a Xorg session:
% VirtualBox
For more information on configuring and using
	VirtualBox™, refer to the
	official
	 website. For FreeBSD-specific information and
	troubleshooting instructions, refer to the relevant
	 page in the FreeBSD wiki.
21.6.2. VirtualBox™ USB Support
VirtualBox™ can be configured
	to pass USB devices through to the guest
	operating system. The host controller of the OSE version is
	limited to emulating USB 1.1 devices until
	the extension pack supporting USB 2.0 and
	3.0 devices becomes available on FreeBSD.
For VirtualBox™ to be aware of
	USB devices attached to the machine, the
	user needs to be a member of the operator group.
pw groupmod operator -m yourusername
Then, add the following to
 /etc/devfs.rules, or create this file if
 it does not exist yet:
[system=10]
add path 'usb/*' mode 0660 group operator
To load these new rules, add the following to
 /etc/rc.conf:
devfs_system_ruleset="system"
Then, restart devfs:
service devfs restart
Restart the login session and
	VirtualBox™ for these changes to
	take effect, and create USB filters as
	necessary.
21.6.3. VirtualBox™ Host
	DVD/CD Access
Access to the host
	DVD/CD drives from
	guests is achieved through the sharing of the physical drives.
	Within VirtualBox™, this is set up from the Storage window in
	the Settings of the virtual machine. If needed, create an
	empty IDE
	CD/DVD device first.
	Then choose the Host Drive from the popup menu for the virtual
	CD/DVD drive selection.
	A checkbox labeled Passthrough will appear.
	This allows the virtual machine to use the hardware directly.
	For example, audio CDs or the burner will
	only function if this option is selected.
HAL needs to run for
	VirtualBox™
	DVD/CD functions to
	work, so enable it in /etc/rc.conf and
	start it if it is not already running:
hald_enable="YES"
service hald start
In order for users to be able to use
	VirtualBox™
	DVD/CD functions, they
	need access to /dev/xpt0,
	/dev/cdN, and
	/dev/passN.
	This is usually achieved by making the user a member of
	operator.
	Permissions to these devices have to be corrected by adding
	these lines to /etc/devfs.conf:
perm cd* 0660
perm xpt0 0660
perm pass* 0660
service devfs restart
21.7. FreeBSD as a Host with
 bhyve
The bhyve
 BSD-licensed hypervisor became part of the
 base system with FreeBSD 10.0-RELEASE. This hypervisor supports a
 number of guests, including FreeBSD, OpenBSD, and many Linux®
 distributions. By default, bhyve
 provides access to serial console and does not emulate a
 graphical console. Virtualization offload features of newer
 CPUs are used to avoid the legacy methods of
 translating instructions and manually managing memory
 mappings.
The bhyve design requires a
 processor that supports Intel® Extended Page Tables
 (EPT) or AMD® Rapid Virtualization Indexing
 (RVI) or Nested Page Tables
 (NPT). Hosting Linux® guests or FreeBSD guests
 with more than one vCPU requires
 VMX unrestricted mode support
 (UG). Most newer processors, specifically
 the Intel® Core™ i3/i5/i7 and Intel® Xeon™
 E3/E5/E7, support these features. UG support
 was introduced with Intel's Westmere micro-architecture. For a
 complete list of Intel® processors that support
 EPT, refer to http://ark.intel.com/search/advanced?s=t&ExtendedPageTables=true.
 RVI is found on the third generation and
 later of the AMD Opteron™ (Barcelona) processors. The easiest
 way to tell if a processor supports
 bhyve is to run
 dmesg or look in
 /var/run/dmesg.boot for the
 POPCNT processor feature flag on the
 Features2 line for AMD® processors or
 EPT and UG on the
 VT-x line for Intel® processors.
21.7.1. Preparing the Host
The first step to creating a virtual machine in
	bhyve is configuring the host
	system. First, load the bhyve
	kernel module:
kldload vmm
Then, create a tap interface for the
	network device in the virtual machine to attach to. In order
	for the network device to participate in the network, also
	create a bridge interface containing the
	tap interface and the physical interface
	as members. In this example, the physical interface is
	igb0:
ifconfig tap0 create
sysctl net.link.tap.up_on_open=1
net.link.tap.up_on_open: 0 -> 1
ifconfig bridge0 create
ifconfig bridge0 addm igb0 addm tap0
ifconfig bridge0 up
21.7.2. Creating a FreeBSD Guest
Create a file to use as the virtual disk for the guest
	machine. Specify the size and name of the virtual
	disk:
truncate -s 16G guest.img
Download an installation image of FreeBSD to install:
fetch ftp://ftp.freebsd.org/pub/FreeBSD/releases/ISO-IMAGES/10.3/FreeBSD-10.3-RELEASE-amd64-bootonly.iso
FreeBSD-10.3-RELEASE-amd64-bootonly.iso 100% of 230 MB 570 kBps 06m17s
FreeBSD comes with an example script for running a virtual
	machine in bhyve. The script will
	start the virtual machine and run it in a loop, so it will
	automatically restart if it crashes. The script takes a
	number of options to control the configuration of the machine:
	-c controls the number of virtual CPUs,
	-m limits the amount of memory available to
	the guest, -t defines which
	tap device to use, -d
	indicates which disk image to use, -i tells
	bhyve to boot from the
	CD image instead of the disk, and
	-I defines which CD image
	to use. The last parameter is the name of the virtual
	machine, used to track the running machines. This example
	starts the virtual machine in installation mode:
sh /usr/share/examples/bhyve/vmrun.sh -c 1 -m 1024M -t tap0 -d guest.img -i -I FreeBSD-10.3-RELEASE-amd64-bootonly.iso guestname
The virtual machine will boot and start the installer.
	After installing a system in the virtual machine, when the
	system asks about dropping in to a shell at the end of the
	installation, choose Yes.
Reboot the virtual machine. While rebooting the virtual
	machine causes bhyve to exit, the
	vmrun.sh script runs
	bhyve in a loop and will automatically
	restart it. When this happens, choose the reboot option from
	the boot loader menu in order to escape the loop. Now the
	guest can be started from the virtual disk:
sh /usr/share/examples/bhyve/vmrun.sh -c 4 -m 1024M -t tap0 -d guest.img guestname
21.7.3. Creating a Linux® Guest
In order to boot operating systems other than FreeBSD, the
	sysutils/grub2-bhyve port must be first
	installed.
Next, create a file to use as the virtual disk for the
	guest machine:
truncate -s 16G linux.img
Starting a virtual machine with
	bhyve is a two step process. First
	a kernel must be loaded, then the guest can be started. The
	Linux® kernel is loaded with
	sysutils/grub2-bhyve. Create a
	device.map that
	grub will use to map the virtual
	devices to the files on the host system:
(hd0) ./linux.img
(cd0) ./somelinux.iso
Use sysutils/grub2-bhyve to load the
	Linux® kernel from the ISO image:
grub-bhyve -m device.map -r cd0 -M 1024M linuxguest
This will start grub. If the installation
	CD contains a
	grub.cfg, a menu will be displayed.
	If not, the vmlinuz and
	initrd files must be located and loaded
	manually:
grub> ls
(hd0) (cd0) (cd0,msdos1) (host)
grub> ls (cd0)/isolinux
boot.cat boot.msg grub.conf initrd.img isolinux.bin isolinux.cfg memtest
splash.jpg TRANS.TBL vesamenu.c32 vmlinuz
grub> linux (cd0)/isolinux/vmlinuz
grub> initrd (cd0)/isolinux/initrd.img
grub> boot
Now that the Linux® kernel is loaded, the guest can be
	started:
bhyve -A -H -P -s 0:0,hostbridge -s 1:0,lpc -s 2:0,virtio-net,tap0 -s 3:0,virtio-blk,./linux.img \
 -s 4:0,ahci-cd,./somelinux.iso -l com1,stdio -c 4 -m 1024M linuxguest
The system will boot and start the installer. After
	installing a system in the virtual machine, reboot the virtual
	machine. This will cause bhyve to
	exit. The instance of the virtual machine needs to be
	destroyed before it can be started again:
bhyvectl --destroy --vm=linuxguest
Now the guest can be started directly from the virtual
	disk. Load the kernel:
grub-bhyve -m device.map -r hd0,msdos1 -M 1024M linuxguest
grub> ls
(hd0) (hd0,msdos2) (hd0,msdos1) (cd0) (cd0,msdos1) (host)
(lvm/VolGroup-lv_swap) (lvm/VolGroup-lv_root)
grub> ls (hd0,msdos1)/
lost+found/ grub/ efi/ System.map-2.6.32-431.el6.x86_64 config-2.6.32-431.el6.x
86_64 symvers-2.6.32-431.el6.x86_64.gz vmlinuz-2.6.32-431.el6.x86_64
initramfs-2.6.32-431.el6.x86_64.img
grub> linux (hd0,msdos1)/vmlinuz-2.6.32-431.el6.x86_64 root=/dev/mapper/VolGroup-lv_root
grub> initrd (hd0,msdos1)/initramfs-2.6.32-431.el6.x86_64.img
grub> boot
Boot the virtual machine:
bhyve -A -H -P -s 0:0,hostbridge -s 1:0,lpc -s 2:0,virtio-net,tap0 \
 -s 3:0,virtio-blk,./linux.img -l com1,stdio -c 4 -m 1024M linuxguest
Linux® will now boot in the virtual machine and
	eventually present you with the login prompt. Login and use
	the virtual machine. When you are finished, reboot the
	virtual machine to exit bhyve.
	Destroy the virtual machine instance:
bhyvectl --destroy --vm=linuxguest
21.7.4. Booting bhyve Virtual Machines
	with UEFI Firmware
In addition to bhyveload and
	grub-bhyve, the
	bhyve hypervisor can also boot
	virtual machines using the UEFI userspace
	firmware. This option may support guest operating systems
	that are not supported by the other loaders.
In order to make use of the UEFI
	support in bhyve, first obtain the
	UEFI firmware images. This can be done by
	installing sysutils/bhyve-firmware port or
	package.
With the firmware in place, add the flags -l
	 bootrom,/path/to/firmware
	to your bhyve command line. The
	actual bhyve command may look like
	this:
bhyve -AHP -s 0:0,hostbridge -s 1:0,lpc \
-s 2:0,virtio-net,tap1 -s 3:0,virtio-blk,./disk.img \
-s 4:0,ahci-cd,./install.iso -c 4 -m 1024M \
-l bootrom,/usr/local/share/uefi-firmware/BHYVE_UEFI.fd \
guest
sysutils/bhyve-firmware also contains a
	CSM-enabled firmware, to boot guests with
	no UEFI support in legacy
	BIOS mode:
bhyve -AHP -s 0:0,hostbridge -s 1:0,lpc \
-s 2:0,virtio-net,tap1 -s 3:0,virtio-blk,./disk.img \
-s 4:0,ahci-cd,./install.iso -c 4 -m 1024M \
-l bootrom,/usr/local/share/uefi-firmware/BHYVE_UEFI_CSM.fd \
guest
21.7.5. Graphical UEFI Framebuffer for
	bhyve Guests
The UEFI firmware support is
	particularly useful with predominantly graphical guest
	operating systems such as Microsoft Windows®.
Support for the UEFI-GOP framebuffer may also be enabled
	with the -s
	 29,fbuf,tcp=0.0.0.0:5900
	flags. The framebuffer resolution may be configured with
	w=800 and
	h=600, and
	bhyve can be instructed to wait for
	a VNC connection before booting the guest
	by adding wait. The framebuffer may be
	accessed from the host or over the network via the
	VNC protocol.
The resulting bhyve command
	would look like this:
bhyve -AHP -s 0:0,hostbridge -s 31:0,lpc \
-s 2:0,virtio-net,tap1 -s 3:0,virtio-blk,./disk.img \
-s 4:0,ahci-cd,./install.iso -c 4 -m 1024M \
-s 29,fbuf,tcp=0.0.0.0:5900,w=800,h=600,wait \
-l bootrom,/usr/local/share/uefi-firmware/BHYVE_UEFI.fd \
guest
Note, in BIOS emulation mode, the framebuffer will cease
	receiving updates once control is passed from firmware to
	guest operating system.
21.7.6. Using ZFS with
	bhyve Guests
If ZFS is available on the host
	machine, using ZFS volumes
	instead of disk image files can provide significant
	performance benefits for the guest VMs. A
	ZFS volume can be created by:
zfs create -V16G -o volmode=dev zroot/linuxdisk0
When starting the VM, specify the
	ZFS volume as the disk drive:
bhyve -A -H -P -s 0:0,hostbridge -s 1:0,lpc -s 2:0,virtio-net,tap0 -s3:0,virtio-blk,/dev/zvol/zroot/linuxdisk0 \
 -l com1,stdio -c 4 -m 1024M linuxguest
21.7.7. Virtual Machine Consoles
It is advantageous to wrap the
	bhyve console in a session
	management tool such as sysutils/tmux or
	sysutils/screen in order to detach and
	reattach to the console. It is also possible to have the
	console of bhyve be a null modem
	device that can be accessed with cu. To do
	this, load the nmdm kernel module and
	replace -l com1,stdio with
	-l com1,/dev/nmdm0A. The
	/dev/nmdm devices are created
	automatically as needed, where each is a pair, corresponding
	to the two ends of the null modem cable
	(/dev/nmdm0A and
	/dev/nmdm0B). See nmdm(4) for more
	information.
kldload nmdm
bhyve -A -H -P -s 0:0,hostbridge -s 1:0,lpc -s 2:0,virtio-net,tap0 -s 3:0,virtio-blk,./linux.img \
 -l com1,/dev/nmdm0A -c 4 -m 1024M linuxguest
cu -l /dev/nmdm0B
Connected

Ubuntu 13.10 handbook ttyS0

handbook login:
21.7.8. Managing Virtual Machines
A device node is created in /dev/vmm for each virtual
	machine. This allows the administrator to easily see a list
	of the running virtual machines:
ls -al /dev/vmm
total 1
dr-xr-xr-x 2 root wheel 512 Mar 17 12:19 ./
dr-xr-xr-x 14 root wheel 512 Mar 17 06:38 ../
crw------- 1 root wheel 0x1a2 Mar 17 12:20 guestname
crw------- 1 root wheel 0x19f Mar 17 12:19 linuxguest
crw------- 1 root wheel 0x1a1 Mar 17 12:19 otherguest
A specified virtual machine can be destroyed using
	bhyvectl:
bhyvectl --destroy --vm=guestname
21.7.9. Persistent Configuration
In order to configure the system to start
	bhyve guests at boot time, the
	following configurations must be made in the specified
	files:
	/etc/sysctl.conf
net.link.tap.up_on_open=1

	/etc/rc.conf
cloned_interfaces="bridge0 tap0"
ifconfig_bridge0="addm igb0 addm tap0"
kld_list="nmdm vmm"

21.8. FreeBSD as a Xen™-Host
Xen is a GPLv2-licensed type
	1 hypervisor for Intel® and ARM® architectures. FreeBSD
 has included i386™ and AMD® 64-Bit DomU
 and Amazon
	EC2 unprivileged domain (virtual machine) support since
 FreeBSD 8.0 and includes Dom0 control domain (host) support in
 FreeBSD 11.0. Support for para-virtualized (PV) domains has
 been removed from FreeBSD 11 in favor of hardware virtualized
 (HVM) domains, which provides better performance.
Xen™ is a bare-metal hypervisor, which means that it is the
 first program loaded after the BIOS. A special privileged guest
 called the Domain-0 (Dom0 for short) is then
 started. The Dom0 uses its special privileges to directly
 access the underlying physical hardware, making it a
 high-performance solution. It is able to access the disk
 controllers and network adapters directly. The Xen™ management
 tools to manage and control the Xen™ hypervisor are also used
 by the Dom0 to create, list, and destroy VMs. Dom0 provides
 virtual disks and networking for unprivileged domains, often
 called DomU. Xen™ Dom0 can be compared to
 the service console of other hypervisor solutions, while the
 DomU is where individual guest VMs are run.
Xen™ can migrate VMs between different Xen™ servers. When
 the two xen hosts share the same underlying storage, the
 migration can be done without having to shut the VM down first.
 Instead, the migration is performed live while the DomU is
 running and there is no need to restart it or plan a downtime.
 This is useful in maintenance scenarios or upgrade windows to
 ensure that the services provided by the DomU are still
 provided. Many more features of Xen™ are listed on the Xen
	Wiki Overview page. Note that not all features are
 supported on FreeBSD yet.
21.8.1. Hardware Requirements for Xen™ Dom0
To run the Xen™ hypervisor on a host, certain hardware
	functionality is required. Hardware virtualized domains
	require Extended Page Table (EPT)
	and Input/Output Memory Management Unit (IOMMU)
	support in the host processor.
Note:
In order to run a FreeBSD Xen™ Dom0 the box must be
	 booted using legacy boot (BIOS).

21.8.2. Xen™ Dom0 Control Domain Setup
Users of FreeBSD 11 should install the
	emulators/xen-kernel47 and
	sysutils/xen-tools47 packages that are
	based on Xen version 4.7. Systems running on FreeBSD-12.0 or
	newer can use Xen 4.11 provided by
	emulators/xen-kernel411 and
	sysutils/xen-tools411, respectively.
Configuration files must be edited to prepare the host
	for the Dom0 integration after the Xen packages are installed.
	An entry to /etc/sysctl.conf disables the
	limit on how many pages of memory are allowed to be wired.
	Otherwise, DomU VMs with higher memory requirements will not
	run.
echo 'vm.max_wired=-1' >> /etc/sysctl.conf
Another memory-related setting involves changing
	/etc/login.conf, setting the
	memorylocked option to
	unlimited. Otherwise, creating DomU
	domains may fail with Cannot allocate
	 memory errors. After making the change to
	/etc/login.conf, run
	cap_mkdb to update the capability database.
	See Section 13.13, “Resource Limits” for
	details.
sed -i '' -e 's/memorylocked=64K/memorylocked=unlimited/' /etc/login.conf
cap_mkdb /etc/login.conf
Add an entry for the Xen™ console to
	/etc/ttys:
echo 'xc0 "/usr/libexec/getty Pc" xterm onifconsole secure' >> /etc/ttys
Selecting a Xen™ kernel in
	/boot/loader.conf activates the Dom0.
	Xen™ also requires resources like CPU and memory from the
	host machine for itself and other DomU domains. How much CPU
	and memory depends on the individual requirements and hardware
	capabilities. In this example, 8 GB of memory and 4
	virtual CPUs are made available for the Dom0. The serial
	console is also activated and logging options are
	defined.
The following command is used for Xen 4.7 packages:
sysrc -f /boot/loader.conf hw.pci.mcfg=0
sysrc -f /boot/loader.conf if_tap_load="YES"
sysrc -f /boot/loader.conf xen_kernel="/boot/xen"
sysrc -f /boot/loader.conf xen_cmdline="dom0_mem=8192M dom0_max_vcpus=4 dom0pvh=1 console=com1,vga com1=115200,8n1 guest_loglvl=all loglvl=all"
For Xen versions 4.11 and higher, the following command
	should be used instead:
sysrc -f /boot/loader.conf if_tap_load="YES"
sysrc -f /boot/loader.conf xen_kernel="/boot/xen"
sysrc -f /boot/loader.conf xen_cmdline="dom0_mem=8192M dom0_max_vcpus=4 dom0=pvh console=com1,vga com1=115200,8n1 guest_loglvl=all loglvl=all"
Tip:
Log files that Xen™ creates for the DomU VMs
	 are stored in /var/log/xen. Please
	 be sure to check the contents of that directory if
	 experiencing issues.

Activate the xencommons service during system
	 startup:
sysrc xencommons_enable=yes
These settings are enough to start a Dom0-enabled
	 system. However, it lacks network functionality for the
	 DomU machines. To fix that, define a bridged interface with
	 the main NIC of the system which the DomU VMs can use to
	 connect to the network. Replace
	 em0 with the host network
	 interface name.
sysrc cloned_interfaces="bridge0"
	 # sysrc ifconfig_bridge0="addm em0 SYNCDHCP"
	 # sysrc ifconfig_em0="up"
Restart the host to load the Xen™ kernel and start the
	 Dom0.
reboot
After successfully booting the Xen™ kernel and logging
	 into the system again, the Xen™ management tool
	 xl is used to show information about the
	 domains.
xl list
Name ID Mem VCPUs State Time(s)
Domain-0 0 8192 4 r----- 962.0
The output confirms that the Dom0 (called
	 Domain-0) has the ID 0
	 and is running. It also has the memory and virtual CPUs
	 that were defined in /boot/loader.conf
	 earlier. More information can be found in the Xen™
	 Documentation. DomU guest VMs can now be
	 created.
21.8.3. Xen™ DomU Guest VM Configuration
Unprivileged domains consist of a configuration file and
	 virtual or physical hard disks. Virtual disk storage for
	 the DomU can be files created by truncate(1) or ZFS
	 volumes as described in Section 19.4.2, “Creating and Destroying Volumes”.
	 In this example, a 20 GB volume is used. A VM is
	 created with the ZFS volume, a FreeBSD ISO image, 1 GB of
	 RAM and two virtual CPUs. The ISO installation file is
	 retrieved with fetch(1) and saved locally in a file
	 called freebsd.iso.
fetch ftp://ftp.freebsd.org/pub/FreeBSD/releases/ISO-IMAGES/12.0/FreeBSD-12.0-RELEASE-amd64-bootonly.iso -o freebsd.iso
A ZFS volume of 20 GB called
	xendisk0 is created to serve as the disk
	space for the VM.
zfs create -V20G -o volmode=dev zroot/xendisk0
The new DomU guest VM is defined in a file. Some specific
	definitions like name, keymap, and VNC connection details are
	also defined. The following freebsd.cfg
	contains a minimum DomU configuration for this example:
cat freebsd.cfg
builder = "hvm" [image: 1]
name = "freebsd" [image: 2]
memory = 1024 [image: 3]
vcpus = 2 [image: 4]
vif = ['mac=00:16:3E:74:34:32,bridge=bridge0'] [image: 5]
disk = [
'/dev/zvol/tank/xendisk0,raw,hda,rw', [image: 6]
'/root/freebsd.iso,raw,hdc:cdrom,r' [image: 7]
]
vnc = 1 [image: 8]
vnclisten = "0.0.0.0"
serial = "pty"
usbdevice = "tablet"
These lines are explained in more detail:
	[image: 1]
	This defines what kind of virtualization to use.
	 hvm refers to hardware-assisted
	 virtualization or hardware virtual machine. Guest
	 operating systems can run unmodified on CPUs with
	 virtualization extensions, providing nearly the same
	 performance as running on physical hardware.
	 generic is the default value and
	 creates a PV domain.

	[image: 2]
	Name of this virtual machine to distinguish it from
	 others running on the same Dom0. Required.

	[image: 3]
	Quantity of RAM in megabytes to make available to the
	 VM. This amount is subtracted from the hypervisor's total
	 available memory, not the memory of the Dom0.

	[image: 4]
	Number of virtual CPUs available to the guest VM. For
	 best performance, do not create guests with more virtual
	 CPUs than the number of physical CPUs on the host.

	[image: 5]
	Virtual network adapter. This is the bridge connected
	 to the network interface of the host. The
	 mac parameter is the MAC address set on
	 the virtual network interface. This parameter is
	 optional, if no MAC is provided Xen™ will generate a
	 random one.

	[image: 6]
	Full path to the disk, file, or ZFS volume of the disk
	 storage for this VM. Options and multiple disk
	 definitions are separated by commas.

	[image: 7]
	Defines the Boot medium from which the initial
	 operating system is installed. In this example, it is the
	 ISO imaged downloaded earlier. Consult the Xen™
	 documentation for other kinds of devices and options to
	 set.

	[image: 8]
	Options controlling VNC connectivity to the serial
	 console of the DomU. In order, these are: active VNC
	 support, define IP address on which to listen, device node
	 for the serial console, and the input method for precise
	 positioning of the mouse and other input methods.
	 keymap defines which keymap to use, and
	 is english by default.

After the file has been created with all the necessary
	options, the DomU is created by passing it to xl
	 create as a parameter.
xl create freebsd.cfg
Note:
Each time the Dom0 is restarted, the configuration file
	 must be passed to xl create again to
	 re-create the DomU. By default, only the Dom0 is created
	 after a reboot, not the individual VMs. The VMs can
	 continue where they left off as they stored the operating
	 system on the virtual disk. The virtual machine
	 configuration can change over time (for example, when adding
	 more memory). The virtual machine configuration files must
	 be properly backed up and kept available to be able to
	 re-create the guest VM when needed.

The output of xl list confirms that the
	DomU has been created.
xl list
Name ID Mem VCPUs State Time(s)
Domain-0 0 8192 4 r----- 1653.4
freebsd 1 1024 1 -b---- 663.9
To begin the installation of the base operating system,
	start the VNC client, directing it to the main network address
	of the host or to the IP address defined on the
	vnclisten line of
	freebsd.cfg. After the operating system
	has been installed, shut down the DomU and disconnect the VNC
	viewer. Edit freebsd.cfg, removing the
	line with the cdrom definition or
	commenting it out by inserting a #
	character at the beginning of the line. To load this new
	configuration, it is necessary to remove the old DomU with
	xl destroy, passing either the name or the
	id as the parameter. Afterwards, recreate it using the
	modified freebsd.cfg.
xl destroy freebsd
xl create freebsd.cfg
The machine can then be accessed again using the VNC
	viewer. This time, it will boot from the virtual disk where
	the operating system has been installed and can be used as a
	virtual machine.
21.8.4. Troubleshooting
This section contains basic information in order to help
	troubleshoot issues found when using FreeBSD as a Xen™ host or
	guest.
21.8.4.1. Host Boot Troubleshooting
Please note that the following troubleshooting tips
	 are intended for Xen™ 4.11 or newer. If you are still
	 using Xen™ 4.7 and having issues consider migrating to
	 a newer version of Xen™.
In order to troubleshoot host boot issues you will
	 likely need a serial cable, or a debug USB cable. Verbose
	 Xen™ boot output can be obtained by adding options to the
	 xen_cmdline option found in
	 loader.conf. A couple of relevant
	 debug options are:
	iommu=debug: can be used to print
	 additional diagnostic information about the
	 iommu.

	dom0=verbose: can be used to
	 print additional diagnostic information about the
	 dom0 build process.

	sync_console: flag to force
	 synchronous console output. Useful for debugging to
	 avoid losing messages due to rate limiting.
	 Never use this option in production environments since
	 it can allow malicious guests to perform DoS attacks
	 against Xen™ using the console.

FreeBSD should also be booted in verbose mode in order
	 to identify any issues. To activate verbose booting, run
	 this command:
sysrc -f /boot/loader.conf boot_verbose="YES"
If none of these options help solving the problem,
	 please send the serial boot log to
	 <freebsd-xen@FreeBSD.org> and
	 <xen-devel@lists.xenproject.org>
	 for further analysis.
21.8.4.2. Guest Creation Troubleshooting
Issues can also arise when creating guests, the
	 following attempts to provide some help for those trying
	 to diagnose guest creation issues.
The most common cause of guest creation failures is the
	 xl command spitting some error and
	 exiting with a return code different than 0. If the error
	 provided is not enough to help identify the issue, more
	 verbose output can also be obtained from
	 xl by using the v
	 option repeatedly.
xl -vvv create freebsd.cfg
Parsing config from freebsd.cfg
libxl: debug: libxl_create.c:1693:do_domain_create: Domain 0:ao 0x800d750a0: create: how=0x0 callback=0x0 poller=0x800d6f0f0
libxl: debug: libxl_device.c:397:libxl__device_disk_set_backend: Disk vdev=xvda spec.backend=unknown
libxl: debug: libxl_device.c:432:libxl__device_disk_set_backend: Disk vdev=xvda, using backend phy
libxl: debug: libxl_create.c:1018:initiate_domain_create: Domain 1:running bootloader
libxl: debug: libxl_bootloader.c:328:libxl__bootloader_run: Domain 1:not a PV/PVH domain, skipping bootloader
libxl: debug: libxl_event.c:689:libxl__ev_xswatch_deregister: watch w=0x800d96b98: deregister unregistered
domainbuilder: detail: xc_dom_allocate: cmdline="", features=""
domainbuilder: detail: xc_dom_kernel_file: filename="/usr/local/lib/xen/boot/hvmloader"
domainbuilder: detail: xc_dom_malloc_filemap : 326 kB
libxl: debug: libxl_dom.c:988:libxl__load_hvm_firmware_module: Loading BIOS: /usr/local/share/seabios/bios.bin
...
If the verbose output does not help diagnose the issue
	 there are also QEMU and Xen™ toolstack logs in
	 /var/log/xen. Note that the name of
	 the domain is appended to the log name, so if the domain
	 is named freebsd you should find a
	 /var/log/xen/xl-freebsd.log and likely
	 a /var/log/xen/qemu-dm-freebsd.log.
	 Both log files can contain useful information for debugging.
	 If none of this helps solve the issue, please send the
	 description of the issue you are facing and as much
	 information as possible to
	 <freebsd-xen@FreeBSD.org> and
	 <xen-devel@lists.xenproject.org> in order to
	 get help.
22.2. Using Localization
Localization settings are based on three components:
 the language code, country code, and encoding. Locale names are
 constructed from these parts as follows:
LanguageCode_CountryCode.Encoding
The LanguageCode and
	CountryCode are used to determine
	the country and the specific language variation. Table 22.1, “Common Language and Country Codes” provides some examples of
	LanguageCode_CountryCode:
Table 22.1. Common Language and Country Codes
	LanguageCode_Country Code	Description
	en_US	English, United States
	ru_RU	Russian, Russia
	zh_TW	Traditional Chinese, Taiwan

A complete listing of available locales can be found by
	typing:
% locale -a | more
To determine the current locale setting:
% locale
Language specific character sets, such as ISO8859-1,
	ISO8859-15, KOI8-R, and CP437, are described in
	multibyte(3). The active list of character sets can be
	found at the IANA
	 Registry.
Some languages, such as Chinese or Japanese, cannot be
	represented using ASCII characters and
	require an extended language encoding using either wide or
	multibyte characters. Examples of wide or multibyte encodings
	include EUC and Big5. Older applications may mistake these
	encodings for control characters while newer applications
	usually recognize these characters. Depending on the
	implementation, users may be required to compile an
	application with wide or multibyte character support, or to
	configure it correctly.
Note:
FreeBSD uses Xorg-compatible locale encodings.

The rest of this section describes the various methods for
	configuring the locale on a FreeBSD system. The next section
	will discuss the considerations for finding and compiling
	applications with i18n support.
22.2.1. Setting Locale for Login Shell
Locale settings are configured either in a user's
	~/.login_conf
	or in the startup file of the user's shell:
	~/.profile,
	~/.bashrc, or
	~/.cshrc.
Two environment
	variables should be set:
	LANG, which sets the locale

	MM_CHARSET, which sets the
	 MIME character set used by
	 applications

In addition to the user's shell configuration, these
	variables should also be set for specific application
	configuration and Xorg
	configuration.
Two methods are available for making the needed variable
	assignments: the login
	 class method, which is the recommended method, and
	the startup file method.
	The next two sections demonstrate how to use both
	methods.
22.2.1.1. Login Classes Method
This first method is the recommended method as it
	 assigns the required environment variables for locale name
	 and MIME character sets for every
	 possible shell. This setup can either be performed by each
	 user or it can be configured for all users by the
	 superuser.
This minimal example sets both variables for Latin-1
	 encoding in the .login_conf of an
	 individual user's home directory:
me:\
	:charset=ISO-8859-1:\
	:lang=de_DE.ISO8859-1:
Here is an example of a user's
	 ~/.login_conf that sets the variables
	 for Traditional Chinese in BIG-5 encoding. More variables
	 are needed because some applications do not correctly
	 respect locale variables for Chinese, Japanese, and
	 Korean:
#Users who do not wish to use monetary units or time formats
#of Taiwan can manually change each variable
me:\
	:lang=zh_TW.Big5:\
	:setenv=LC_ALL=zh_TW.Big5,LC_COLLATE=zh_TW.Big5,LC_CTYPE=zh_TW.Big5,LC_MESSAGES=zh_TW.Big5,LC_MONETARY=zh_TW.Big5,LC_NUMERIC=zh_TW.Big5,LC_TIME=zh_TW.Big5:\
	:charset=big5:\
	:xmodifiers="@im=gcin": #Set gcin as the XIM Input Server
Alternately, the superuser can configure all users of
	 the system for localization. The following variables in
	 /etc/login.conf are used to set the
	 locale and MIME character set:
language_name|Account Type Description:\
	:charset=MIME_charset:\
	:lang=locale_name:\
	:tc=default:
So, the previous Latin-1 example would look like
	 this:
german|German Users Accounts:\
	:charset=ISO-8859-1:\
	:lang=de_DE.ISO8859-1:\
	:tc=default:
See login.conf(5) for more details about these
	 variables.
Whenever /etc/login.conf is edited,
	 remember to execute the following command to update the
	 capability database:
cap_mkdb /etc/login.conf
22.2.1.1.1. Utilities Which Change Login Classes
In addition to manually editing
	 /etc/login.conf, several utilities
	 are available for setting the locale for newly created
	 users.
When using vipw to add new users,
	 specify the language to set the
	 locale:
user:password:1111:11:language:0:0:User Name:/home/user:/bin/sh
When using adduser to add new
	 users, the default language can be pre-configured for all
	 new users or specified for an individual user.
If all new users use the same language, set
	 defaultclass=language in
	 /etc/adduser.conf.
To override this setting when creating a user, either
	 input the required locale at this prompt:
Enter login class: default []:
or specify the locale to set when invoking
	 adduser:
adduser -class language
If pw is used to add new users,
	 specify the locale as follows:
pw useradd user_name -L language
22.2.1.2. Shell Startup File Method
This second method is not recommended as each shell
	 that is used requires manual configuration, where each
	 shell has a different configuration file and differing
	 syntax. As an example, to set the German language for the
	 sh shell, these lines could be added to
	 ~/.profile to set the shell for that
	 user only. These lines could also be added to
	 /etc/profile or
	 /usr/share/skel/dot.profile to set
	 that shell for all users:
LANG=de_DE.ISO8859-1; export LANG
MM_CHARSET=ISO-8859-1; export MM_CHARSET
However, the name of the configuration file and the
	 syntax used differs for the csh shell.
	 These are the equivalent settings for
	 ~/.csh.login,
	 /etc/csh.login, or
	 /usr/share/skel/dot.login:
setenv LANG de_DE.ISO8859-1
setenv MM_CHARSET ISO-8859-1
To complicate matters, the syntax needed to configure
	 Xorg in
	 ~/.xinitrc also depends upon the
	 shell. The first example is for the sh
	 shell and the second is for the csh
	 shell:
LANG=de_DE.ISO8859-1; export LANG
setenv LANG de_DE.ISO8859-1
22.2.2. Console Setup
Several localized fonts are available for the console. To
	see a listing of available fonts, type
	ls /usr/share/syscons/fonts. To configure
	the console font, specify the
	font_name,
	without the .fnt suffix, in
	/etc/rc.conf:
font8x16=font_name
font8x14=font_name
font8x8=font_name
The keymap and screenmap can be set by adding the
	following to /etc/rc.conf:
scrnmap=screenmap_name
keymap=keymap_name
keychange="fkey_number sequence"
To see the list of available screenmaps, type
	ls /usr/share/syscons/scrnmaps. Do not
	include the .scm suffix when specifying
	screenmap_name. A screenmap with a
	corresponding mapped font is usually needed as a workaround
	for expanding bit 8 to bit 9 on a VGA adapter's font character
	matrix so that letters are moved out of the pseudographics
	area if the screen font uses a bit 8 column.
To see the list of available keymaps, type
	ls /usr/share/syscons/keymaps. When
	specifying the keymap_name, do not
	include the .kbd suffix. To test
	keymaps without rebooting,
	use kbdmap(1).
The keychange entry is usually needed
	to program function keys to match the selected terminal type
	because function key sequences cannot be defined in the
	keymap.
Next, set the correct console terminal type in
	/etc/ttys for all virtual terminal
	entries. Table 22.2, “Defined Terminal Types for Character Sets” summarizes the
	available terminal types.:
Table 22.2. Defined Terminal Types for Character Sets
	Character Set	Terminal Type
	ISO8859-1 or ISO8859-15	cons25l1
	ISO8859-2	cons25l2
	ISO8859-7	cons25l7
	KOI8-R	cons25r
	KOI8-U	cons25u
	CP437 (VGA default)	cons25
	US-ASCII	cons25w

For languages with wide or multibyte characters, install a
	console for that language from the FreeBSD Ports Collection. The
	available ports are summarized in Table 22.3, “Available Console from Ports Collection”. Once installed, refer to the
	port's pkg-message or man pages for
	configuration and usage instructions.
Table 22.3. Available Console from Ports Collection
	Language	Port Location
	Traditional Chinese (BIG-5)	chinese/big5con
	Chinese/Japanese/Korean	chinese/cce
	Chinese/Japanese/Korean	chinese/zhcon
	Japanese	chinese/kon2
	Japanese	japanese/kon2-14dot
	Japanese	japanese/kon2-16dot

If moused is enabled in
	/etc/rc.conf, additional configuration
	may be required. By default, the mouse cursor of the
	syscons(4) driver occupies the
	0xd0-0xd3 range in the
	character set. If the language uses this range, move the
	cursor's range by adding the
	following line to /etc/rc.conf:
mousechar_start=3
22.2.3. Xorg Setup
Chapter 5, The X Window System describes how to install and
	configure Xorg. When configuring
	Xorg for localization, additional
	fonts and input methods are available from the FreeBSD Ports
	Collection. Application specific i18n
	settings such as fonts and menus can be tuned in
	~/.Xresources and should allow users to
	view their selected language in graphical application
	menus.
The X Input Method (XIM) protocol is an
	Xorg standard for inputting
	non-English characters. Table 22.4, “Available Input Methods”
	summarizes the input method applications which are available
	in the FreeBSD Ports Collection. Additional Fcitx and Uim
	applications are also available.
Table 22.4. Available Input Methods
	Language	Input Method
	Chinese	chinese/gcin
	Chinese	chinese/ibus-chewing
	Chinese	chinese/ibus-pinyin
	Chinese	chinese/oxim
	Chinese	chinese/scim-fcitx
	Chinese	chinese/scim-pinyin
	Chinese	chinese/scim-tables
	Japanese	japanese/ibus-anthy
	Japanese	japanese/ibus-mozc
	Japanese	japanese/ibus-skk
	Japanese	japanese/im-ja
	Japanese	japanese/kinput2
	Japanese	japanese/scim-anthy
	Japanese	japanese/scim-canna
	Japanese	japanese/scim-honoka
	Japanese	japanese/scim-honoka-plugin-romkan
	Japanese	japanese/scim-honoka-plugin-wnn
	Japanese	japanese/scim-prime
	Japanese	japanese/scim-skk
	Japanese	japanese/scim-tables
	Japanese	japanese/scim-tomoe
	Japanese	japanese/scim-uim
	Japanese	japanese/skkinput
	Japanese	japanese/skkinput3
	Japanese	japanese/uim-anthy
	Korean	korean/ibus-hangul
	Korean	korean/imhangul
	Korean	korean/nabi
	Korean	korean/scim-hangul
	Korean	korean/scim-tables
	Vietnamese	vietnamese/xvnkb
	Vietnamese	vietnamese/x-unikey

22.3. Finding i18n Applications
i18n applications are programmed using
 i18n kits under libraries. These allow
 developers to write a simple file and translate displayed menus
 and texts to each language.
The FreeBSD
	Ports Collection contains many applications with
 built-in support for wide or multibyte characters for several
 languages. Such applications include i18n in
 their names for easy identification. However, they do not
 always support the language needed.
Some applications can be compiled with the specific
 charset. This is usually done in the port's
 Makefile or by passing a value to
 configure. Refer to the
 i18n documentation in the respective FreeBSD
 port's source for more information on how to determine the
 needed configure value or the port's
 Makefile to determine which compile options
 to use when building the port.
22.4. Locale Configuration for Specific Languages
This section provides configuration examples for localizing
 a FreeBSD system for the Russian language. It then provides some
 additional resources for localizing other languages.
22.4.1. Russian Language (KOI8-R Encoding)
Originally
	 contributed by Andrey Chernov. This section shows the specific settings needed to
	localize a FreeBSD system for the Russian language. Refer to
	Using Localization
	for a more complete description of each type of
	setting.
To set this locale for the login shell, add the following
	lines to each user's
	~/.login_conf:
me:My Account:\
	:charset=KOI8-R:\
	:lang=ru_RU.KOI8-R:
To configure the console, add the following lines to
	/etc/rc.conf:
keymap="ru.koi8-r"
scrnmap="koi8-r2cp866"
font8x16="cp866b-8x16"
font8x14="cp866-8x14"
font8x8="cp866-8x8"
mousechar_start=3
For each ttyv entry in
	/etc/ttys, use
	cons25r as the terminal type.
To configure printing, a special output filter is needed
	to convert from KOI8-R to CP866 since most printers with
	Russian characters come with hardware code page CP866. FreeBSD
	includes a default filter for this purpose,
	/usr/libexec/lpr/ru/koi2alt. To use this
	filter, add this entry to
	/etc/printcap:
lp|Russian local line printer:\
	:sh:of=/usr/libexec/lpr/ru/koi2alt:\
	:lp=/dev/lpt0:sd=/var/spool/output/lpd:lf=/var/log/lpd-errs:
Refer to printcap(5) for a more detailed
	explanation.
To configure support for Russian filenames in mounted
	MS-DOS® file systems, include -L and the
	locale name when adding an entry to
	/etc/fstab:
/dev/ad0s2 /dos/c msdos rw,-Lru_RU.KOI8-R 0 0
Refer to mount_msdosfs(8) for more details.
To configure Russian fonts for
	Xorg, install the
	x11-fonts/xorg-fonts-cyrillic package.
	Then, check the "Files" section in
	/etc/X11/xorg.conf. The following line
	must be added before any other
	FontPath entries:
FontPath "/usr/local/lib/X11/fonts/cyrillic"
Additional Cyrillic fonts are available in the Ports
	Collection.
To activate a Russian keyboard, add the following to the
	"Keyboard" section of
	/etc/xorg.conf:
Option "XkbLayout" "us,ru"
Option "XkbOptions" "grp:toggle"
Make sure that XkbDisable is
	commented out in that file.
For grp:toggle use
	Right Alt, for
	grp:ctrl_shift_toggle use Ctrl+Shift.
	For grp:caps_toggle use
	CapsLock. The old
	CapsLock function is still available in LAT
	mode only using Shift+CapsLock.
	grp:caps_toggle does not work in
	Xorg for some unknown
	reason.
If the keyboard has “Windows®” keys, and
	some non-alphabetical keys are mapped incorrectly, add the
	following line to /etc/xorg.conf:
Option "XkbVariant" ",winkeys"
Note:
The Russian XKB keyboard may not work with
	 non-localized applications. Minimally localized
	 applications should call a XtSetLanguageProc
	 (NULL, NULL, NULL); function early in the
	 program.

See http://koi8.pp.ru/xwin.html
	for more instructions on localizing
	Xorg applications. For more
	general information about KOI8-R encoding, refer to http://koi8.pp.ru/.
22.4.2. Additional Language-Specific Resources
This section lists some additional resources for
	configuring other locales.
	Traditional Chinese for Taiwan
	The FreeBSD-Taiwan Project has a Chinese HOWTO for FreeBSD
	 at http://netlab.cse.yzu.edu.tw/~statue/freebsd/zh-tut/.

	Greek Language Localization
	A complete article on Greek support in FreeBSD
	 is available here,
	 in Greek only, as part of the official FreeBSD Greek
	 documentation.

	Japanese and Korean Language Localization
	For Japanese, refer to http://www.jp.FreeBSD.org/,
	 and for Korean, refer to http://www.kr.FreeBSD.org/.

	Non-English FreeBSD Documentation
	Some FreeBSD contributors have translated parts of the
	 FreeBSD documentation to other languages. They are
	 available through links on the FreeBSD web
		site or in
	 /usr/share/doc.

Chapter 23. Updating and Upgrading FreeBSD
Restructured, reorganized, and parts updated
	 by Jim Mock. Original work by Jordan Hubbard, Poul-Henning Kamp, John Polstra and Nik Clayton. 23.1. Synopsis
FreeBSD is under constant development between releases. Some
 people prefer to use the officially released versions, while
 others prefer to keep in sync with the latest developments.
 However, even official releases are often updated with security
 and other critical fixes. Regardless of the version used, FreeBSD
 provides all the necessary tools to keep the system updated, and
 allows for easy upgrades between versions. This chapter
 describes how to track the development system and the basic
 tools for keeping a FreeBSD system up-to-date.
After reading this chapter, you will know:
	How to keep a FreeBSD system up-to-date with
	 freebsd-update or
	 Subversion.

	How to compare the state of an installed system against
	 a known pristine copy.

	How to keep the installed documentation up-to-date with
	 Subversion or documentation
	 ports.

	The difference between the two development
	 branches: FreeBSD-STABLE and FreeBSD-CURRENT.

	How to rebuild and reinstall the entire base
	 system.

Before reading this chapter, you should:
	Properly set up the network connection
	 (Chapter 31, Advanced Networking).

	Know how to install additional third-party
	 software (Chapter 4, Installing Applications: Packages and Ports).

Note:
Throughout this chapter, svnlite is used to
	obtain and update FreeBSD sources. Optionally, the
	devel/subversion port or
	package may be used.

23.4. Tracking a Development Branch
FreeBSD has two development branches: FreeBSD-CURRENT and
 FreeBSD-STABLE.
This section provides an explanation of each branch and its
 intended audience, as well as how to keep a system up-to-date
 with each respective branch.
23.4.1. Using FreeBSD-CURRENT
FreeBSD-CURRENT is the “bleeding edge” of FreeBSD
	development and FreeBSD-CURRENT users are expected to have a
	high degree of technical skill. Less technical users who wish
	to track a development branch should track FreeBSD-STABLE
	instead.
FreeBSD-CURRENT is the very latest source code for FreeBSD and
	includes works in progress, experimental changes, and
	transitional mechanisms that might or might not be present in
	the next official release. While many FreeBSD developers compile
	the FreeBSD-CURRENT source code daily, there are short periods of
	time when the source may not be buildable. These problems are
	resolved as quickly as possible, but whether or not
	FreeBSD-CURRENT brings disaster or new functionality can be a
	matter of when the source code was synced.
FreeBSD-CURRENT is made available for three primary interest
	groups:
	Members of the FreeBSD community who are actively
	 working on some part of the source tree.

	Members of the FreeBSD community who are active testers.
	 They are willing to spend time solving problems, making
	 topical suggestions on changes and the general direction
	 of FreeBSD, and submitting patches.

	Users who wish to keep an eye on things, use the
	 current source for reference purposes, or make the
	 occasional comment or code contribution.

FreeBSD-CURRENT should not be
	considered a fast-track to getting new features before the
	next release as pre-release features are not yet fully tested
	and most likely contain bugs. It is not a quick way of
	getting bug fixes as any given commit is just as likely to
	introduce new bugs as to fix existing ones. FreeBSD-CURRENT is
	not in any way “officially supported”.
To track FreeBSD-CURRENT:
	Join the freebsd-current and the
	 svn-src-head lists. This is
	 essential in order to see the
	 comments that people are making about the current state
	 of the system and to receive important bulletins about
	 the current state of FreeBSD-CURRENT.
The svn-src-head list records the commit log
	 entry for each change as it is made, along with any
	 pertinent information on possible side effects.
To join these lists, go to http://lists.FreeBSD.org/mailman/listinfo,
	 click on the list to subscribe to, and follow the
	 instructions. In order to track changes to the whole
	 source tree, not just the changes to FreeBSD-CURRENT,
	 subscribe to the svn-src-all list.

	Synchronize with the FreeBSD-CURRENT sources. Typically,
	 svnlite is used to check out the
	 -CURRENT code from the head branch of
	 one of the Subversion mirror sites listed in
	 Section A.3.6, “Subversion Mirror
	Sites”.

	Due to the size of the repository, some users choose
	 to only synchronize the sections of source that interest
	 them or which they are contributing patches to. However,
	 users that plan to compile the operating system from
	 source must download all of
	 FreeBSD-CURRENT, not just selected portions.
Before compiling FreeBSD-CURRENT
	 , read /usr/src/Makefile
	 very carefully and follow the instructions in
	 Section 23.5, “Updating FreeBSD from Source”.
	 Read the FreeBSD-CURRENT mailing list and
	 /usr/src/UPDATING to stay
	 up-to-date on other bootstrapping procedures that
	 sometimes become necessary on the road to the next
	 release.

	Be active! FreeBSD-CURRENT users are encouraged to
	 submit their suggestions for enhancements or bug fixes.
	 Suggestions with accompanying code are always
	 welcome.

23.4.2. Using FreeBSD-STABLE
FreeBSD-STABLE is the development branch from which major
	releases are made. Changes go into this branch at a slower
	pace and with the general assumption that they have first been
	tested in FreeBSD-CURRENT. This is still a
	development branch and, at any given time, the sources for
	FreeBSD-STABLE may or may not be suitable for general use. It is
	simply another engineering development track, not a resource
	for end-users. Users who do not have the resources to perform
	testing should instead run the most recent release of
	FreeBSD.
Those interested in tracking or contributing to the FreeBSD
	development process, especially as it relates to the next
	release of FreeBSD, should consider following FreeBSD-STABLE.
While the FreeBSD-STABLE branch should compile and run at all
	times, this cannot be guaranteed. Since more people run
	FreeBSD-STABLE than FreeBSD-CURRENT, it is inevitable that bugs and
	corner cases will sometimes be found in FreeBSD-STABLE that were
	not apparent in FreeBSD-CURRENT. For this reason, one should not
	blindly track FreeBSD-STABLE. It is particularly important
	not to update any production servers to
	FreeBSD-STABLE without thoroughly testing the code in a
	development or testing environment.
To track FreeBSD-STABLE:
	Join the freebsd-stable list in order to stay
	 informed of build dependencies that may appear in
	 FreeBSD-STABLE or any other issues requiring special
	 attention. Developers will also make announcements in
	 this mailing list when they are contemplating some
	 controversial fix or update, giving the users a chance to
	 respond if they have any issues to raise concerning the
	 proposed change.
Join the relevant svn list
	 for the branch being tracked. For example, users
	 tracking the 9-STABLE branch should join the
	 svn-src-stable-9 list. This list records the
	 commit log entry for each change as it is made, along
	 with any pertinent information on possible
	 side effects.
To join these lists, go to http://lists.FreeBSD.org/mailman/listinfo,
	 click on the list to subscribe to, and follow the
	 instructions. In order to track changes for the whole
	 source tree, subscribe to svn-src-all.

	To install a new FreeBSD-STABLE system, install the most
	 recent FreeBSD-STABLE release from the FreeBSD mirror sites or use a
	 monthly snapshot built from FreeBSD-STABLE. Refer to www.freebsd.org/snapshots
	 for more information about snapshots.
To compile or upgrade to an existing FreeBSD system to
	 FreeBSD-STABLE, use svn
	 to check out the source for the desired
	 branch. Branch names, such as
	 stable/9, are listed at www.freebsd.org/releng.

	Before compiling or upgrading to FreeBSD-STABLE
	 , read /usr/src/Makefile
	 carefully and follow the instructions in Section 23.5, “Updating FreeBSD from Source”. Read the FreeBSD-STABLE mailing list and
	 /usr/src/UPDATING to keep up-to-date
	 on other bootstrapping procedures that sometimes become
	 necessary on the road to the next release.

23.5. Updating FreeBSD from Source
Updating FreeBSD by compiling from source offers several
 advantages over binary updates. Code can be built with options
 to take advantage of specific hardware. Parts of the base
 system can be built with non-default settings, or left out
 entirely where they are not needed or desired. The build
 process takes longer to update a system than just installing
 binary updates, but allows complete customization to produce
 a tailored version of FreeBSD.
23.5.1. Quick Start
This is a quick reference for the typical steps used to
	update FreeBSD by building from source. Later sections describe
	the process in more detail.
	Update and Build
svnlite update /usr/src [image: 1]
check /usr/src/UPDATING [image: 2]
cd /usr/src [image: 3]
make -j4 buildworld [image: 4]
make -j4 kernel [image: 5]
shutdown -r now [image: 6]
cd /usr/src [image: 7]
make installworld [image: 8]
mergemaster -Ui [image: 9]
shutdown -r now [image: 10]
	[image: 1]
	Get the latest version of the source. See
		Section 23.5.3, “Updating the Source” for
		more information on obtaining and updating
		source.

	[image: 2]
	Check /usr/src/UPDATING
		for any manual steps required before or after building
		from source.

	[image: 3]
	Go to the source directory.

	[image: 4]
	Compile the world, everything except the
		kernel.

	[image: 5]
	Compile and install the kernel. This is
		equivalent to make buildkernel
		 installkernel.

	[image: 6]
	Reboot the system to the new kernel.

	[image: 7]
	Go to the source directory.

	[image: 8]
	Install the world.

	[image: 9]
	Update and merge configuration files in
		/etc/.

	[image: 10]
	Restart the system to use the newly-built world
		and kernel.

23.5.2. Preparing for a Source Update
Read /usr/src/UPDATING. Any manual
	steps that must be performed before or after an update are
	described in this file.
23.5.3. Updating the Source
FreeBSD source code is located in
	/usr/src/. The preferred method of
	updating this source is through the
	Subversion version control system.
	Verify that the source code is under version control:
svnlite info /usr/src
Path: /usr/src
Working Copy Root Path: /usr/src
...
This indicates that /usr/src/
	is under version control and can be updated with
	svnlite(1):
svnlite update /usr/src
The update process can take some time if the directory has
	not been updated recently. After it finishes, the source code
	is up to date and the build process described in the next
	section can begin.
Obtaining the Source:
If the output says
	 '/usr/src' is not a working copy, the
	 files there are missing or were installed with a different
	 method. A new checkout of the source is required.
Table 23.1. FreeBSD Versions and Repository Paths
	uname -r Output	Repository Path	Description
	X.Y-RELEASE	base/releng/X.Y	The Release version plus only critical security
		 and bug fix patches. This branch is recommended
		 for most users.
	X.Y-STABLE	base/stable/X	
		 The Release version plus all additional
		 development on that branch.
		 STABLE refers to the
		 Applications Binary Interface
		 (ABI) not changing, so software
		 compiled for earlier versions still runs. For
		 example, software compiled to run on FreeBSD 10.1
		 will still run on FreeBSD 10-STABLE compiled
		 later.

		 STABLE branches occasionally have bugs or
		 incompatibilities which might affect users,
		 although these are typically fixed quickly.

		
	X-CURRENT	base/head/	The latest unreleased development version of
		 FreeBSD. The CURRENT branch can have major bugs or
		 incompatibilities and is recommended only for
		 advanced users.

Determine which version of FreeBSD is being used with
	 uname(1):
uname -r
10.3-RELEASE
Based on
	 Table 23.1, “FreeBSD Versions and Repository Paths”, the
	 source used to update 10.3-RELEASE has
	 a repository path of base/releng/10.3.
	 That path is used when checking out the source:
mv /usr/src /usr/src.bak [image: 1]
svnlite checkout https://svn.freebsd.org/base/releng/10.3 /usr/src [image: 2]
	[image: 1]
	Move the old directory out of the way. If there are
	 no local modifications in this directory, it can be
	 deleted.

	[image: 2]
	The path from
	 Table 23.1, “FreeBSD Versions and Repository Paths” is
	 added to the repository URL. The
	 third parameter is the destination directory for the
	 source code on the local system.

23.5.4. Building from Source
The world, or all
	of the operating system except the kernel, is compiled. This
	is done first to provide up-to-date tools to build the kernel.
	Then the kernel itself is built:
cd /usr/src
make buildworld
make buildkernel
The compiled code is written to
	/usr/obj.
These are the basic steps. Additional options to control
	the build are described below.
23.5.4.1. Performing a Clean Build
Some versions of the FreeBSD build system leave
	 previously-compiled code in the temporary object directory,
	 /usr/obj. This can speed up later
	 builds by avoiding recompiling code that has not changed.
	 To force a clean rebuild of everything, use
	 cleanworld before starting
	 a build:
make cleanworld
23.5.4.2. Setting the Number of Jobs
Increasing the number of build jobs on multi-core
	 processors can improve build speed. Determine the number of
	 cores with sysctl hw.ncpu. Processors
	 vary, as do the build systems used with different versions
	 of FreeBSD, so testing is the only sure method to tell how a
	 different number of jobs affects the build speed. For a
	 starting point, consider values between half and double the
	 number of cores. The number of jobs is specified with
	 -j.
Example 23.1. Increasing the Number of Build Jobs
Building the world and kernel with four jobs:
make -j4 buildworld buildkernel

23.5.4.3. Building Only the Kernel
A buildworld must be
	 completed if the source code has changed. After that, a
	 buildkernel to build a kernel can
	 be run at any time. To build just the kernel:
cd /usr/src
make buildkernel
23.5.4.4. Building a Custom Kernel
The standard FreeBSD kernel is based on a
	 kernel config file called
	 GENERIC. The
	 GENERIC kernel includes the most
	 commonly-needed device drivers and options. Sometimes it
	 is useful or necessary to build a custom kernel, adding or
	 removing device drivers or options to fit a specific
	 need.
For example, someone developing a small embedded
	 computer with severely limited RAM could
	 remove unneeded device drivers or options to make the kernel
	 slightly smaller.
Kernel config files are located in
	 /usr/src/sys/arch/conf/,
	 where arch is the output from
	 uname -m. On most computers, that is
	 amd64, giving a config file directory of
	 /usr/src/sys/amd64/conf/.
Tip:
/usr/src can be deleted or
	 recreated, so it is preferable to keep custom kernel
	 config files in a separate directory, like
	 /root. Link the kernel config file
	 into the conf directory. If that
	 directory is deleted or overwritten, the kernel config
	 can be re-linked into the new one.

A custom config file can be created by copying the
	 GENERIC config file. In this example,
	 the new custom kernel is for a storage server, so is named
	 STORAGESERVER:
cp /usr/src/sys/amd64/conf/GENERIC /root/STORAGESERVER
cd /usr/src/sys/amd64/conf
ln -s /root/STORAGESERVER .
/root/STORAGESERVER is then edited,
	 adding or removing devices or options as shown in
	 config(5).
The custom kernel is built by setting
	 KERNCONF to the kernel config file on the
	 command line:
make buildkernel KERNCONF=STORAGESERVER
23.5.5. Installing the Compiled Code
After the buildworld and
	buildkernel steps have been
	completed, the new kernel and world are installed:
cd /usr/src
make installkernel
shutdown -r now
cd /usr/src
make installworld
shutdown -r now
If a custom kernel was built, KERNCONF
	must also be set to use the new custom kernel:
cd /usr/src
make installkernel KERNCONF=STORAGESERVER
shutdown -r now
cd /usr/src
make installworld
shutdown -r now
23.5.6. Completing the Update
A few final tasks complete the update. Any modified
	configuration files are merged with the new versions, outdated
	libraries are located and removed, then the system is
	restarted.
23.5.6.1. Merging Configuration Files with
	 mergemaster(8)
mergemaster(8) provides an easy
	 way to merge changes that have been made to system
	 configuration files with new versions of those files.
With -Ui, mergemaster(8)
	 automatically updates files that have not been user-modified
	 and installs new files that are not already present:
mergemaster -Ui
If a file must be manually merged, an interactive
	 display allows the user to choose which portions of the
	 files are kept. See mergemaster(8) for more
	 information.
23.5.6.2. Checking for Outdated Files and Libraries
Some obsolete files or directories can remain after an
	 update. These files can be located:
make check-old
and deleted:
make delete-old
Some obsolete libraries can also remain. These can be
	 detected with:
make check-old-libs
and deleted with
make delete-old-libs
Programs which were still using those old libraries will
	 stop working when the library has been deleted. These
	 programs must be rebuilt or replaced after deleting the old
	 libraries.
Tip:
When all the old files or directories are known to be
	 safe to delete, pressing y and
	 Enter to delete each file can be avoided
	 by setting BATCH_DELETE_OLD_FILES in
	 the command. For example:
make BATCH_DELETE_OLD_FILES=yes delete-old-libs

23.5.6.3. Restarting After the Update
The last step after updating is to restart the computer
	 so all the changes take effect:
shutdown -r now
23.6. Tracking for Multiple Machines
Contributed by Mike Meyer. When multiple machines need to track the same source tree,
 it is a waste of disk space, network bandwidth, and
 CPU cycles to have each system download the
 sources and rebuild everything. The solution is to have one
 machine do most of the work, while the rest of the machines
 mount that work via NFS. This section
 outlines a method of doing so. For more information about using
 NFS, refer to Section 29.3, “Network File System (NFS)”.
First, identify a set of machines which will run the same
 set of binaries, known as a build set.
 Each machine can have a custom kernel, but will run the same
 userland binaries. From that set, choose a machine to be the
 build machine that the world and kernel
 are built on. Ideally, this is a fast machine that has
 sufficient spare CPU to run make
	buildworld and make
	buildkernel.
Select a machine to be the test
	machine, which will test software updates before
 they are put into production. This must be
 a machine that can afford to be down for an extended period of
 time. It can be the build machine, but need not be.
All the machines in this build set need to mount
 /usr/obj and /usr/src
 from the build machine via NFS. For multiple
 build sets, /usr/src should be on one build
 machine, and NFS mounted on the rest.
Ensure that /etc/make.conf and
 /etc/src.conf on all the machines in the
 build set agree with the build machine. That means that the
 build machine must build all the parts of the base system that
 any machine in the build set is going to install. Also, each
 build machine should have its kernel name set with
 KERNCONF in
 /etc/make.conf, and the build machine
 should list them all in its KERNCONF,
 listing its own kernel first. The build machine must have the
 kernel configuration files for each machine in its /usr/src/sys/arch/conf.
On the build machine, build the kernel and world as
 described in Section 23.5, “Updating FreeBSD from Source”, but do not install
 anything on the build machine. Instead, install the built
 kernel on the test machine. On the test machine, mount
 /usr/src and
 /usr/obj via NFS. Then,
 run shutdown now to go to single-user mode in
 order to install the new kernel and world and run
 mergemaster as usual. When done, reboot to
 return to normal multi-user operations.
After verifying that everything on the test machine is
 working properly, use the same procedure to install the new
 software on each of the other machines in the build set.
The same methodology can be used for the ports tree. The
 first step is to share /usr/ports via
 NFS to all the machines in the build set. To
 configure /etc/make.conf to share
 distfiles, set DISTDIR to a common shared
 directory that is writable by whichever user root is mapped to by the
 NFS mount. Each machine should set
 WRKDIRPREFIX to a local build directory, if
 ports are to be built locally. Alternately, if the build system
 is to build and distribute packages to the machines in the build
 set, set PACKAGES on the build system to a
 directory similar to DISTDIR.
Chapter 24. DTrace
Written
	by Tom Rhodes. 24.1. Synopsis
DTrace, also known as Dynamic Tracing, was developed by
 Sun™ as a tool for locating performance bottlenecks in
 production and pre-production systems. In addition to
 diagnosing performance problems, DTrace can be used to help
 investigate and debug unexpected behavior in both the FreeBSD
 kernel and in userland programs.
DTrace is a remarkable profiling tool, with an impressive
 array of features for diagnosing system issues. It may also be
 used to run pre-written scripts to take advantage of its
 capabilities. Users can author their own utilities using the
 DTrace D Language, allowing them to customize their profiling
 based on specific needs.
The FreeBSD implementation provides full support for kernel
 DTrace and experimental support for userland DTrace.
 Userland DTrace allows users to perform function boundary
 tracing for userland programs using the pid
 provider, and to insert static probes into userland programs for
 later tracing. Some ports, such as
 databases/postgres-server and
 lang/php56 have a DTrace option to enable
 static probes. FreeBSD 10.0-RELEASE has reasonably good userland
 DTrace support, but it is not considered production ready. In
 particular, it is possible to crash traced programs.
The official guide to DTrace is maintained by the Illumos
 project at DTrace
	Guide.
After reading this chapter, you will know:
	What DTrace is and what features it provides.

	Differences between the Solaris™ DTrace
	 implementation and the one provided by FreeBSD.

	How to enable and use DTrace on FreeBSD.

Before reading this chapter, you should:
	Understand UNIX® and FreeBSD basics
	 (Chapter 3, FreeBSD Basics).

	Have some familiarity with security and how it pertains
	 to FreeBSD (Chapter 13, Security).

24.2. Implementation Differences
While the DTrace in FreeBSD is similar to that found in
 Solaris™, differences do exist. The primary difference is that
 in FreeBSD, DTrace is implemented as a set of kernel modules and
 DTrace can not be used until the modules are loaded. To load
 all of the necessary modules:
kldload dtraceall
Beginning with FreeBSD 10.0-RELEASE, the modules are
 automatically loaded when dtrace is
 run.
FreeBSD uses the DDB_CTF kernel option to
 enable support for loading CTF data from
 kernel modules and the kernel itself. CTF is
 the Solaris™ Compact C Type Format which encapsulates a reduced
 form of debugging information similar to
 DWARF and the venerable stabs.
 CTF data is added to binaries by the
 ctfconvert and ctfmerge
 build tools. The ctfconvert utility parses
 DWARF ELF debug sections
 created by the compiler and ctfmerge merges
 CTF ELF sections from
 objects into either executables or shared libraries.
Some different providers exist for FreeBSD than for Solaris™.
 Most notable is the dtmalloc provider, which
 allows tracing malloc() by type in the FreeBSD
 kernel. Some of the providers found in Solaris™, such as
 cpc and mib, are not
 present in FreeBSD. These may appear in future versions of FreeBSD.
 Moreover, some of the providers available in both operating
 systems are not compatible, in the sense that their probes have
 different argument types. Thus, D scripts
 written on Solaris™ may or may not work unmodified on FreeBSD, and
 vice versa.
Due to security differences, only root may use DTrace on FreeBSD.
 Solaris™ has a few low level security checks which do not yet
 exist in FreeBSD. As such, the
 /dev/dtrace/dtrace is strictly limited to
 root.
DTrace falls under the Common Development and Distribution
 License (CDDL) license. To view this license
 on FreeBSD, see
 /usr/src/cddl/contrib/opensolaris/OPENSOLARIS.LICENSE
 or view it online at http://opensource.org/licenses/CDDL-1.0.
 While a FreeBSD kernel with DTrace support is
 BSD licensed, the CDDL is
 used when the modules are distributed in binary form or the
 binaries are loaded.
24.3. Enabling DTrace Support
In FreeBSD 9.2 and 10.0, DTrace support is built into the
 GENERIC kernel. Users of earlier versions
 of FreeBSD or who prefer to statically compile in DTrace support
 should add the following lines to a custom kernel configuration
 file and recompile the kernel using the instructions in Chapter 8, Configuring the FreeBSD Kernel:
options KDTRACE_HOOKS
options DDB_CTF
makeoptions	DEBUG=-g
makeoptions	WITH_CTF=1
Users of the AMD64 architecture should also add this
 line:
options KDTRACE_FRAME
This option provides support for FBT.
 While DTrace will work without this option, there will be
 limited support for function boundary tracing.
Once the FreeBSD system has rebooted into the new kernel, or
 the DTrace kernel modules have been loaded using
 kldload dtraceall, the system will need
 support for the Korn shell as the DTrace
 Toolkit has several utilities written in ksh.
 Make sure that the shells/ksh93 package or
 port is installed. It is also possible to run these tools under
 shells/pdksh or
 shells/mksh.
Finally, install the current DTrace Toolkit,
 a collection of ready-made scripts
 for collecting system information. There are scripts to check
 open files, memory, CPU usage, and a lot
 more. FreeBSD 10
 installs a few of these scripts into
 /usr/share/dtrace. On other FreeBSD versions,
 or to install the full
 DTrace Toolkit, use the
 sysutils/DTraceToolkit package or
 port.
Note:
The scripts found in
	/usr/share/dtrace have been specifically
	ported to FreeBSD. Not all of the scripts found in the DTrace
	Toolkit will work as-is on FreeBSD and some scripts may require
	some effort in order for them to work on FreeBSD.

The DTrace Toolkit includes many scripts in the special
 language of DTrace. This language is called the D language
 and it is very similar to C++. An in depth discussion of the
 language is beyond the scope of this document. It is
 covered extensively in the Illumos Dynamic
	Tracing Guide.
24.4. Using DTrace
DTrace scripts consist of a list of one or more
 probes, or instrumentation points, where
 each probe is associated with an action. Whenever the condition
 for a probe is met, the associated action is executed. For
 example, an action may occur when a file is opened, a process is
 started, or a line of code is executed. The action might be to
 log some information or to modify context variables. The
 reading and writing of context variables allows probes to share
 information and to cooperatively analyze the correlation of
 different events.
To view all probes, the administrator can execute the
 following command:
dtrace -l | more
Each probe has an ID, a
 PROVIDER (dtrace or fbt), a
 MODULE, and a
 FUNCTION NAME. Refer to dtrace(1) for
 more information about this command.
The examples in this section provide an overview of how to
 use two of the fully supported scripts from the
 DTrace Toolkit: the
 hotkernel and
 procsystime scripts.
The hotkernel script is designed to
 identify which function is using the most kernel time. It will
 produce output similar to the following:
cd /usr/share/dtrace/toolkit
./hotkernel
Sampling... Hit Ctrl-C to end.
As instructed, use the
 Ctrl+C key combination to stop the process. Upon
 termination, the script will display a list of kernel functions
 and timing information, sorting the output in increasing order
 of time:
kernel`_thread_lock_flags 2 0.0%
0xc1097063 2 0.0%
kernel`sched_userret 2 0.0%
kernel`kern_select 2 0.0%
kernel`generic_copyin 3 0.0%
kernel`_mtx_assert 3 0.0%
kernel`vm_fault 3 0.0%
kernel`sopoll_generic 3 0.0%
kernel`fixup_filename 4 0.0%
kernel`_isitmyx 4 0.0%
kernel`find_instance 4 0.0%
kernel`_mtx_unlock_flags 5 0.0%
kernel`syscall 5 0.0%
kernel`DELAY 5 0.0%
0xc108a253 6 0.0%
kernel`witness_lock 7 0.0%
kernel`read_aux_data_no_wait 7 0.0%
kernel`Xint0x80_syscall 7 0.0%
kernel`witness_checkorder 7 0.0%
kernel`sse2_pagezero 8 0.0%
kernel`strncmp 9 0.0%
kernel`spinlock_exit 10 0.0%
kernel`_mtx_lock_flags 11 0.0%
kernel`witness_unlock 15 0.0%
kernel`sched_idletd 137 0.3%
0xc10981a5 42139 99.3%
This script will also work with kernel modules. To use this
 feature, run the script with -m:
./hotkernel -m
Sampling... Hit Ctrl-C to end.
^C
MODULE COUNT PCNT
0xc107882e 1 0.0%
0xc10e6aa4 1 0.0%
0xc1076983 1 0.0%
0xc109708a 1 0.0%
0xc1075a5d 1 0.0%
0xc1077325 1 0.0%
0xc108a245 1 0.0%
0xc107730d 1 0.0%
0xc1097063 2 0.0%
0xc108a253 73 0.0%
kernel 874 0.4%
0xc10981a5 213781 99.6%
The procsystime script captures and
 prints the system call time usage for a given process
 ID (PID) or process name.
 In the following example, a new instance of
 /bin/csh was spawned. Then,
 procsystime was executed and remained
 waiting while a few commands were typed on the other incarnation
 of csh. These are the results of this
 test:
./procsystime -n csh
Tracing... Hit Ctrl-C to end...
^C

Elapsed Times for processes csh,

 SYSCALL TIME (ns)
 getpid 6131
 sigreturn 8121
 close 19127
 fcntl 19959
 dup 26955
 setpgid 28070
 stat 31899
 setitimer 40938
 wait4 62717
 sigaction 67372
 sigprocmask 119091
 gettimeofday 183710
 write 263242
 execve 492547
 ioctl 770073
 vfork 3258923
 sigsuspend 6985124
 read 3988049784
As shown, the read() system call used
 the most time in nanoseconds while the
 getpid() system call used the least amount
 of time.
25.2. USB Virtual Serial Ports
25.2.1. Configuring USB Device Mode Serial Ports
Virtual serial port support is provided by templates
	number 3, 8, and 10. Note that template 3 works with
	Microsoft Windows 10 without the need for special drivers
	and INF files. Other host operating systems work with all
	three templates. Both usb_template(4) and umodem(4)
	kernel modules must be loaded.
To enable USB device mode serial ports, add those lines
	to /etc/ttys:
ttyU0	"/usr/libexec/getty 3wire"	vt100	onifconsole secure
ttyU1	"/usr/libexec/getty 3wire"	vt100	onifconsole secure
Then add these lines to
	/etc/devd.conf:
notify 100 {
	match "system"		"DEVFS";
	match "subsystem"	"CDEV";
	match "type"		"CREATE";
	match "cdev"		"ttyU[0-9]+";
	action "/sbin/init q";
};
Reload the configuration if
	devd(8) is already running:
service devd restart
Make sure the necessary modules are loaded and the
	correct template is set at boot by adding
	those lines to /boot/loader.conf,
	creating it if it does not already exist:
umodem_load="YES"
hw.usb.template=3
To load the module and set the template without rebooting
	use:
kldload umodem
sysctl hw.usb.template=3
25.2.2. Connecting to USB Device Mode Serial Ports from
	FreeBSD
To connect to a board configured to provide USB device
	mode serial ports, connect the USB host, such as a laptop, to
	the boards USB OTG or USB client port. Use
	pstat -t on the host to list the terminal
	lines. Near the end of the list you should see a USB serial
	port, eg "ttyU0". To open the connection, use:
cu -l /dev/ttyU0
After pressing the Enter key a few times you will see
	a login prompt.
25.2.3. Connecting to USB Device Mode Serial Ports from
	macOS
To connect to a board configured to provide USB device
	mode serial ports, connect the USB host, such as a laptop,
	to the boards USB OTG or USB client port. To open the
	connection, use:
cu -l /dev/cu.usbmodemFreeBSD1
25.2.4. Connecting to USB Device Mode Serial Ports from
	Linux
To connect to a board configured to provide USB device
	mode serial ports, connect the USB host, such as a laptop,
	to the boards USB OTG or USB client port. To open the
	connection, use:
minicom -D /dev/ttyACM0
25.2.5. Connecting to USB Device Mode Serial Ports from
	Microsoft Windows 10
To connect to a board configured to provide USB device
	mode serial ports, connect the USB host, such as a laptop,
	to the boards USB OTG or USB client port. To open a
	connection you will need a serial terminal program, such as
	PuTTY. To check the COM port name
	used by Windows, run Device Manager, expand "Ports (COM &
	LPT)". You will see a name similar to "USB Serial Device
	(COM4)". Run serial terminal program of your choice, for
	example PuTTY. In the
	PuTTY dialog set "Connection type"
	to "Serial", type the COMx obtained from Device Manager in the
	"Serial line" dialog box and click Open.
Part IV. Network Communication
FreeBSD is one of the most widely deployed operating systems
	for high performance network servers. The chapters in this
	part cover:
	Serial communication

	PPP and PPP over
	 Ethernet

	Electronic Mail

	Running Network Servers

	Firewalls

	Other Advanced Networking Topics

These chapters are designed to be read when the
	information is needed. They do not need to be read in any
	particular order, nor is it necessary to read all of them
	before using FreeBSD in a network environment.

Chapter 26. Serial Communications
26.1. Synopsis
UNIX® has always had support for serial communications as
 the very first UNIX® machines relied on serial lines for user
 input and output. Things have changed a lot from the days
 when the average terminal consisted of a 10-character-per-second
 serial printer and a keyboard. This chapter covers some of the
 ways serial communications can be used on FreeBSD.
After reading this chapter, you will know:
	How to connect terminals to a FreeBSD system.

	How to use a modem to dial out to remote hosts.

	How to allow remote users to login to a FreeBSD system
	 with a modem.

	How to boot a FreeBSD system from a serial console.

Before reading this chapter, you should:
	Know how to configure and
	 install a custom kernel.

	Understand FreeBSD permissions
	 and processes.

	Have access to the technical manual for the serial
	 hardware to be used with FreeBSD.

Chapter 27. PPP
27.1. Synopsis
FreeBSD supports the Point-to-Point (PPP)
 protocol which can be used to establish a network or Internet
 connection using a dial-up modem. This chapter describes how to
 configure modem-based communication services in FreeBSD.
After reading this chapter, you will know:
	How to configure, use, and troubleshoot a
	 PPP connection.

	How to set up PPP over Ethernet
	 (PPPoE).

	How to set up PPP over
	 ATM
	 (PPPoA).

Before reading this chapter, you should:
	Be familiar with basic network terminology.

	Understand the basics and purpose of a dial-up
	 connection and PPP.

27.2. Configuring PPP
FreeBSD provides built-in support for managing dial-up
 PPP connections using ppp(8). The
 default FreeBSD kernel provides support for
 tun which is used to interact with a
 modem hardware. Configuration is performed by editing at least
 one configuration file, and configuration files containing
 examples are provided. Finally, ppp is
 used to start and manage connections.
In order to use a PPP connection, the
 following items are needed:
	A dial-up account with an Internet Service Provider
	 (ISP).

	A dial-up modem.

	The dial-up number for the
	 ISP.

	The login name and password assigned by the
	 ISP.

	The IP address of one or more
	 DNS servers. Normally, the
	 ISP provides these addresses. If it did
	 not, FreeBSD can be configured to use
	 DNS negotiation.

If any of the required information is missing, contact
 the ISP.
The following information may be supplied by the
 ISP, but is not necessary:
	The IP address of the default
	 gateway. If this information is unknown, the
	 ISP will automatically provide the
	 correct value during connection setup. When configuring
	 PPP on FreeBSD, this address is referred to
	 as HISADDR.

	The subnet mask. If the ISP has not
	 provided one, 255.255.255.255 will be used
	 in the ppp(8) configuration file.

	If the ISP has assigned a static
	 IP address and hostname, it should be
	 input into the configuration file. Otherwise, this
	 information will be automatically provided during
	 connection setup.

The rest of this section demonstrates how to configure FreeBSD
 for common PPP connection scenarios. The
 required configuration file is
 /etc/ppp/ppp.conf and additional files and
 examples are available in
 /usr/share/examples/ppp/.
Note:
Throughout this section, many of the file examples
	display line numbers. These line numbers have been added to
	make it easier to follow the discussion and are not meant to
	be placed in the actual file.
When editing a configuration file, proper indentation is
	important. Lines that end in a : start in
	the first column (beginning of the line) while all other lines
	should be indented as shown using spaces or tabs.

27.2.1. Basic Configuration
In order to configure a PPP connection,
	first edit /etc/ppp/ppp.conf with the
	dial-in information for the ISP. This file
	is described as follows:
1 default:
2 set log Phase Chat LCP IPCP CCP tun command
3 ident user-ppp VERSION
4 set device /dev/cuau0
5 set speed 115200
6 set dial "ABORT BUSY ABORT NO\\sCARRIER TIMEOUT 5 \
7 \"\" AT OK-AT-OK ATE1Q0 OK \\dATDT\\T TIMEOUT 40 CONNECT"
8 set timeout 180
9 enable dns
10
11 provider:
12 set phone "(123) 456 7890"
13 set authname foo
14 set authkey bar
15 set timeout 300
16 set ifaddr x.x.x.x/0 y.y.y.y/0 255.255.255.255 0.0.0.0
17 add default HISADDR
	Line 1:
	Identifies the default entry.
		 Commands in this entry (lines 2 through 9) are
		 executed automatically when ppp
		 is run.

	Line 2:
	Enables verbose logging parameters for testing
		 the connection. Once the configuration is working
		 satisfactorily, this line should be reduced
		 to:
set log phase tun

	Line 3:
	Displays the version of ppp(8) to the
		 PPP software running on the other
		 side of the connection.

	Line 4:
	Identifies the device to which the modem is
		 connected, where COM1 is
		 /dev/cuau0 and
		 COM2 is
		 /dev/cuau1.

	Line 5:
	Sets the connection speed. If
		 115200 does not work on an older
		 modem, try 38400 instead.

	Lines 6 & 7:
	The dial string written as an expect-send
		 syntax. Refer to chat(8) for more
		 information.
Note that this command continues onto the next
		 line for readability. Any command in
		 ppp.conf may do this if the
		 last character on the line is
		 \.

	Line 8:
	Sets the idle timeout for the link in
		 seconds.

	Line 9:
	Instructs the peer to confirm the
		 DNS settings. If the local
		 network is running its own DNS
		 server, this line should be commented out, by adding
		 a # at the beginning of the line,
		 or removed.

	Line 10:
	A blank line for readability. Blank lines are
		 ignored by ppp(8).

	Line 11:
	Identifies an entry called
		 provider. This could be changed
		 to the name of the ISP so that
		 load
		 ISP can be
		 used to start the connection.

	Line 12:
	Use the phone number for the
		 ISP. Multiple phone numbers may
		 be specified using the colon (:)
		 or pipe character (|) as a
		 separator. To rotate through the numbers, use a
		 colon. To always attempt to dial the first number
		 first and only use the other numbers if the first
		 number fails, use the pipe character. Always
		 enclose the entire set of phone numbers between
		 quotation marks (") to prevent
		 dialing failures.

	Lines 13 & 14:
	Use the user name and password for the
		 ISP.

	Line 15:
	Sets the default idle timeout in seconds for the
		 connection. In this example, the connection will be
		 closed automatically after 300 seconds of
		 inactivity. To prevent a timeout, set this value to
		 zero.

	Line 16:
	Sets the interface addresses. The values used
		 depend upon whether a static IP
		 address has been obtained from the
		 ISP or if it instead negotiates
		 a dynamic IP address during
		 connection.
If the ISP has allocated a
		 static IP address and default
		 gateway, replace x.x.x.x
		 with the static IP address and
		 replace y.y.y.y with the
		 IP address of the default
		 gateway. If the ISP has only
		 provided a static IP address
		 without a gateway address, replace
		 y.y.y.y with 10.0.0.2/0.
If the IP address changes
		 whenever a connection is made, change this line to
		 the following value. This tells ppp(8) to use
		 the IP Configuration Protocol
		 (IPCP) to negotiate a dynamic
		 IP address:
set ifaddr 10.0.0.1/0 10.0.0.2/0 255.255.255.255 0.0.0.0

	Line 17:
	Keep this line as-is as it adds a default route
		 to the gateway. The HISADDR will
		 automatically be replaced with the gateway address
		 specified on line 16. It is important that this
		 line appears after line 16.

Depending upon whether ppp(8) is started
	 manually or automatically, a
	 /etc/ppp/ppp.linkup may also need to
	 be created which contains the following lines. This file
	 is required when running ppp in
	 -auto mode. This file is used after the
	 connection has been established. At this point, the
	 IP address will have been assigned and
	 it is now be possible to add the routing table entries.
	 When creating this file, make sure that
	 provider matches the value
	 demonstrated in line 11 of
	 ppp.conf.
provider:
 add default HISADDR
This file is also needed when the default gateway
	 address is “guessed” in a static
	 IP address configuration. In this case,
	 remove line 17 from ppp.conf and
	 create /etc/ppp/ppp.linkup with the
	 above two lines. More examples for this file can be found
	 in /usr/share/examples/ppp/.
By default, ppp must be
	 run as root.
	 To change this default, add the account of the user
	 who should run ppp to the network group in
	 /etc/group.
Then, give the user access to one or more entries in
	 /etc/ppp/ppp.conf with
	 allow. For example, to give
	 fred and
	 mary
	 permission to only the provider: entry,
	 add this line to the provider:
	 section:
allow users fred mary
To give the specified users access to all entries, put
	 that line in the default section
	 instead.
27.2.2. Advanced Configuration
It is possible to configure PPP to supply DNS and
	 NetBIOS nameserver addresses on demand.
To enable these extensions with
	 PPP version 1.x, the following lines
	 might be added to the relevant section of
	 /etc/ppp/ppp.conf.
enable msext
set ns 203.14.100.1 203.14.100.2
set nbns 203.14.100.5
And for PPP version 2 and
	 above:
accept dns
set dns 203.14.100.1 203.14.100.2
set nbns 203.14.100.5
This will tell the clients the primary and secondary
	 name server addresses, and a NetBIOS nameserver
	 host.
In version 2 and above, if the set
	 dns line is omitted,
	 PPP will use the values found in
	 /etc/resolv.conf.
27.2.2.1. PAP and CHAP Authentication
Some ISPs set their system up so
	 that the authentication part of the connection is done
	 using either of the PAP or CHAP authentication mechanisms.
	 If this is the case, the ISP will not
	 give a login: prompt at connection, but
	 will start talking PPP
	 immediately.
PAP is less secure than CHAP, but security is not
	 normally an issue here as passwords, although being sent
	 as plain text with PAP, are being transmitted down a
	 serial line only. There is not much room for crackers
	 to “eavesdrop”.
The following
	 alterations must be made:
13 set authname MyUserName
14 set authkey MyPassword
15 set login
	Line 13:
	This line specifies the PAP/CHAP user name.
		 Insert the correct value for
		 MyUserName.

	Line 14:
	This line specifies the PAP/CHAP
		 password.
		 Insert the correct value for
		 MyPassword. You may
		 want to add an additional line, such as:
16 accept PAP
or
16 accept CHAP
to make it obvious that this is the intention,
		 but PAP and CHAP are both accepted by
		 default.

	Line 15:
	The ISP will not normally
		 require a login to the server when using PAP or
		 CHAP. Therefore, disable the “set
		 login” string.

27.2.2.2. Using PPP Network Address
	 Translation Capability
PPP has ability to use internal NAT without kernel
	 diverting capabilities. This functionality may be enabled
	 by the following line in
	 /etc/ppp/ppp.conf:
nat enable yes
Alternatively, NAT may be enabled by command-line
	 option -nat. There is also
	 /etc/rc.conf knob named
	 ppp_nat, which is enabled by
	 default.
When using this feature, it may be useful to include
	 the following /etc/ppp/ppp.conf options
	 to enable incoming connections forwarding:
nat port tcp 10.0.0.2:ftp ftp
nat port tcp 10.0.0.2:http http
or do not trust the outside at all
nat deny_incoming yes
27.2.3. Final System Configuration
While ppp is now configured,
	 some edits still need to be made to
	 /etc/rc.conf.
Working from the top down in this file, make sure the
	 hostname= line is set:
hostname="foo.example.com"
If the ISP has supplied a static
	 IP address and name, use this name as the
	 host name.
Look for the network_interfaces
	 variable. To configure the system to dial the
	 ISP on demand, make sure the
	 tun0 device is added to the list,
	 otherwise remove it.
network_interfaces="lo0 tun0"
ifconfig_tun0=
Note:
The ifconfig_tun0 variable should
	 be empty, and a file called
	 /etc/start_if.tun0 should be created.
	 This file should contain the line:
ppp -auto mysystem
This script is executed at network configuration time,
	 starting the ppp daemon in automatic mode. If this
	 machine acts as a gateway, consider including
	 -alias. Refer to the manual page for
	 further details.

Make sure that the router program is set to
	 NO with the following line in
	 /etc/rc.conf:
router_enable="NO"
It is important that the routed
	 daemon is not started, as routed tends
	 to delete the default routing table entries created by
	 ppp.
It is probably a good idea to ensure that the
	 sendmail_flags line does not include the
	 -q option, otherwise
	 sendmail will attempt to do a network
	 lookup every now and then, possibly causing your machine
	 to dial out. You may try:
sendmail_flags="-bd"
The downside is that sendmail is
	 forced to re-examine the mail queue whenever the ppp link.
	 To automate this, include !bg in
	 ppp.linkup:
1 provider:
2 delete ALL
3 add 0 0 HISADDR
4 !bg sendmail -bd -q30m
An alternative is to set up a
	 “dfilter” to block SMTP traffic. Refer to the
	 sample files for further details.
27.2.4. Using ppp
All that is left is to reboot the machine. After
	 rebooting, either type:
ppp
and then dial provider to start the
	 PPP session, or, to configure
	 ppp to establish sessions automatically
	 when there is outbound traffic and
	 start_if.tun0 does not exist,
	 type:
ppp -auto provider
It is possible to talk to the ppp
	 program while it is running in the background, but only
	 if a suitable diagnostic port has been set up. To do
	 this, add the following line to the configuration:
set server /var/run/ppp-tun%d DiagnosticPassword 0177
This will tell PPP to listen to the specified
	 UNIX® domain socket, asking clients for the specified
	 password before allowing access. The
	 %d in the name is replaced with the
	 tun device number that is in
	 use.
Once a socket has been set up, the pppctl(8)
	 program may be used in scripts that wish to manipulate
	 the running program.
27.2.5. Configuring Dial-in Services
Section 26.4, “Dial-in Service” provides a good description
	 on enabling dial-up services using getty(8).
An alternative to getty is
	 comms/mgetty+sendfax
	 port), a smarter version of getty
	 designed with dial-up lines in mind.
The advantages of using mgetty is
	 that it actively talks to modems,
	 meaning if port is turned off in
	 /etc/ttys then the modem will not
	 answer the phone.
Later versions of mgetty (from
	 0.99beta onwards) also support the automatic detection of
	 PPP streams, allowing clients
	 scriptless access to the server.
Refer to http://mgetty.greenie.net/doc/mgetty_toc.html
	 for more information on mgetty.
By default the comms/mgetty+sendfax
	 port comes with the AUTO_PPP option
	 enabled allowing mgetty to detect the
	 LCP phase of PPP connections and
	 automatically spawn off a ppp shell. However, since the
	 default login/password sequence does not occur it is
	 necessary to authenticate users using either PAP or
	 CHAP.
This section assumes the user has successfully
	 compiled, and installed the
	 comms/mgetty+sendfax port on his
	 system.
Ensure that
	 /usr/local/etc/mgetty+sendfax/login.config
	 has the following:
/AutoPPP/ - - /etc/ppp/ppp-pap-dialup
This tells mgetty to run
	 ppp-pap-dialup for detected
	 PPP connections.
Create an executable file called
	 /etc/ppp/ppp-pap-dialup containing
	 the following:
#!/bin/sh
exec /usr/sbin/ppp -direct pap$IDENT
For each dial-up line enabled in
	 /etc/ttys, create a corresponding
	 entry in /etc/ppp/ppp.conf. This
	 will happily co-exist with the definitions we created
	 above.
pap:
 enable pap
 set ifaddr 203.14.100.1 203.14.100.20-203.14.100.40
 enable proxy
Each user logging in with this method will need to
	 have a username/password in
	 /etc/ppp/ppp.secret, or
	 alternatively add the following option to authenticate
	 users via PAP from
	 /etc/passwd.
enable passwdauth
To assign some users a static IP
	 number, specify the number as the third argument in
	 /etc/ppp/ppp.secret. See
	 /usr/share/examples/ppp/ppp.secret.sample
	 for examples.
27.3. Troubleshooting PPP Connections
This section covers a few issues which may arise when
 using PPP over a modem connection. Some
 ISPs present the
 ssword prompt while others present
 password. If the ppp
 script is not written accordingly, the login attempt will
 fail. The most common way to debug ppp
 connections is by connecting manually as described in this
 section.
27.3.1. Check the Device Nodes
When using a custom kernel, make sure to include the
	following line in the kernel configuration file:
device uart
The uart device is already
	included in the GENERIC kernel, so no
	additional steps are necessary in this case. Just
	check the dmesg output for the modem
	device with:
dmesg | grep uart
This should display some pertinent output about the
	uart devices. These are the COM
	ports we need. If the modem acts like a standard serial port,
	it should be listed on uart1, or
	COM2. If so, a kernel rebuild is not
	required. When matching up, if the modem is on
	uart1, the modem device would be
	/dev/cuau1.
27.3.2. Connecting Manually
Connecting to the Internet by manually controlling
	ppp is quick, easy, and a great way to
	debug a connection or just get information on how the
	ISP treats ppp client
	connections. Lets start PPP from
	the command line. Note that in all of our examples we will
	use example as the hostname of the
	machine running PPP. To start
	ppp:
ppp
ppp ON example> set device /dev/cuau1
This second command sets the modem device to
	cuau1.
ppp ON example> set speed 115200
This sets the connection speed to
	115,200 kbps.
ppp ON example> enable dns
This tells ppp to configure the
	resolver and add the nameserver lines to
	/etc/resolv.conf. If
	ppp cannot determine the hostname, it can
	manually be set later.
ppp ON example> term
This switches to “terminal” mode in order to
	manually control the modem.
deflink: Entering terminal mode on /dev/cuau1
type '~h' for help
at
OK
atdt123456789
Use at to initialize the modem, then
	use atdt and the number for the
	ISP to begin the dial in process.
CONNECT
Confirmation of the connection, if we are going to have
	any connection problems, unrelated to hardware, here is where
	we will attempt to resolve them.
ISP Login:myusername
At this prompt, return the prompt with the username that
	was provided by the ISP.
ISP Pass:mypassword
At this prompt, reply with the password that was provided
	by the ISP. Just like logging into FreeBSD,
	the password will not echo.
Shell or PPP:ppp
Depending on the ISP, this prompt
	might not appear. If it does, it is asking whether to use a
	shell on the provider or to start
	ppp. In this example,
	ppp was selected in order to establish an
	Internet connection.
Ppp ON example>
Notice that in this example the first p
	has been capitalized. This shows that we have successfully
	connected to the ISP.
PPp ON example>
We have successfully authenticated with our
	ISP and are waiting for the assigned
	IP address.
PPP ON example>
We have made an agreement on an IP
	address and successfully completed our connection.
PPP ON example>add default HISADDR
Here we add our default route, we need to do this before
	we can talk to the outside world as currently the only
	established connection is with the peer. If this fails due to
	existing routes, put a bang character
	! in front of the add.
	Alternatively, set this before making the actual
	connection and it will negotiate a new route
	accordingly.
If everything went good we should now have an active
	connection to the Internet, which could be thrown into the
	background using CTRL+z If PPP
	returns to ppp then the connection has bee
	lost. This is good to know because it shows the connection
	status. Capital P's represent a connection to the
	ISP and lowercase p's show that the
	connection has been lost.
27.3.3. Debugging
If a connection cannot be established, turn hardware
	 flow CTS/RTS to off using set
	 ctsrts off. This is mainly the case when
	 connected to some PPP-capable
	 terminal servers, where PPP hangs
	 when it tries to write data to the communication link, and
	 waits for a Clear To Send (CTS) signal
	 which may never come. When using this option, include
	 set accmap as it may be required to defeat
	 hardware dependent on passing certain characters from end to
	 end, most of the time XON/XOFF. Refer to ppp(8) for
	 more information on this option and how it is used.
An older modem may need set parity
	 even. Parity is set at none be default, but is
	 used for error checking with a large increase in traffic,
	 on older modems.
PPP may not return to the
	 command mode, which is usually a negotiation error where the
	 ISP is waiting for negotiating to begin.
	 At this point, using ~p will force ppp
	 to start sending the configuration information.
If a login prompt never appears, PAP
	 or CHAP authentication is most likely
	 required. To use PAP or
	 CHAP, add the following options to
	 PPP before going into terminal
	 mode:
ppp ON example> set authname myusername
Where myusername should be
	 replaced with the username that was assigned by the
	 ISP.
ppp ON example> set authkey mypassword
Where mypassword should be
	 replaced with the password that was assigned by the
	 ISP.
If a connection is established, but cannot seem to find
	 any domain name, try to ping(8) an
	 IP address. If there is 100 percent
	 (100%) packet loss, it is likely that a default route was
	 not assigned. Double check that add default
	 HISADDR was set during the connection. If a
	 connection can be made to a remote IP
	 address, it is possible that a resolver address has not been
	 added to /etc/resolv.conf. This file
	 should look like:
domain example.com
nameserver x.x.x.x
nameserver y.y.y.y
Where x.x.x.x and
	 y.y.y.y should be replaced with
	 the IP address of the
	 ISP's DNS servers.
To configure syslog(3) to provide logging for the
	 PPP connection, make sure this
	 line exists in /etc/syslog.conf:
!ppp
. /var/log/ppp.log
27.4. Using PPP over Ethernet (PPPoE)
This section describes how to set up PPP
 over Ethernet (PPPoE).
Here is an example of a working
 ppp.conf:
default:
 set log Phase tun command # you can add more detailed logging if you wish
 set ifaddr 10.0.0.1/0 10.0.0.2/0

name_of_service_provider:
 set device PPPoE:xl1 # replace xl1 with your Ethernet device
 set authname YOURLOGINNAME
 set authkey YOURPASSWORD
 set dial
 set login
 add default HISADDR
As root,
	run:
ppp -ddial name_of_service_provider
Add the following to
	/etc/rc.conf:
ppp_enable="YES"
ppp_mode="ddial"
ppp_nat="YES"	# if you want to enable nat for your local network, otherwise NO
ppp_profile="name_of_service_provider"
27.4.1. Using a PPPoE Service Tag
Sometimes it will be necessary to use a service tag to
	establish the connection. Service tags are used to
	distinguish between different PPPoE servers attached to a
	given network.
Any required service tag information should be in the
	documentation provided by the ISP.
As a last resort, one could try installing the
	net/rr-pppoe package or port. Bear in mind
	however, this may de-program your modem and render it useless,
	so think twice before doing it. Simply install the program
	shipped with the modem. Then, access the
	System menu from the program. The name of
	the profile should be listed there. It is usually
	ISP.
The profile name (service tag) will be used in the PPPoE
	configuration entry in ppp.conf as the
	provider part for set device. Refer to
	ppp(8) for full details. It should look like
	this:
set device PPPoE:xl1:ISP
Do not forget to change xl1 to
	the proper device for the Ethernet card.
Do not forget to change ISP to
	the profile.
For additional information, refer to Cheaper
	 Broadband with FreeBSD on DSL by Renaud Waldura.
27.4.2. PPPoE with a 3Com®
	HomeConnect® ADSL
	Modem Dual Link
This modem does not follow the PPPoE specification defined
	in RFC
	 2516.
In order to make FreeBSD capable of communicating with this
	device, a sysctl must be set. This can be done automatically
	at boot time by updating
	/etc/sysctl.conf:
net.graph.nonstandard_pppoe=1
or can be done immediately with the command:
sysctl net.graph.nonstandard_pppoe=1
Unfortunately, because this is a system-wide setting, it
	is not possible to talk to a normal PPPoE client or server and
	a 3Com® HomeConnect® ADSL Modem at the
	same time.
27.5. Using PPP over
 ATM (PPPoA)
The following describes how to set up PPP over
 ATM (PPPoA). PPPoA is a popular choice among
 European DSL providers.
27.5.1. Using mpd
The mpd application can be used
	to connect to a variety of services, in particular PPTP
	services. It can be installed using the
	net/mpd5 package or port. Many ADSL modems
	require that a PPTP tunnel is created between the modem and
	computer.
Once installed, configure mpd
	to suit the provider's settings. The port places a set of
	sample configuration files which are well documented in
	/usr/local/etc/mpd/. A complete guide to
	configure mpd is available in HTML
	format in /usr/ports/share/doc/mpd/.
	Here is a sample configuration for connecting to an ADSL
	service with mpd. The
	configuration is spread over two files, first the
	mpd.conf:
Note:
This example mpd.conf only works
	 with mpd 4.x.

default:
 load adsl

adsl:
 new -i ng0 adsl adsl
 set bundle authname username [image: 1]
 set bundle password password [image: 2]
 set bundle disable multilink

 set link no pap acfcomp protocomp
 set link disable chap
 set link accept chap
 set link keep-alive 30 10

 set ipcp no vjcomp
 set ipcp ranges 0.0.0.0/0 0.0.0.0/0

 set iface route default
 set iface disable on-demand
 set iface enable proxy-arp
 set iface idle 0

 open
	[image: 1]
	The username used to authenticate with your
	 ISP.

	[image: 2]
	The password used to authenticate with your
	 ISP.

Information about the link, or links, to establish is found
 in mpd.links. An example
 mpd.links to accompany the above example
 is given beneath:
adsl:
 set link type pptp
 set pptp mode active
 set pptp enable originate outcall
 set pptp self 10.0.0.1 [image: 1]
 set pptp peer 10.0.0.138 [image: 2]
	[image: 1]
	The IP address of FreeBSD computer
	 running mpd.

	[image: 2]
	The IP address of the ADSL modem.
	 The Alcatel SpeedTouch™ Home defaults to 10.0.0.138.

It is possible to initialize the connection easily by
 issuing the following command as
 root:
mpd -b adsl
To view the status of the connection:
% ifconfig ng0
ng0: flags=88d1<UP,POINTOPOINT,RUNNING,NOARP,SIMPLEX,MULTICAST> mtu 1500
 inet 216.136.204.117 --> 204.152.186.171 netmask 0xffffffff
Using mpd is the recommended
 way to connect to an ADSL service with FreeBSD.
27.5.2. Using pptpclient
It is also possible to use FreeBSD to connect to other
 PPPoA services using net/pptpclient.
To use net/pptpclient
 to connect to a DSL service, install the port or package, then
 edit /etc/ppp/ppp.conf. An example section
 of ppp.conf is given below. For further
 information on ppp.conf options consult
 ppp(8).
adsl:
 set log phase chat lcp ipcp ccp tun command
 set timeout 0
 enable dns
 set authname username [image: 1]
 set authkey password [image: 2]
 set ifaddr 0 0
 add default HISADDR
	[image: 1]
	The username for the DSL provider.

	[image: 2]
	The password for your account.

Warning:
Since the account's password is added to
	ppp.confin plain text form, make sure
	nobody can read the contents of this file:
chown root:wheel /etc/ppp/ppp.conf
chmod 600 /etc/ppp/ppp.conf

This will open a tunnel for a PPP
	session to the DSL router. Ethernet DSL modems have a
	preconfigured LAN IP address to connect to.
	In the case of the Alcatel SpeedTouch™ Home, this address is
	10.0.0.138. The
	router's documentation should list the address the device
	uses. To open the tunnel and start a PPP
	session:
pptp address adsl
Tip:
If an ampersand (“&”) is added
	 to the end of this command,
	 pptp will return the
	 prompt.

A tun virtual tunnel device
	will be created for interaction between the
	pptp and
	ppp processes. Once the
	prompt is returned, or the
	pptp process has confirmed a
	connection, examine the tunnel:
% ifconfig tun0
tun0: flags=8051<UP,POINTOPOINT,RUNNING,MULTICAST> mtu 1500
 inet 216.136.204.21 --> 204.152.186.171 netmask 0xffffff00
	Opened by PID 918
If the connection fails, check the configuration of
	the router, which is usually accessible using
	a web browser. Also, examine the output of
	pptp and the contents of the
	log file,
	/var/log/ppp.log for clues.
Chapter 28. Electronic Mail
Original
	work by Bill Lloyd. Rewritten
	by Jim Mock. 28.1. Synopsis
“Electronic Mail”, better known as email, is
 one of the most widely used forms of communication today. This
 chapter provides a basic introduction to running a mail server
 on FreeBSD, as well as an introduction to sending and receiving
 email using FreeBSD. For more complete coverage of this subject,
 refer to the books listed in Appendix B, Bibliography.
After reading this chapter, you will know:
	Which software components are involved in sending and
	 receiving electronic mail.

	Where basic Sendmail
	 configuration files are located in FreeBSD.

	The difference between remote and local
	 mailboxes.

	How to block spammers from illegally using a mail server
	 as a relay.

	How to install and configure an alternate Mail Transfer
	 Agent, replacing
	 Sendmail.

	How to troubleshoot common mail server problems.

	How to set up the system to send mail only.

	How to use mail with a dialup connection.

	How to configure SMTP authentication for added
	 security.

	How to install and use a Mail User Agent, such as
	 mutt, to send and receive
	 email.

	How to download mail from a remote
	 POP or IMAP
	 server.

	How to automatically apply filters and rules to incoming
	 email.

Before reading this chapter, you should:
	Properly set up a network connection (Chapter 31, Advanced Networking).

	Properly set up the DNS information
	 for a mail host (Chapter 29, Network Servers).

	Know how to install additional third-party software
	 (Chapter 4, Installing Applications: Packages and Ports).

28.2. Mail Components
There are five major parts involved in an email exchange:
 the Mail User Agent (MUA), the Mail Transfer
 Agent (MTA), a mail host, a remote or local
 mailbox, and DNS. This section provides an
 overview of these components.
	Mail User Agent (MUA)
	The Mail User Agent (MUA) is an
	 application which is used to compose, send, and receive
	 emails. This application can be a command line program,
	 such as the built-in mail utility or a
	 third-party application from the Ports Collection, such as
	 mutt,
	 alpine, or
	 elm. Dozens of graphical
	 programs are also available in the Ports Collection,
	 including Claws Mail,
	 Evolution, and
	 Thunderbird. Some
	 organizations provide a web mail program which can be
	 accessed through a web browser. More information about
	 installing and using a MUA on FreeBSD can
	 be found in Section 28.10, “Mail User Agents”.

	Mail Transfer Agent (MTA)
	The Mail Transfer Agent (MTA) is
	 responsible for receiving incoming mail and delivering
	 outgoing mail. FreeBSD ships with
	 Sendmail as the default
	 MTA, but it also supports numerous
	 other mail server daemons, including
	 Exim,
	 Postfix, and
	 qmail.
	 Sendmail configuration is
	 described in Section 28.3, “Sendmail Configuration
	Files”. If another
	 MTA is installed using the Ports
	 Collection, refer to its post-installation message for
	 FreeBSD-specific configuration details and the application's
	 website for more general configuration
	 instructions.

	Mail Host and Mailboxes
	The mail host is a server that is responsible for
	 delivering and receiving mail for a host or a network.
	 The mail host collects all mail sent to the domain and
	 stores it either in the default mbox
	 or the alternative Maildir format, depending on the
	 configuration. Once mail has been stored, it may either
	 be read locally using a MUA or remotely
	 accessed and collected using protocols such as
	 POP or IMAP. If
	 mail is read locally, a POP or
	 IMAP server does not need to be
	 installed.
To access mailboxes remotely, a POP
	 or IMAP server is required as these
	 protocols allow users to connect to their mailboxes from
	 remote locations. IMAP offers several
	 advantages over POP. These include the
	 ability to store a copy of messages on a remote server
	 after they are downloaded and concurrent updates.
	 IMAP can be useful over low-speed links
	 as it allows users to fetch the structure of messages
	 without downloading them. It can also perform tasks such
	 as searching on the server in order to minimize data
	 transfer between clients and servers.
Several POP and
	 IMAP servers are available in the Ports
	 Collection. These include
	 mail/qpopper,
	 mail/imap-uw,
	 mail/courier-imap, and
	 mail/dovecot2.
Warning:
It should be noted that both POP
	 and IMAP transmit information,
	 including username and password credentials, in
	 clear-text. To secure the transmission of information
	 across these protocols, consider tunneling sessions over
	 ssh(1) (Section 13.8.1.2, “SSH Tunneling”)
	 or using SSL (Section 13.6, “OpenSSL”).

	Domain Name System (DNS)
	The Domain Name System (DNS) and
	 its daemon named play a large role in
	 the delivery of email. In order to deliver mail from one
	 site to another, the MTA will look up
	 the remote site in DNS to determine
	 which host will receive mail for the destination. This
	 process also occurs when mail is sent from a remote host
	 to the MTA.
In addition to mapping hostnames to
	 IP addresses, DNS is
	 responsible for storing information specific to mail
	 delivery, known as Mail eXchanger
	 MX records. The MX
	 record specifies which hosts will receive mail for a
	 particular domain.
To view the MX records for a
	 domain, specify the type of record. Refer to
	 host(1), for more details about this command:
% host -t mx FreeBSD.org
FreeBSD.org mail is handled by 10 mx1.FreeBSD.org
Refer to Section 29.7, “Domain Name System (DNS)” for more
	 information about DNS and its
	 configuration.

28.4. Changing the Mail Transfer Agent
Written by Andrew Boothman. Information taken from emails written by Gregory Neil Shapiro. FreeBSD comes with Sendmail already
 installed as the MTA which is in charge of
 outgoing and incoming mail. However, the system administrator
 can change the system's MTA. A wide choice
 of alternative MTAs is available from the
 mail category of the FreeBSD Ports
 Collection.
Once a new MTA is installed, configure
 and test the new software before replacing
 Sendmail. Refer to the documentation
 of the new MTA for information on how to
 configure the software.
Once the new MTA is working, use the
 instructions in this section to disable
 Sendmail and configure FreeBSD to use
 the replacement MTA.
28.4.1. Disable Sendmail
Warning:
If Sendmail's outgoing mail
	 service is disabled, it is important that it is replaced
	 with an alternative mail delivery system. Otherwise, system
	 functions such as periodic(8) will be unable to deliver
	 their results by email. Many parts of the system expect a
	 functional MTA. If applications continue
	 to use Sendmail's binaries to try
	 to send email after they are disabled, mail could go into an
	 inactive Sendmail queue and
	 never be delivered.

In order to completely disable
	Sendmail, add or edit the following
	lines in /etc/rc.conf:
sendmail_enable="NO"
sendmail_submit_enable="NO"
sendmail_outbound_enable="NO"
sendmail_msp_queue_enable="NO"
To only disable Sendmail's
	incoming mail service, use only this entry in
	/etc/rc.conf:
sendmail_enable="NO"
More information on Sendmail's
	startup options is available in rc.sendmail(8).
28.4.2. Replace the Default MTA
When a new MTA is installed using the
	Ports Collection, its startup script is also installed and
	startup instructions are mentioned in its package message.
	Before starting the new MTA, stop the
	running Sendmail processes. This
	example stops all of these services, then starts the
	Postfix service:
service sendmail stop
service postfix start
To start the replacement MTA at system
	boot, add its configuration line to
	/etc/rc.conf. This entry enables the
	Postfix MTA:
postfix_enable="YES"
Some extra configuration is needed as
	Sendmail is so ubiquitous that some
	software assumes it is already installed and configured.
	Check /etc/periodic.conf and make sure
	that these values are set to NO. If this
	file does not exist, create it with these entries:
daily_clean_hoststat_enable="NO"
daily_status_mail_rejects_enable="NO"
daily_status_include_submit_mailq="NO"
daily_submit_queuerun="NO"
Some alternative MTAs provide their own
	compatible implementations of the
	Sendmail command-line interface in
	order to facilitate using them as drop-in replacements for
	Sendmail. However, some
	MUAs may try to execute standard
	Sendmail binaries instead of the
	new MTA's binaries. FreeBSD uses
	/etc/mail/mailer.conf to map the expected
	Sendmail binaries to the location
	of the new binaries. More information about this mapping can
	be found in mailwrapper(8).
The default /etc/mail/mailer.conf
	looks like this:
$FreeBSD$
#
Execute the "real" sendmail program, named /usr/libexec/sendmail/sendmail
#
sendmail /usr/libexec/sendmail/sendmail
send-mail /usr/libexec/sendmail/sendmail
mailq /usr/libexec/sendmail/sendmail
newaliases /usr/libexec/sendmail/sendmail
hoststat /usr/libexec/sendmail/sendmail
purgestat /usr/libexec/sendmail/sendmail
When any of the commands listed on the left are run, the
	system actually executes the associated command shown on the
	right. This system makes it easy to change what binaries are
	executed when these default binaries are invoked.
Some MTAs, when installed using the
	Ports Collection, will prompt to update this file for the new
	binaries. For example, Postfix
	will update the file like this:
#
Execute the Postfix sendmail program, named /usr/local/sbin/sendmail
#
sendmail /usr/local/sbin/sendmail
send-mail /usr/local/sbin/sendmail
mailq /usr/local/sbin/sendmail
newaliases /usr/local/sbin/sendmail
If the installation of the MTA does
	not automatically update
	/etc/mail/mailer.conf, edit this file in
	a text editor so that it points to the new binaries. This
	example points to the binaries installed by
	mail/ssmtp:
sendmail /usr/local/sbin/ssmtp
send-mail /usr/local/sbin/ssmtp
mailq /usr/local/sbin/ssmtp
newaliases /usr/local/sbin/ssmtp
hoststat /usr/bin/true
purgestat /usr/bin/true
Once everything is configured, it is recommended to reboot
	the system. Rebooting provides the opportunity to ensure that
	the system is correctly configured to start the new
	MTA automatically on boot.
28.6. Advanced Topics
This section covers more involved topics such as mail
 configuration and setting up mail for an entire domain.
28.6.1. Basic Configuration
Out of the box, one can send email to external hosts as
	long as /etc/resolv.conf is configured or
	the network has access to a configured DNS
	server. To have email delivered to the MTA
	on the FreeBSD host, do one of the following:
	Run a DNS server for the
	 domain.

	Get mail delivered directly to the
	 FQDN for the machine.

In order to have mail delivered directly to a host, it
	must have a permanent static IP address, not a dynamic IP
	address. If the system is behind a firewall, it must be
	configured to allow SMTP traffic. To receive mail directly at
	a host, one of these two must be configured:
	Make sure that the lowest-numbered
	 MX record in
	 DNS points to the host's static IP
	 address.

	Make sure there is no MX entry in
	 the DNS for the host.

Either of the above will allow mail to be received
	directly at the host.
Try this:
hostname
example.FreeBSD.org
host example.FreeBSD.org
example.FreeBSD.org has address 204.216.27.XX
In this example, mail sent directly to
	<yourlogin@example.FreeBSD.org>
	should work without problems, assuming
	Sendmail is running correctly on
	example.FreeBSD.org.
For this example:
host example.FreeBSD.org
example.FreeBSD.org has address 204.216.27.XX
example.FreeBSD.org mail is handled (pri=10) by nevdull.FreeBSD.org
All mail sent to example.FreeBSD.org will
	be collected on hub under the same
	username instead of being sent directly to your host.
The above information is handled by the
	DNS server. The DNS
	record that carries mail routing information is the
	MX entry. If no MX
	record exists, mail will be delivered directly to the host by
	way of its IP address.
The MX entry for freefall.FreeBSD.org at
	one time looked like this:
freefall		MX	30	mail.crl.net
freefall		MX	40	agora.rdrop.com
freefall		MX	10	freefall.FreeBSD.org
freefall		MX	20	who.cdrom.com
freefall had many
	MX entries. The lowest
	MX number is the host that receives mail
	directly, if available. If it is not accessible for some
	reason, the next lower-numbered host will accept messages
	temporarily, and pass it along when a lower-numbered host
	becomes available.
Alternate MX sites should have separate
	Internet connections in order to be most useful. Your
	ISP can provide this service.
28.6.2. Mail for a Domain
When configuring a MTA for a network,
	any mail sent to hosts in its domain should be diverted to the
	MTA so that users can receive their mail on
	the master mail server.
To make life easiest, a user account with the same
	username should exist on both the
	MTA and the system with the
	MUA. Use adduser(8) to create the
	user accounts.
The MTA must be the designated mail
	exchanger for each workstation on the network. This is done
	in theDNS configuration with an
	MX record:
example.FreeBSD.org	A	204.216.27.XX		; Workstation
			MX	10 nevdull.FreeBSD.org	; Mailhost
This will redirect mail for the workstation to the
	MTA no matter where the A record points.
	The mail is sent to the MX host.
This must be configured on a DNS
	server. If the network does not run its own
	DNS server, talk to the
	ISP or DNS
	provider.
The following is an example of virtual email hosting.
	Consider a customer with the domain customer1.org, where all
	the mail for customer1.org should be
	sent to mail.myhost.com. The
	DNS entry should look like this:
customer1.org		MX	10	mail.myhost.com
An A> record is
	not needed for customer1.org in order to
	only handle email for that domain. However, running
	ping against customer1.org will not
	work unless an A record exists for
	it.
Tell the MTA which domains and/or
	hostnames it should accept mail for. Either of the following
	will work for Sendmail:
	Add the hosts to
	 /etc/mail/local-host-names when
	 using the FEATURE(use_cw_file).

	Add a Cwyour.host.com line to
	 /etc/sendmail.cf.

28.7. Setting Up to Send Only
Contributed by Bill Moran. There are many instances where one may only want to send
 mail through a relay. Some examples are:
	The computer is a desktop machine that needs to use
	 programs such as mail(1), using the
	 ISP's mail relay.

	The computer is a server that does not handle mail
	 locally, but needs to pass off all mail to a relay for
	 processing.

While any MTA is capable of filling
 this particular niche, it can be difficult to properly configure
 a full-featured MTA just to handle offloading
 mail. Programs such as Sendmail and
 Postfix are overkill for this
 use.
Additionally, a typical Internet access service agreement
 may forbid one from running a “mail server”.
The easiest way to fulfill those needs is to install the
 mail/ssmtp port:
cd /usr/ports/mail/ssmtp
make install replace clean
Once installed, mail/ssmtp can be
 configured with
 /usr/local/etc/ssmtp/ssmtp.conf:
root=yourrealemail@example.com
mailhub=mail.example.com
rewriteDomain=example.com
hostname=_HOSTNAME_
Use the real email address for root. Enter the
 ISP's outgoing mail relay in place of
 mail.example.com.
 Some ISPs call this the “outgoing mail
	server” or “SMTP server”.
Make sure to disable Sendmail,
 including the outgoing mail service. See Section 28.4.1, “Disable Sendmail” for details.
mail/ssmtp has some other options
 available. Refer to the examples in
 /usr/local/etc/ssmtp or the manual page
 of ssmtp for more information.
Setting up ssmtp in this manner
 allows any software on the computer that needs to send mail to
 function properly, while not violating the
 ISP's usage policy or allowing the computer
 to be hijacked for spamming.
28.9. SMTP Authentication
Written by James Gorham. Configuring SMTP authentication on the
 MTA provides a number of benefits.
 SMTP authentication adds a layer
 of security to Sendmail, and provides
 mobile users who switch hosts the ability to use the same
 MTA without the need to reconfigure their
 mail client's settings each time.
	Install security/cyrus-sasl2
	 from the Ports Collection. This port supports a number of
	 compile-time options. For the SMTP authentication method
	 demonstrated in this example, make sure that
	 LOGIN is not disabled.

	After installing
	 security/cyrus-sasl2, edit
	 /usr/local/lib/sasl2/Sendmail.conf,
	 or create it if it does not exist, and add the following
	 line:
pwcheck_method: saslauthd

	Next, install
	 security/cyrus-sasl2-saslauthd and add
	 the following line to
	 /etc/rc.conf:
saslauthd_enable="YES"
Finally, start the saslauthd daemon:
service saslauthd start
This daemon serves as a broker for
	 Sendmail to authenticate against
	 the FreeBSD passwd(5) database. This saves the trouble of
	 creating a new set of usernames and passwords for each user
	 that needs to use SMTP authentication,
	 and keeps the login and mail password the same.

	Next, edit /etc/make.conf and add
	 the following lines:
SENDMAIL_CFLAGS=-I/usr/local/include/sasl -DSASL
SENDMAIL_LDFLAGS=-L/usr/local/lib
SENDMAIL_LDADD=-lsasl2
These lines provide Sendmail
	 the proper configuration options for linking to
	 cyrus-sasl2 at compile time. Make sure
	 that cyrus-sasl2 has been installed
	 before recompiling
	 Sendmail.

	Recompile Sendmail by
	 executing the following commands:
cd /usr/src/lib/libsmutil
make cleandir && make obj && make
cd /usr/src/lib/libsm
make cleandir && make obj && make
cd /usr/src/usr.sbin/sendmail
make cleandir && make obj && make && make install
This compile should not have any problems if
	 /usr/src has not changed extensively
	 and the shared libraries it needs are available.

	After Sendmail has been
	 compiled and reinstalled, edit
	 /etc/mail/freebsd.mc or the local
	 .mc. Many administrators choose
	 to use the output from hostname(1) as the name of
	 .mc for uniqueness. Add these
	 lines:
dnl set SASL options
TRUST_AUTH_MECH(`GSSAPI DIGEST-MD5 CRAM-MD5 LOGIN')dnl
define(`confAUTH_MECHANISMS', `GSSAPI DIGEST-MD5 CRAM-MD5 LOGIN')dnl
These options configure the different methods available
	 to Sendmail for authenticating
	 users. To use a method other than
	 pwcheck, refer to the
	 Sendmail documentation.

	Finally, run make(1) while in
	 /etc/mail. That will run the new
	 .mc and create a
	 .cf named either
	 freebsd.cf or the name used for the
	 local .mc. Then, run make
	 install restart, which will copy the file to
	 sendmail.cf, and properly restart
	 Sendmail. For more information
	 about this process, refer to
	 /etc/mail/Makefile.

To test the configuration, use a MUA to
 send a test message. For further investigation, set the
 LogLevel of Sendmail
 to 13 and watch
 /var/log/maillog for any errors.
For more information, refer to
	SMTP authentication.
28.10. Mail User Agents
Contributed by Marc Silver. A MUA is an application that is used to
 send and receive email. As email “evolves” and
 becomes more complex, MUAs are becoming
 increasingly powerful and provide users increased functionality
 and flexibility. The mail category of the
 FreeBSD Ports Collection contains numerous MUAs.
 These include graphical email clients such as
 Evolution or
 Balsa and console based clients such
 as mutt or
 alpine.
28.10.1. mail
mail(1) is the default
	MUA installed with FreeBSD. It is a console
	based MUA that offers the basic
	functionality required to send and receive text-based email.
	It provides limited attachment support and can only access
	local mailboxes.
Although mail does not natively support
	interaction with POP or
	IMAP servers, these mailboxes may be
	downloaded to a local mbox using an
	application such as
	fetchmail.
In order to send and receive email, run
	mail:
% mail
The contents of the user's mailbox in
	/var/mail are automatically read by
	mail. Should the mailbox be empty, the
	utility exits with a message indicating that no mail could
	be found. If mail exists, the application interface starts,
	and a list of messages will be displayed. Messages are
	automatically numbered, as can be seen in the following
	example:
Mail version 8.1 6/6/93. Type ? for help.
"/var/mail/marcs": 3 messages 3 new
>N 1 root@localhost Mon Mar 8 14:05 14/510 "test"
 N 2 root@localhost Mon Mar 8 14:05 14/509 "user account"
 N 3 root@localhost Mon Mar 8 14:05 14/509 "sample"
Messages can now be read by typing t
	followed by the message number. This example reads the first
	email:
& t 1
Message 1:
From root@localhost Mon Mar 8 14:05:52 2004
X-Original-To: marcs@localhost
Delivered-To: marcs@localhost
To: marcs@localhost
Subject: test
Date: Mon, 8 Mar 2004 14:05:52 +0200 (SAST)
From: root@localhost (Charlie Root)

This is a test message, please reply if you receive it.
As seen in this example, the message will be displayed
	with full headers. To display the list of messages again,
	press h.
If the email requires a reply, press either
	R or r
	mail keys. R instructs
	mail to reply only to the sender of the
	email, while r replies to all other
	recipients of the message. These commands can be suffixed
	with the mail number of the message to reply to. After typing
	the response, the end of the message should be marked by a
	single . on its own line. An example can be
	seen below:
& R 1
To: root@localhost
Subject: Re: test

Thank you, I did get your email.
.
EOT
In order to send a new email, press m,
	followed by the recipient email address. Multiple recipients
	may be specified by separating each address with the
	, delimiter. The subject of the message may
	then be entered, followed by the message contents. The end of
	the message should be specified by putting a single
	. on its own line.
& mail root@localhost
Subject: I mastered mail

Now I can send and receive email using mail ... :)
.
EOT
While using mail, press
	? to display help at any time. Refer to
	mail(1) for more help on how to use
	mail.
Note:
mail(1) was not designed to handle attachments and
	 thus deals with them poorly. Newer MUAs
	 handle attachments in a more intelligent way. Users who
	 prefer to use mail may find the
	 converters/mpack port to be of
	 considerable use.

28.10.2. mutt
mutt is a powerful
	MUA, with many features, including:
	The ability to thread messages.

	PGP support for digital signing and encryption of
	 email.

	MIME support.

	Maildir support.

	Highly customizable.

Refer to http://www.mutt.org
	for more information on
	mutt.
mutt may be installed using the
	mail/mutt port. After the port has been
	installed, mutt can be started by
	issuing the following command:
% mutt
mutt will automatically read
	and display the contents of the user mailbox in
	/var/mail. If no mails are found,
	mutt will wait for commands from
	the user. The example below shows
	mutt displaying a list of
	messages:

To read an email, select it using the cursor keys and
	press Enter. An example of
	mutt displaying email can be seen
	below:

Similar to mail(1), mutt
	can be used to reply only to the sender of the message as well
	as to all recipients. To reply only to the sender of the
	email, press r. To send a group reply
	to the original sender as well as all the message recipients,
	press g.
Note:
By default, mutt uses the
	 vi(1) editor for creating and replying to emails. Each
	 user can customize this by creating or editing the
	 .muttrc in their home directory and
	 setting the editor variable or by setting
	 the EDITOR environment variable. Refer to
	 http://www.mutt.org/
	 for more information about configuring
	 mutt.

To compose a new mail message, press
	m. After a valid subject has been given,
	mutt will start vi(1) so the
	email can be written. Once the contents of the email are
	complete, save and quit from vi.
	mutt will resume, displaying a
	summary screen of the mail that is to be delivered. In
	order to send the mail, press y. An example
	of the summary screen can be seen below:

mutt contains extensive help
	which can be accessed from most of the menus by pressing
	?. The top line also displays the keyboard
	shortcuts where appropriate.
28.10.3. alpine
alpine is aimed at a beginner
	user, but also includes some advanced features.
Warning:
alpine has had several remote
	 vulnerabilities discovered in the past, which allowed remote
	 attackers to execute arbitrary code as users on the local
	 system, by the action of sending a specially-prepared email.
	 While known problems have been fixed,
	 alpine code is written in an
	 insecure style and the FreeBSD Security Officer believes there
	 are likely to be other undiscovered vulnerabilities. Users
	 install alpine at their own
	 risk.

The current version of alpine
	may be installed using the mail/alpine
	port. Once the port has installed,
	alpine can be started by issuing
	the following command:
% alpine
The first time alpine
	runs, it displays a greeting page with a brief introduction,
	as well as a request from the
	alpine development team to send
	an anonymous email message allowing them to judge how many
	users are using their client. To send this anonymous message,
	press Enter. Alternatively, press
	E to exit the greeting without sending an
	anonymous message. An example of the greeting page is
	shown below:

The main menu is then presented, which can be navigated
	using the cursor keys. This main menu provides shortcuts for
	the composing new mails, browsing mail directories, and
	administering address book entries. Below the main menu,
	relevant keyboard shortcuts to perform functions specific to
	the task at hand are shown.
The default directory opened by
	alpine is
	inbox. To view the message index, press
	I, or select the
	MESSAGE INDEX option shown
	below:

The message index shows messages in the current directory
	and can be navigated by using the cursor keys. Highlighted
	messages can be read by pressing
	Enter.

In the screenshot below, a sample message is displayed by
	alpine. Contextual keyboard
	shortcuts are displayed at the bottom of the screen. An
	example of one of a shortcut is r, which
	tells the MUA to reply to the current
	message being displayed.

Replying to an email in alpine
	is done using the pico editor,
	which is installed by default with
	alpine.
	pico makes it easy to navigate the
	message and is easier for novice users to use than vi(1)
	or mail(1). Once the reply is complete, the message can
	be sent by pressing Ctrl+X. alpine will ask for
	confirmation before sending the message.

alpine can be customized using
	the SETUP option from the main
	menu. Consult http://www.washington.edu/alpine/
	for more information.
28.12. Using procmail
Contributed by Marc Silver. procmail is a powerful
 application used to filter incoming mail. It allows users to
 define “rules” which can be matched to incoming
 mails to perform specific functions or to reroute mail to
 alternative mailboxes or email addresses.
 procmail can be installed using the
 mail/procmail port. Once installed, it can
 be directly integrated into most MTAs.
 Consult the MTA documentation for more
 information. Alternatively, procmail
 can be integrated by adding the following line to a
 .forward in the home directory of the
 user:
"|exec /usr/local/bin/procmail || exit 75"
The following section displays some basic
 procmail rules, as well as brief
 descriptions of what they do. Rules must be inserted into a
 .procmailrc, which must reside in the
 user's home directory.
The majority of these rules can be found in
 procmailex(5).
To forward all mail from <user@example.com> to
 an external address of <goodmail@example2.com>:
:0
* ^From.*user@example.com
! goodmail@example2.com
To forward all mails shorter than 1000 bytes to an external
 address of <goodmail@example2.com>:
:0
* < 1000
! goodmail@example2.com
To send all mail sent to
 <alternate@example.com> to a mailbox called
 alternate:
:0
* ^TOalternate@example.com
alternate
To send all mail with a subject of “Spam” to
 /dev/null:
:0
^Subject:.*Spam
/dev/null
A useful recipe that parses incoming FreeBSD.org mailing lists and
 places each list in its own mailbox:
:0
* ^Sender:.owner-freebsd-\/[^@]+@FreeBSD.ORG
{
	LISTNAME=${MATCH}
	:0
	* LISTNAME??^\/[^@]+
	FreeBSD-${MATCH}
}
29.2. The inetd
 Super-Server
The inetd(8) daemon is sometimes referred to as a
 Super-Server because it manages connections for many services.
 Instead of starting multiple applications, only the
 inetd service needs to be started.
 When a connection is received for a service that is managed by
 inetd, it determines which program
 the connection is destined for, spawns a process for that
 program, and delegates the program a socket. Using
 inetd for services that are not
 heavily used can reduce system load, when compared to running
 each daemon individually in stand-alone mode.
Primarily, inetd is used to
 spawn other daemons, but several trivial protocols are handled
 internally, such as chargen,
 auth,
 time,
 echo,
 discard, and
 daytime.
This section covers the basics of configuring
 inetd.
29.2.1. Configuration File
Configuration of inetd is
	done by editing /etc/inetd.conf. Each
	line of this configuration file represents an application
	which can be started by inetd. By
	default, every line starts with a comment
	(#), meaning that
	inetd is not listening for any
	applications. To configure inetd
	to listen for an application's connections, remove the
	# at the beginning of the line for that
	application.
After saving your edits, configure
	inetd to start at system boot by
	editing /etc/rc.conf:
inetd_enable="YES"
To start inetd now, so that it
	listens for the service you configured, type:
service inetd start
Once inetd is started, it needs
	to be notified whenever a modification is made to
	/etc/inetd.conf:
Example 29.1. Reloading the inetd
	 Configuration File
service inetd reload

Typically, the default entry for an application does not
	need to be edited beyond removing the #.
	In some situations, it may be appropriate to edit the default
	entry.
As an example, this is the default entry for ftpd(8)
	over IPv4:
ftp stream tcp nowait root /usr/libexec/ftpd ftpd -l
The seven columns in an entry are as follows:
service-name
socket-type
protocol
{wait|nowait}[/max-child[/max-connections-per-ip-per-minute[/max-child-per-ip]]]
user[:group][/login-class]
server-program
server-program-arguments
where:
	service-name
	The service name of the daemon to start. It must
	 correspond to a service listed in
	 /etc/services. This determines
	 which port inetd listens on
	 for incoming connections to that service. When using a
	 custom service, it must first be added to
	 /etc/services.

	socket-type
	Either stream,
	 dgram, raw, or
	 seqpacket. Use
	 stream for TCP connections and
	 dgram for
	 UDP services.

	protocol
	Use one of the following protocol names:
	Protocol Name	Explanation
	tcp or tcp4	TCP IPv4
	udp or udp4	UDP IPv4
	tcp6	TCP IPv6
	udp6	UDP IPv6
	tcp46	Both TCP IPv4 and IPv6
	udp46	Both UDP IPv4 and
		 IPv6

	{wait|nowait}[/max-child[/max-connections-per-ip-per-minute[/max-child-per-ip]]]
	In this field, wait or
	 nowait must be specified.
	 max-child,
	 max-connections-per-ip-per-minute and
	 max-child-per-ip are optional.
wait|nowait indicates whether or
	 not the service is able to handle its own socket.
	 dgram socket types must use
	 wait while
	 stream daemons, which are usually
	 multi-threaded, should use nowait.
	 wait usually hands off multiple sockets
	 to a single daemon, while nowait spawns
	 a child daemon for each new socket.
The maximum number of child daemons
	 inetd may spawn is set by
	 max-child. For example, to limit ten
	 instances of the daemon, place a /10
	 after nowait. Specifying
	 /0 allows an unlimited number of
	 children.
max-connections-per-ip-per-minute
	 limits the number of connections from any particular
	 IP address per minute. Once the
	 limit is reached, further connections from this IP
	 address will be dropped until the end of the minute.
	 For example, a value of /10 would
	 limit any particular IP address to
	 ten connection attempts per minute.
	 max-child-per-ip limits the number of
	 child processes that can be started on behalf on any
	 single IP address at any moment.
	 These options can limit excessive resource consumption
	 and help to prevent Denial of Service attacks.
An example can be seen in the default settings for
	 fingerd(8):
finger stream tcp nowait/3/10 nobody /usr/libexec/fingerd fingerd -k -s

	user
	The username the daemon
	 will run as. Daemons typically run as
	 root,
	 daemon, or
	 nobody.

	server-program
	The full path to the daemon. If the daemon is a
	 service provided by inetd
	 internally, use internal.

	server-program-arguments
	Used to specify any command arguments to be passed
	 to the daemon on invocation. If the daemon is an
	 internal service, use
	 internal.

29.2.2. Command-Line Options
Like most server daemons, inetd
	has a number of options that can be used to modify its
	behavior. By default, inetd is
	started with -wW -C 60. These options
	enable TCP wrappers for all services, including internal
	services, and prevent any IP address from
	requesting any service more than 60 times per minute.
To change the default options which are passed to
	inetd, add an entry for
	inetd_flags in
	/etc/rc.conf. If
	inetd is already running, restart
	it with service inetd restart.
The available rate limiting options are:
	-c maximum
	Specify the default maximum number of simultaneous
	 invocations of each service, where the default is
	 unlimited. May be overridden on a per-service basis by
	 using max-child in
	 /etc/inetd.conf.

	-C rate
	Specify the default maximum number of times a
	 service can be invoked from a single
	 IP address per minute. May be
	 overridden on a per-service basis by using
	 max-connections-per-ip-per-minute in
	 /etc/inetd.conf.

	-R rate
	Specify the maximum number of times a service can be
	 invoked in one minute, where the default is
	 256. A rate of 0
	 allows an unlimited number.

	-s maximum
	Specify the maximum number of times a service can be
	 invoked from a single IP address at
	 any one time, where the default is unlimited. May be
	 overridden on a per-service basis by using
	 max-child-per-ip in
	 /etc/inetd.conf.

Additional options are available. Refer to inetd(8)
	for the full list of options.
29.2.3. Security Considerations
Many of the daemons which can be managed by
	inetd are not security-conscious.
	Some daemons, such as fingerd, can
	provide information that may be useful to an attacker. Only
	enable the services which are needed and monitor the system
	for excessive connection attempts.
	max-connections-per-ip-per-minute,
	max-child and
	max-child-per-ip can be used to limit such
	attacks.
By default, TCP wrappers is enabled. Consult
	hosts_access(5) for more information on placing TCP
	restrictions on various
	inetd invoked daemons.
29.5. Lightweight Directory Access Protocol
	(LDAP)
Originally contributed by Tom Rhodes. Updates by Rocky Hotas. The Lightweight Directory Access Protocol
 (LDAP) is an application layer protocol used
 to access, modify, and authenticate objects using a distributed
 directory information service. Think of it as a phone or record
 book which stores several levels of hierarchical, homogeneous
 information. It is used in Active Directory and
 OpenLDAP networks and allows users to
 access to several levels of internal information utilizing a
 single account. For example, email authentication, pulling
 employee contact information, and internal website
 authentication might all make use of a single user account in
 the LDAP server's record base.
This section provides a quick start guide for configuring an
 LDAP server on a FreeBSD system. It assumes
 that the administrator already has a design plan which includes
 the type of information to store, what that information will be
 used for, which users should have access to that information,
 and how to secure this information from unauthorized
 access.
29.5.1. LDAP Terminology and Structure
LDAP uses several terms which should be
	understood before starting the configuration. All directory
	entries consist of a group of
	attributes. Each of these attribute
	sets contains a unique identifier known as a
	Distinguished Name
	(DN) which is normally built from several
	other attributes such as the common or
	Relative Distinguished Name
	(RDN). Similar to how directories have
	absolute and relative paths, consider a DN
	as an absolute path and the RDN as the
	relative path.
An example LDAP entry looks like the
	following. This example searches for the entry for the
	specified user account (uid),
	organizational unit (ou), and organization
	(o):
% ldapsearch -xb "uid=trhodes,ou=users,o=example.com"
extended LDIF
#
LDAPv3
base <uid=trhodes,ou=users,o=example.com> with scope subtree
filter: (objectclass=*)
requesting: ALL
#

trhodes, users, example.com
dn: uid=trhodes,ou=users,o=example.com
mail: trhodes@example.com
cn: Tom Rhodes
uid: trhodes
telephoneNumber: (123) 456-7890

search result
search: 2
result: 0 Success

numResponses: 2
numEntries: 1
This example entry shows the values for the
	dn, mail,
	cn, uid, and
	telephoneNumber attributes. The
	cn attribute is the
	RDN.
More information about LDAP and its
	terminology can be found at http://www.openldap.org/doc/admin24/intro.html.
29.5.2. Configuring an LDAP Server
FreeBSD does not provide a built-in LDAP
	server. Begin the configuration by installing net/openldap-server package or
	port:
pkg install openldap-server
There is a large set of default options enabled in the
	
	 package. Review them by running
	pkg info openldap-server. If they are not
	sufficient (for example if SQL support is needed), please
	consider recompiling the port using the appropriate framework.
The installation creates the directory
	/var/db/openldap-data to hold the data.
	The directory to store the certificates must be
	created:
mkdir /usr/local/etc/openldap/private
The next phase is to configure the Certificate Authority.
	The following commands must be executed from
	/usr/local/etc/openldap/private. This is
	important as the file permissions need to be restrictive and
	users should not have access to these files. More detailed
	information about certificates and their parameters can be
	found in Section 13.6, “OpenSSL”. To create the
	Certificate Authority, start with this command and follow the
	prompts:
openssl req -days 365 -nodes -new -x509 -keyout ca.key -out ../ca.crt
The entries for the prompts may be generic
	except for the
	Common Name. This entry must be
	different than the system hostname. If
	this will be a self signed certificate, prefix the hostname
	with CA for Certificate Authority.
The next task is to create a certificate signing request
	and a private key. Input this command and follow the
	prompts:
openssl req -days 365 -nodes -new -keyout server.key -out server.csr
During the certificate generation process, be sure to
	correctly set the Common Name attribute.
	The Certificate Signing Request must be signed with the
	Certificate Authority in order to be used as a valid
	certificate:
openssl x509 -req -days 365 -in server.csr -out ../server.crt -CA ../ca.crt -CAkey ca.key -CAcreateserial
The final part of the certificate generation process is to
	generate and sign the client certificates:
openssl req -days 365 -nodes -new -keyout client.key -out client.csr
openssl x509 -req -days 3650 -in client.csr -out ../client.crt -CA ../ca.crt -CAkey ca.key
Remember to use the same Common Name
	attribute when prompted. When finished, ensure that a total
	of eight (8) new files have been generated through the
	proceeding commands.
The daemon running the OpenLDAP server is
	slapd. Its configuration is performed
	through slapd.ldif: the old
	slapd.conf has been deprecated by
	OpenLDAP.
Configuration
	 examples for slapd.ldif are
	available and can also be found in
	/usr/local/etc/openldap/slapd.ldif.sample.
	Options are documented in slapd-config(5). Each section
	of slapd.ldif, like all the other LDAP
	attribute sets, is uniquely identified through a DN. Be sure
	that no blank lines are left between the
	dn: statement and the desired end of the
	section. In the following example, TLS will be used to
	implement a secure channel. The first section represents the
	global configuration:
#
See slapd-config(5) for details on configuration options.
This file should NOT be world readable.
#
dn: cn=config
objectClass: olcGlobal
cn: config
#
#
Define global ACLs to disable default read access.
#
olcArgsFile: /var/run/openldap/slapd.args
olcPidFile: /var/run/openldap/slapd.pid
olcTLSCertificateFile: /usr/local/etc/openldap/server.crt
olcTLSCertificateKeyFile: /usr/local/etc/openldap/private/server.key
olcTLSCACertificateFile: /usr/local/etc/openldap/ca.crt
#olcTLSCipherSuite: HIGH
olcTLSProtocolMin: 3.1
olcTLSVerifyClient: never
The Certificate Authority, server certificate and server
	private key files must be specified here. It is recommended
	to let the clients choose the security cipher and omit option
	olcTLSCipherSuite (incompatible with TLS
	clients other than openssl). Option
	olcTLSProtocolMin lets the server require a
	minimum security level: it is recommended. While
	verification is mandatory for the server, it is not for the
	client: olcTLSVerifyClient: never.
The second section is about the backend modules and can be
	configured as follows:
#
Load dynamic backend modules:
#
dn: cn=module,cn=config
objectClass: olcModuleList
cn: module
olcModulepath:	/usr/local/libexec/openldap
olcModuleload:	back_mdb.la
#olcModuleload:	back_bdb.la
#olcModuleload:	back_hdb.la
#olcModuleload:	back_ldap.la
#olcModuleload:	back_passwd.la
#olcModuleload:	back_shell.la
The third section is devoted to load the needed
	ldif schemas to be used by the databases:
	they are essential.
dn: cn=schema,cn=config
objectClass: olcSchemaConfig
cn: schema

include: file:///usr/local/etc/openldap/schema/core.ldif
include: file:///usr/local/etc/openldap/schema/cosine.ldif
include: file:///usr/local/etc/openldap/schema/inetorgperson.ldif
include: file:///usr/local/etc/openldap/schema/nis.ldif
Next, the frontend configuration section:
Frontend settings
#
dn: olcDatabase={-1}frontend,cn=config
objectClass: olcDatabaseConfig
objectClass: olcFrontendConfig
olcDatabase: {-1}frontend
olcAccess: to * by * read
#
Sample global access control policy:
#	Root DSE: allow anyone to read it
#	Subschema (sub)entry DSE: allow anyone to read it
#	Other DSEs:
#		Allow self write access
#		Allow authenticated users read access
#		Allow anonymous users to authenticate
#
#olcAccess: to dn.base="" by * read
#olcAccess: to dn.base="cn=Subschema" by * read
#olcAccess: to *
#	by self write
#	by users read
#	by anonymous auth
#
if no access controls are present, the default policy
allows anyone and everyone to read anything but restricts
updates to rootdn. (e.g., "access to * by * read")
#
rootdn can always read and write EVERYTHING!
#
olcPasswordHash: {SSHA}
{SSHA} is already the default for olcPasswordHash
Another section is devoted to the configuration
	 backend, the only way to later access the
	OpenLDAP server configuration is as a global
	super-user.
dn: olcDatabase={0}config,cn=config
objectClass: olcDatabaseConfig
olcDatabase: {0}config
olcAccess: to * by * none
olcRootPW: {SSHA}iae+lrQZILpiUdf16Z9KmDmSwT77Dj4U
The default administrator username is
	cn=config. Type
	slappasswd in a shell, choose a password
	and use its hash in olcRootPW. If this
	option is not specified now, before
	slapd.ldif is imported, no one will be
	later able to modify the
	global configuration section.
The last section is about the database backend:
###
LMDB database definitions
###
#
dn: olcDatabase=mdb,cn=config
objectClass: olcDatabaseConfig
objectClass: olcMdbConfig
olcDatabase: mdb
olcDbMaxSize: 1073741824
olcSuffix: dc=domain,dc=example
olcRootDN: cn=mdbadmin,dc=domain,dc=example
Cleartext passwords, especially for the rootdn, should
be avoided. See slappasswd(8) and slapd-config(5) for details.
Use of strong authentication encouraged.
olcRootPW: {SSHA}X2wHvIWDk6G76CQyCMS1vDCvtICWgn0+
The database directory MUST exist prior to running slapd AND
should only be accessible by the slapd and slap tools.
Mode 700 recommended.
olcDbDirectory:	/var/db/openldap-data
Indices to maintain
olcDbIndex: objectClass eq
This database hosts the actual
	 contents of the LDAP
	directory. Types other than mdb are
	available. Its super-user, not to be confused with the global
	one, is configured here: a (possibly custom) username in
	olcRootDN and the password hash in
	olcRootPW; slappasswd
	can be used as before.
This repository
	contains four examples of slapd.ldif. To
	convert an existing slapd.conf into
	slapd.ldif, refer to this
	 page (please note that this may introduce some
	unuseful options).
When the configuration is completed,
	slapd.ldif must be placed in an empty
	directory. It is recommended to create it as:
mkdir /usr/local/etc/openldap/slapd.d/
Import the configuration database:
/usr/local/sbin/slapadd -n0 -F /usr/local/etc/openldap/slapd.d/ -l /usr/local/etc/openldap/slapd.ldif
Start the slapd daemon:
/usr/local/libexec/slapd -F /usr/local/etc/openldap/slapd.d/
Option -d can be used for debugging,
	as specified in slapd(8). To verify that the server is
	running and working:
ldapsearch -x -b '' -s base '(objectclass=*)' namingContexts
extended LDIF
#
LDAPv3
base <> with scope baseObject
filter: (objectclass=*)
requesting: namingContexts
#

#
dn:
namingContexts: dc=domain,dc=example

search result
search: 2
result: 0 Success

numResponses: 2
numEntries: 1
The server must still be trusted. If that has never been
	done before, follow these instructions. Install the OpenSSL
	package or port:
pkg install openssl
From the directory where ca.crt is
	stored (in this example,
	/usr/local/etc/openldap), run:
c_rehash .
Both the CA and the server certificate are now correctly
	recognized in their respective roles. To verify this, run
	this command from the server.crt
	directory:
openssl verify -verbose -CApath . server.crt
If slapd was running, restart it. As
	stated in /usr/local/etc/rc.d/slapd, to
	properly run slapd at boot the
	following lines must be added to
	/etc/rc.conf:
lapd_enable="YES"
slapd_flags='-h "ldapi://%2fvar%2frun%2fopenldap%2fldapi/
ldap://0.0.0.0/"'
slapd_sockets="/var/run/openldap/ldapi"
slapd_cn_config="YES"
slapd does not provide debugging at
	boot. Check /var/log/debug.log,
	dmesg -a and
	/var/log/messages for this
	purpose.
The following example adds the group
	team and the user john
	to the domain.example
	LDAP database, which is still empty.
	First, create the file
	domain.ldif:
cat domain.ldif
dn: dc=domain,dc=example
objectClass: dcObject
objectClass: organization
o: domain.example
dc: domain

dn: ou=groups,dc=domain,dc=example
objectClass: top
objectClass: organizationalunit
ou: groups

dn: ou=users,dc=domain,dc=example
objectClass: top
objectClass: organizationalunit
ou: users

dn: cn=team,ou=groups,dc=domain,dc=example
objectClass: top
objectClass: posixGroup
cn: team
gidNumber: 10001

dn: uid=john,ou=users,dc=domain,dc=example
objectClass: top
objectClass: account
objectClass: posixAccount
objectClass: shadowAccount
cn: John McUser
uid: john
uidNumber: 10001
gidNumber: 10001
homeDirectory: /home/john/
loginShell: /usr/bin/bash
userPassword: secret
See the OpenLDAP documentation for more details. Use
	slappasswd to replace the plain text
	password secret with a hash in
	userPassword. The path specified as
	loginShell must exist in all the systems
	where john is allowed to login. Finally,
	use the mdb administrator to modify the
	database:
ldapadd -W -D "cn=mdbadmin,dc=domain,dc=example" -f domain.ldif
Modifications to the global
	 configuration section can only be performed by
	the global super-user. For example, assume that the option
	olcTLSCipherSuite: HIGH:MEDIUM:SSLv3 was
	initially specified and must now be deleted. First, create a
	file that contains the following:
cat global_mod
dn: cn=config
changetype: modify
delete: olcTLSCipherSuite
Then, apply the modifications:
ldapmodify -f global_mod -x -D "cn=config" -W
When asked, provide the password chosen in the
	configuration backend section. The
	username is not required: here, cn=config
	represents the DN of the database section to be modified.
	Alternatively, use ldapmodify to delete a
	single line of the database, ldapdelete to
	delete a whole entry.
If something goes wrong, or if the global super-user
	cannot access the configuration backend, it is possible to
	delete and re-write the whole configuration:
rm -rf /usr/local/etc/openldap/slapd.d/
slapd.ldif can then be edited and
	imported again. Please, follow this procedure only when no
	other solution is available.
This is the configuration of the server only. The same
	machine can also host an LDAP client, with its own separate
	configuration.
29.6. Dynamic Host Configuration Protocol
 (DHCP)
The Dynamic Host Configuration Protocol
 (DHCP) allows a system to connect to a
 network in order to be assigned the necessary addressing
 information for communication on that network. FreeBSD includes
 the OpenBSD version of dhclient which is used
 by the client to obtain the addressing information. FreeBSD does
 not install a DHCP server, but several
 servers are available in the FreeBSD Ports Collection. The
 DHCP protocol is fully described in RFC
	2131.
 Informational resources are also available at isc.org/downloads/dhcp/.
This section describes how to use the built-in
 DHCP client. It then describes how to
 install and configure a DHCP server.
Note:
In FreeBSD, the bpf(4) device is needed by both the
	DHCP server and DHCP
	client. This device is included in the
	GENERIC kernel that is installed with
	FreeBSD. Users who prefer to create a custom kernel need to keep
	this device if DHCP is used.
It should be noted that bpf also
	allows privileged users to run network packet sniffers on
	that system.

29.6.1. Configuring a DHCP Client
DHCP client support is included in the
	FreeBSD installer, making it easy to configure a newly installed
	system to automatically receive its networking addressing
	information from an existing DHCP server.
	Refer to Section 2.8, “Post-Installation” for examples of
	network configuration.
When dhclient is executed on the client
	machine, it begins broadcasting requests for configuration
	information. By default, these requests use
	UDP port 68. The server replies on
	UDP port 67, giving the client an
	IP address and other relevant network
	information such as a subnet mask, default gateway, and
	DNS server addresses. This information is
	in the form of a DHCP
	“lease” and is valid for a configurable time.
	This allows stale IP addresses for clients
	no longer connected to the network to automatically be reused.
	DHCP clients can obtain a great deal of
	information from the server. An exhaustive list may be found
	in dhcp-options(5).
By default, when a FreeBSD system boots, its
	DHCP client runs in the background, or
	asynchronously. Other startup scripts
	continue to run while the DHCP process
	completes, which speeds up system startup.
Background DHCP works well when the
	DHCP server responds quickly to the
	client's requests. However, DHCP may take
	a long time to complete on some systems. If network services
	attempt to run before DHCP has assigned the
	network addressing information, they will fail. Using
	DHCP in synchronous
	mode prevents this problem as it pauses startup until the
	DHCP configuration has completed.
This line in /etc/rc.conf is used to
	configure background or asynchronous mode:
ifconfig_fxp0="DHCP"
This line may already exist if the system was configured
	to use DHCP during installation. Replace
	the fxp0 shown in these examples
	with the name of the interface to be dynamically configured,
	as described in Section 11.5, “Setting Up Network Interface Cards”.
To instead configure the system to use synchronous mode,
	and to pause during startup while DHCP
	completes, use
	“SYNCDHCP”:
ifconfig_fxp0="SYNCDHCP"
Additional client options are available. Search for
	dhclient in rc.conf(5) for
	details.
The DHCP client uses the following
	files:
	/etc/dhclient.conf
The configuration file used by
	 dhclient. Typically, this file
	 contains only comments as the defaults are suitable for
	 most clients. This configuration file is described in
	 dhclient.conf(5).

	/sbin/dhclient
More information about the command itself can
	 be found in dhclient(8).

	/sbin/dhclient-script
The
	 FreeBSD-specific DHCP client configuration
	 script. It is described in dhclient-script(8), but
	 should not need any user modification to function
	 properly.

	/var/db/dhclient.leases.interface
The DHCP client keeps a database of
	 valid leases in this file, which is written as a log and
	 is described in dhclient.leases(5).

29.6.2. Installing and Configuring a DHCP
	Server
This section demonstrates how to configure a FreeBSD system
	to act as a DHCP server using the Internet
	Systems Consortium (ISC) implementation of
	the DHCP server. This implementation and
	its documentation can be installed using the
	net/isc-dhcp43-server package or
	port.
The installation of
	net/isc-dhcp43-server installs a sample
	configuration file. Copy
	/usr/local/etc/dhcpd.conf.example to
	/usr/local/etc/dhcpd.conf and make any
	edits to this new file.
The configuration file is comprised of declarations for
	subnets and hosts which define the information that is
	provided to DHCP clients. For example,
	these lines configure the following:
option domain-name "example.org";[image: 1]
option domain-name-servers ns1.example.org;[image: 2]
option subnet-mask 255.255.255.0;[image: 3]

default-lease-time 600;[image: 4]
max-lease-time 72400;[image: 5]
ddns-update-style none;[image: 6]

subnet 10.254.239.0 netmask 255.255.255.224 {
 range 10.254.239.10 10.254.239.20;[image: 7]
 option routers rtr-239-0-1.example.org, rtr-239-0-2.example.org;[image: 8]
}

host fantasia {
 hardware ethernet 08:00:07:26:c0:a5;[image: 9]
 fixed-address fantasia.fugue.com;[image: 10]
}
	[image: 1]
	This option specifies the default search domain that
	 will be provided to clients. Refer to
	 resolv.conf(5) for more information.

	[image: 2]
	This option specifies a comma separated list of
	 DNS servers that the client should use.
	 They can be listed by their Fully Qualified Domain Names
	 (FQDN), as seen in the example, or by
	 their IP addresses.

	[image: 3]
	The subnet mask that will be provided to
	 clients.

	[image: 4]
	The default lease expiry time in seconds. A client
	 can be configured to override this value.

	[image: 5]
	The maximum allowed length of time, in seconds, for a
	 lease. Should a client request a longer lease, a lease
	 will still be issued, but it will only be valid for
	 max-lease-time.

	[image: 6]
	The default of none disables dynamic
	 DNS updates. Changing this to interim
	 configures the DHCP server to update a
	 DNS server whenever it hands out a
	 lease so that the DNS server knows
	 which IP addresses are associated with
	 which computers in the network. Do not change the default
	 setting unless the DNS server has been
	 configured to support dynamic
	 DNS.

	[image: 7]
	This line creates a pool of available
	 IP addresses which are reserved for
	 allocation to DHCP clients. The range
	 of addresses must be valid for the network or subnet
	 specified in the previous line.

	[image: 8]
	Declares the default gateway that is valid for the
	 network or subnet specified before the opening
	 { bracket.

	[image: 9]
	Specifies the hardware MAC address
	 of a client so that the DHCP server can
	 recognize the client when it makes a request.

	[image: 10]
	Specifies that this host should always be given the
	 same IP address. Using the hostname is
	 correct, since the DHCP server will
	 resolve the hostname before returning the lease
	 information.

This configuration file supports many more options. Refer
	to dhcpd.conf(5), installed with the server, for details and
	examples.
Once the configuration of dhcpd.conf
	is complete, enable the DHCP server in
	/etc/rc.conf:
dhcpd_enable="YES"
dhcpd_ifaces="dc0"
Replace the dc0 with the interface (or
	interfaces, separated by whitespace) that the
	DHCP server should listen on for
	DHCP client requests.
Start the server by issuing the following command:
service isc-dhcpd start
Any future changes to the configuration of the server will
	require the dhcpd service to be
	stopped and then started using service(8).
The DHCP server uses the following
	files. Note that the manual pages are installed with the
	server software.
	/usr/local/sbin/dhcpd
More information about the
	 dhcpd server can be found in
	 dhcpd(8).

	/usr/local/etc/dhcpd.conf
The server configuration file needs to contain all the
	 information that should be provided to clients, along with
	 information regarding the operation of the server. This
	 configuration file is described in dhcpd.conf(5).

	/var/db/dhcpd.leases
The DHCP server keeps a database of
	 leases it has issued in this file, which is written as a
	 log. Refer to dhcpd.leases(5), which gives a slightly
	 longer description.

	/usr/local/sbin/dhcrelay
This daemon is used in advanced environments where one
	 DHCP server forwards a request from a
	 client to another DHCP server on a
	 separate network. If this functionality is required,
	 install the net/isc-dhcp43-relay
	 package or port. The installation includes dhcrelay(8)
	 which provides more detail.

29.7. Domain Name System (DNS)
Domain Name System (DNS) is the protocol
 through which domain names are mapped to IP
 addresses, and vice versa. DNS is
 coordinated across the Internet through a somewhat complex
 system of authoritative root, Top Level Domain
 (TLD), and other smaller-scale name servers,
 which host and cache individual domain information. It is not
 necessary to run a name server to perform
 DNS lookups on a system.
The following table describes some of the terms associated
 with DNS:
Table 29.4. DNS Terminology
	Term	Definition
	Forward DNS	Mapping of hostnames to IP
	 addresses.
	Origin	Refers to the domain covered in a particular zone
	 file.
	Resolver	A system process through which a machine queries
	 a name server for zone information.
	Reverse DNS	Mapping of IP addresses to
	 hostnames.
	Root zone	The beginning of the Internet zone hierarchy. All
	 zones fall under the root zone, similar to how all files
	 in a file system fall under the root directory.
	Zone	An individual domain, subdomain, or portion of the
	 DNS administered by the same
	 authority.

Examples of zones:
	. is how the root zone is
	 usually referred to in documentation.

	org. is a Top Level Domain
	 (TLD) under the root zone.

	example.org. is a zone
	 under the org.
	 TLD.

	1.168.192.in-addr.arpa is a
	 zone referencing all IP addresses which
	 fall under the 192.168.1.*
	 IP address space.

As one can see, the more specific part of a hostname
 appears to its left. For example, example.org. is more
 specific than org., as
 org. is more specific than the root
 zone. The layout of each part of a hostname is much like a file
 system: the /dev directory falls within the
 root, and so on.
29.7.1. Reasons to Run a Name Server
Name servers generally come in two forms: authoritative
	name servers, and caching (also known as resolving) name
	servers.
An authoritative name server is needed when:
	One wants to serve DNS information
	 to the world, replying authoritatively to queries.

	A domain, such as example.org, is
	 registered and IP addresses need to be
	 assigned to hostnames under it.

	An IP address block requires
	 reverse DNS entries
	 (IP to hostname).

	A backup or second name server, called a slave, will
	 reply to queries.

A caching name server is needed when:
	A local DNS server may cache and
	 respond more quickly than querying an outside name
	 server.

When one queries for www.FreeBSD.org, the
	resolver usually queries the uplink ISP's
	name server, and retrieves the reply. With a local, caching
	DNS server, the query only has to be made
	once to the outside world by the caching
	DNS server. Additional queries will not
	have to go outside the local network, since the information is
	cached locally.
29.7.2. DNS Server Configuration
Unbound is provided in the FreeBSD
	base system. By default, it will provide
	DNS resolution to the local machine only.
	While the base system package can be configured to provide
	resolution services beyond the local machine, it is
	recommended that such requirements be addressed by installing
	Unbound from the FreeBSD Ports
	Collection.
To enable Unbound, add the
	following to /etc/rc.conf:
local_unbound_enable="YES"
Any existing nameservers in
	/etc/resolv.conf will be configured as
	forwarders in the new Unbound
	configuration.
Note:
If any of the listed nameservers do not support
	 DNSSEC, local DNS
	 resolution will fail. Be sure to test each nameserver and
	 remove any that fail the test. The following command will
	 show the trust tree or a failure for a nameserver running on
	 192.168.1.1:

% drill -S FreeBSD.org @192.168.1.1
Once each nameserver is confirmed to support
	DNSSEC, start
	Unbound:
service local_unbound onestart
This will take care of updating
	/etc/resolv.conf so that queries for
	DNSSEC secured domains will now work. For
	example, run the following to validate the FreeBSD.org
	DNSSEC trust tree:
% drill -S FreeBSD.org
;; Number of trusted keys: 1
;; Chasing: freebsd.org. A

DNSSEC Trust tree:
freebsd.org. (A)
|---freebsd.org. (DNSKEY keytag: 36786 alg: 8 flags: 256)
 |---freebsd.org. (DNSKEY keytag: 32659 alg: 8 flags: 257)
 |---freebsd.org. (DS keytag: 32659 digest type: 2)
 |---org. (DNSKEY keytag: 49587 alg: 7 flags: 256)
 |---org. (DNSKEY keytag: 9795 alg: 7 flags: 257)
 |---org. (DNSKEY keytag: 21366 alg: 7 flags: 257)
 |---org. (DS keytag: 21366 digest type: 1)
 | |---. (DNSKEY keytag: 40926 alg: 8 flags: 256)
 | |---. (DNSKEY keytag: 19036 alg: 8 flags: 257)
 |---org. (DS keytag: 21366 digest type: 2)
 |---. (DNSKEY keytag: 40926 alg: 8 flags: 256)
 |---. (DNSKEY keytag: 19036 alg: 8 flags: 257)
;; Chase successful
29.8. Apache HTTP Server
Contributed by Murray Stokely. The open source
 Apache HTTP Server is the most widely
 used web server. FreeBSD does not install this web server by
 default, but it can be installed from the
 www/apache24 package or port.
This section summarizes how to configure and start version
 2.x of the Apache HTTP
	Server on FreeBSD. For more detailed information
 about Apache 2.X and its
 configuration directives, refer to httpd.apache.org.
29.8.1. Configuring and Starting Apache
In FreeBSD, the main Apache HTTP
	 Server configuration file is installed as
	/usr/local/etc/apache2x/httpd.conf,
	where x represents the version
	number. This ASCII text file begins
	comment lines with a #. The most
	frequently modified directives are:
	ServerRoot "/usr/local"
	Specifies the default directory hierarchy for the
	 Apache installation.
	 Binaries are stored in the bin and
	 sbin subdirectories of the server
	 root and configuration files are stored in the etc/apache2x
	 subdirectory.

	ServerAdmin you@example.com
	Change this to the email address to receive problems
	 with the server. This address also appears on some
	 server-generated pages, such as error documents.

	ServerName
	 www.example.com:80
	Allows an administrator to set a hostname which is
	 sent back to clients for the server. For example,
	 www can be used instead of the
	 actual hostname. If the system does not have a
	 registered DNS name, enter its
	 IP address instead. If the server
	 will listen on an alternate report, change
	 80 to the alternate port
	 number.

	DocumentRoot
	 "/usr/local/www/apache2x/data"
	The directory where documents will be served from.
	 By default, all requests are taken from this directory,
	 but symbolic links and aliases may be used to point to
	 other locations.

It is always a good idea to make a backup copy of the
	default Apache configuration file
	before making changes. When the configuration of
	Apache is complete, save the file
	and verify the configuration using
	apachectl. Running apachectl
	 configtest should return Syntax
	 OK.
To launch Apache at system
	startup, add the following line to
	/etc/rc.conf:
apache24_enable="YES"
If Apache should be started
	with non-default options, the following line may be added to
	/etc/rc.conf to specify the needed
	flags:
apache24_flags=""
If apachectl does not report
	configuration errors, start httpd
	now:
service apache24 start
The httpd service can be tested by
	entering
	http://localhost
	in a web browser, replacing
	localhost with the fully-qualified
	domain name of the machine running httpd.
	The default web page that is displayed is
	/usr/local/www/apache24/data/index.html.
The Apache configuration can be
	tested for errors after making subsequent configuration
	changes while httpd is running using the
	following command:
service apache24 configtest
Note:
It is important to note that
	 configtest is not an rc(8) standard,
	 and should not be expected to work for all startup
	 scripts.

29.8.2. Virtual Hosting
Virtual hosting allows multiple websites to run on one
	Apache server. The virtual hosts
	can be IP-based or
	name-based.
	IP-based virtual hosting uses a different
	IP address for each website. Name-based
	virtual hosting uses the clients HTTP/1.1 headers to figure
	out the hostname, which allows the websites to share the same
	IP address.
To setup Apache to use
	name-based virtual hosting, add a
	VirtualHost block for each website. For
	example, for the webserver named www.domain.tld with a
	virtual domain of www.someotherdomain.tld,
	add the following entries to
	httpd.conf:
<VirtualHost *>
 ServerName www.domain.tld
 DocumentRoot /www/domain.tld
</VirtualHost>

<VirtualHost *>
 ServerName www.someotherdomain.tld
 DocumentRoot /www/someotherdomain.tld
</VirtualHost>
For each virtual host, replace the values for
	ServerName and
	DocumentRoot with the values to be
	used.
For more information about setting up virtual hosts,
	consult the official Apache
	documentation at: http://httpd.apache.org/docs/vhosts/.
29.8.3. Apache Modules
Apache uses modules to augment
	the functionality provided by the basic server. Refer to http://httpd.apache.org/docs/current/mod/
	for a complete listing of and the configuration details for
	the available modules.
In FreeBSD, some modules can be compiled with the
	www/apache24 port. Type make
	 config within
	/usr/ports/www/apache24 to see which
	modules are available and which are enabled by default. If
	the module is not compiled with the port, the FreeBSD Ports
	Collection provides an easy way to install many modules. This
	section describes three of the most commonly used
	modules.
29.8.3.1. mod_ssl
The mod_ssl module uses the
	 OpenSSL library to provide strong
	 cryptography via the Secure Sockets Layer
	 (SSLv3) and Transport Layer Security
	 (TLSv1) protocols. This module provides
	 everything necessary to request a signed certificate from a
	 trusted certificate signing authority to run a secure web
	 server on FreeBSD.
In FreeBSD, mod_ssl module is enabled
	 by default in both the package and the port. The available
	 configuration directives are explained at http://httpd.apache.org/docs/current/mod/mod_ssl.html.
29.8.3.2. mod_perl
The
	 mod_perl module makes it possible to
	 write Apache modules in
	 Perl. In addition, the
	 persistent interpreter embedded in the server avoids the
	 overhead of starting an external interpreter and the penalty
	 of Perl start-up time.
The mod_perl can be installed using
	 the www/mod_perl2 package or port.
	 Documentation for using this module can be found at http://perl.apache.org/docs/2.0/index.html.
29.8.3.3. mod_php
Written by Tom Rhodes. PHP: Hypertext Preprocessor
	 (PHP) is a general-purpose scripting
	 language that is especially suited for web development.
	 Capable of being embedded into HTML, its
	 syntax draws upon C, Java™, and
	 Perl with the intention of
	 allowing web developers to write dynamically generated
	 webpages quickly.
To gain support for PHP5 for the
	 Apache web server, install the
	 www/mod_php56 package or port. This will
	 install and configure the modules required to support
	 dynamic PHP applications. The
	 installation will automatically add this line to
	 /usr/local/etc/apache24/httpd.conf:
LoadModule php5_module libexec/apache24/libphp5.so
Then, perform a graceful restart to load the
	 PHP module:
apachectl graceful
The PHP support provided by
	 www/mod_php56 is limited. Additional
	 support can be installed using the
	 lang/php56-extensions port which provides
	 a menu driven interface to the available
	 PHP extensions.
Alternatively, individual extensions can be installed
	 using the appropriate port. For instance, to add
	 PHP support for the
	 MySQL database server, install
	 databases/php56-mysql.
After installing an extension, the
	 Apache server must be reloaded to
	 pick up the new configuration changes:
apachectl graceful
29.8.4. Dynamic Websites
In addition to mod_perl and
	mod_php, other languages are
	available for creating dynamic web content. These include
	Django and
	Ruby on Rails.
29.8.4.1. Django
Django is a BSD-licensed
	 framework designed to allow developers to write high
	 performance, elegant web applications quickly. It provides
	 an object-relational mapper so that data types are developed
	 as Python objects. A rich
	 dynamic database-access API is provided
	 for those objects without the developer ever having to write
	 SQL. It also provides an extensible
	 template system so that the logic of the application is
	 separated from the HTML
	 presentation.
Django depends on mod_python, and
	 an SQL database engine. In FreeBSD, the
	 www/py-django port automatically installs
	 mod_python and supports the
	 PostgreSQL,
	 MySQL, or
	 SQLite databases, with the
	 default being SQLite. To change
	 the database engine, type make config
	 within /usr/ports/www/py-django, then
	 install the port.
Once Django is installed, the
	 application will need a project directory along with the
	 Apache configuration in order to
	 use the embedded Python
	 interpreter. This interpreter is used to call the
	 application for specific URLs on the
	 site.
To configure Apache to pass
	 requests for certain URLs to the web
	 application, add the following to
	 httpd.conf, specifying the full path to
	 the project directory:
<Location "/">
 SetHandler python-program
 PythonPath "['/dir/to/the/django/packages/'] + sys.path"
 PythonHandler django.core.handlers.modpython
 SetEnv DJANGO_SETTINGS_MODULE mysite.settings
 PythonAutoReload On
 PythonDebug On
</Location>
Refer to https://docs.djangoproject.com
	 for more information on how to use
	 Django.
29.8.4.2. Ruby on Rails
Ruby on Rails is another open
	 source web framework that provides a full development stack.
	 It is optimized to make web developers more productive and
	 capable of writing powerful applications quickly. On FreeBSD,
	 it can be installed using the
	 www/rubygem-rails package or port.
Refer to http://guides.rubyonrails.org
	 for more information on how to use Ruby on
	 Rails.
29.9. File Transfer Protocol (FTP)
The File Transfer Protocol (FTP) provides
 users with a simple way to transfer files to and from an
 FTP server. FreeBSD includes
 FTP server software,
 ftpd, in the base system.
FreeBSD provides several configuration files for controlling
 access to the FTP server. This section
 summarizes these files. Refer to ftpd(8) for more details
 about the built-in FTP server.
29.9.1. Configuration
The most important configuration step is deciding which
	accounts will be allowed access to the FTP
	server. A FreeBSD system has a number of system accounts which
	should not be allowed FTP access. The list
	of users disallowed any FTP access can be
	found in /etc/ftpusers. By default, it
	includes system accounts. Additional users that should not be
	allowed access to FTP can be added.
In some cases it may be desirable to restrict the access
	of some users without preventing them completely from using
	FTP. This can be accomplished be creating
	/etc/ftpchroot as described in
	ftpchroot(5). This file lists users and groups subject
	to FTP access restrictions.
To enable anonymous FTP access to the
	server, create a user named ftp on the FreeBSD system. Users
	will then be able to log on to the
	FTP server with a username of
	ftp or anonymous. When prompted for
	the password, any input will be accepted, but by convention,
	an email address should be used as the password. The
	FTP server will call chroot(2) when an
	anonymous user logs in, to restrict access to only the home
	directory of the ftp user.
There are two text files that can be created to specify
	welcome messages to be displayed to FTP
	clients. The contents of
	/etc/ftpwelcome will be displayed to
	users before they reach the login prompt. After a successful
	login, the contents of
	/etc/ftpmotd will be displayed. Note
	that the path to this file is relative to the login
	environment, so the contents of
	~ftp/etc/ftpmotd would be displayed for
	anonymous users.
Once the FTP server has been
	configured, set the appropriate variable in
	/etc/rc.conf to start the service during
	boot:
ftpd_enable="YES"
To start the service now:
service ftpd start
Test the connection to the FTP server
	by typing:
% ftp localhost
The ftpd daemon uses
	syslog(3) to log messages. By default, the system log
	daemon will write messages related to FTP
	in /var/log/xferlog. The location of
	the FTP log can be modified by changing the
	following line in
	/etc/syslog.conf:
ftp.info /var/log/xferlog
Note:
Be aware of the potential problems involved with running
	 an anonymous FTP server. In particular,
	 think twice about allowing anonymous users to upload files.
	 It may turn out that the FTP site becomes
	 a forum for the trade of unlicensed commercial software or
	 worse. If anonymous FTP uploads are
	 required, then verify the permissions so that these files
	 cannot be read by other anonymous users until they have
	 been reviewed by an administrator.

29.10. File and Print Services for Microsoft® Windows® Clients
 (Samba)
Samba is a popular open source
 software package that provides file and print services using the
 SMB/CIFS protocol. This protocol is built
 into Microsoft® Windows® systems. It can be added to
 non-Microsoft® Windows® systems by installing the
 Samba client libraries. The protocol
 allows clients to access shared data and printers. These shares
 can be mapped as a local disk drive and shared printers can be
 used as if they were local printers.
On FreeBSD, the Samba client
 libraries can be installed using the
 net/samba48 port or package. The
 client provides the ability for a FreeBSD system to access
 SMB/CIFS shares in a Microsoft® Windows®
 network.
A FreeBSD system can also be configured to act as a
 Samba server by installing the same
 net/samba48 port or package. This allows the
 administrator to create SMB/CIFS
 shares on
 the FreeBSD system which can be accessed by clients running
 Microsoft® Windows® or the Samba
 client libraries.
29.10.1. Server Configuration
Samba is configured in
	/usr/local/etc/smb4.conf. This file must
	be created before Samba
	can be used.
A simple smb4.conf to share
	directories and printers with Windows® clients in a
	workgroup is shown here. For more complex setups
	involving LDAP or Active Directory, it is easier to use
	samba-tool(8) to create the initial
	smb4.conf.
[global]
workgroup = WORKGROUP
server string = Samba Server Version %v
netbios name = ExampleMachine
wins support = Yes
security = user
passdb backend = tdbsam

Example: share /usr/src accessible only to 'developer' user
[src]
path = /usr/src
valid users = developer
writable = yes
browsable = yes
read only = no
guest ok = no
public = no
create mask = 0666
directory mask = 0755
29.10.1.1. Global Settings
Settings that describe the network are added in
	 /usr/local/etc/smb4.conf:
	workgroup
	The name of the workgroup to be served.

	netbios name
	The NetBIOS name by which a
		Samba server is known. By
		default, it is the same as the first component of the
		host's DNS name.

	server string
	The string that will be displayed in the output of
		net view and some other
		networking tools that seek to display descriptive text
		about the server.

	wins support
	Whether Samba will
		act as a WINS server. Do not
		enable support for WINS on more than
		one server on the network.

29.10.1.2. Security Settings
The most important settings in
	 /usr/local/etc/smb4.conf are the
	 security model and the backend password format. These
	 directives control the options:
	security
	The most common settings are
		security = share and
		security = user. If the clients
		use usernames that are the same as their usernames on
		the FreeBSD machine, user level security should be
		used. This is the default security policy and it
		requires clients to first log on before they can
		access shared resources.
In share level security, clients do not need to
		log onto the server with a valid username and password
		before attempting to connect to a shared resource.
		This was the default security model for older versions
		of Samba.

	passdb backend
	Samba has several
		different backend authentication models. Clients may
		be authenticated with LDAP, NIS+, an SQL database,
		or a modified password file. The recommended
		authentication method, tdbsam,
		is ideal for simple networks and is covered here.
		For larger or more complex networks,
		ldapsam is recommended.
		smbpasswd
		was the former default and is now obsolete.

29.10.1.3. Samba Users
FreeBSD user accounts must be mapped to the
	 SambaSAMAccount database for
	 Windows® clients to access the share.
	 Map existing FreeBSD user accounts using
	 pdbedit(8):
pdbedit -a username
This section has only mentioned the most commonly used
	 settings. Refer to the Official
	 Samba HOWTO for additional information about the
	 available configuration options.
29.10.2. Starting Samba
To enable Samba at boot time,
	add the following line to
	/etc/rc.conf:
samba_server_enable="YES"
To start Samba now:
service samba_server start
Performing sanity check on Samba configuration: OK
Starting nmbd.
Starting smbd.
Samba consists of three
	separate daemons. Both the nmbd
	and smbd daemons are started by
	samba_enable. If winbind name resolution
	is also required, set:
winbindd_enable="YES"
Samba can be stopped at any
	time by typing:
service samba_server stop
Samba is a complex software
	suite with functionality that allows broad integration with
	Microsoft® Windows® networks. For more information about
	functionality beyond the basic configuration described here,
	refer to http://www.samba.org.
29.11. Clock Synchronization with NTP
Over time, a computer's clock is prone to drift. This is
 problematic as many network services require the computers on a
 network to share the same accurate time. Accurate time is also
 needed to ensure that file timestamps stay consistent. The
 Network Time Protocol (NTP) is one way to
 provide clock accuracy in a network.
FreeBSD includes ntpd(8) which can be configured to query
 other NTP servers in order to synchronize the
 clock on that machine or to provide time services to other
 computers in the network. The servers which are queried can be
 local to the network or provided by an ISP.
 In addition, an online
	list of publicly accessible NTP
 servers is available. When choosing a public
 NTP server, select one that is geographically
 close and review its usage policy.
Choosing several NTP servers is
 recommended in case one of the servers becomes unreachable or
 its clock proves unreliable. As ntpd
 receives responses, it favors reliable servers over the less
 reliable ones.
This section describes how to configure
 ntpd on FreeBSD. Further documentation
 can be found in /usr/share/doc/ntp/ in HTML
 format.
29.11.1. NTP Configuration
On FreeBSD, the built-in ntpd can
	be used to synchronize a system's clock. To enable
	ntpd at boot time, add
	ntpd_enable="YES" to
	/etc/rc.conf. Additional variables can
	be specified in /etc/rc.conf. Refer to
	rc.conf(5) and ntpd(8) for
	details.
This application reads /etc/ntp.conf
	to determine which NTP servers to query.
	Here is a simple example of an
	/etc/ntp.conf:
Example 29.4. Sample /etc/ntp.conf
server ntplocal.example.com prefer
server timeserver.example.org
server ntp2a.example.net

driftfile /var/db/ntp.drift

The format of this file is described in ntp.conf(5).
	The server option specifies which servers
	to query, with one server listed on each line. If a server
	entry includes prefer, that server is
	preferred over other servers. A response from a preferred
	server will be discarded if it differs significantly from
	other servers' responses; otherwise it will be used. The
	prefer argument should only be used for
	NTP servers that are known to be highly
	accurate, such as those with special time monitoring
	hardware.
The driftfile entry specifies which
	file is used to store the system clock's frequency offset.
	ntpd uses this to automatically
	compensate for the clock's natural drift, allowing it to
	maintain a reasonably correct setting even if it is cut off
	from all external time sources for a period of time. This
	file also stores information about previous responses
	from NTP servers. Since this file contains
	internal information for NTP, it should not
	be modified.
By default, an NTP server is accessible
	to any network host. The restrict option
	in /etc/ntp.conf can be used to control
	which systems can access the server. For example, to deny all
	machines from accessing the NTP server, add
	the following line to
	/etc/ntp.conf:
restrict default ignore
Note:
This will also prevent access from other
	 NTP servers. If there is a need to
	 synchronize with an external NTP server,
	 allow only that specific server. Refer to ntp.conf(5)
	 for more information.

To allow machines within the network to synchronize their
	clocks with the server, but ensure they are not allowed to
	configure the server or be used as peers to synchronize
	against, instead use:
restrict 192.168.1.0 mask 255.255.255.0 nomodify notrap
where 192.168.1.0 is the local
	network address and 255.255.255.0 is the network's
	subnet mask.
Multiple restrict entries are
	supported. For more details, refer to the Access
	 Control Support subsection of
	ntp.conf(5).
Once ntpd_enable="YES" has been added
	to /etc/rc.conf,
	ntpd can be started now without
	rebooting the system by typing:
service ntpd start
29.11.2. Using NTP with a
	PPP Connection
ntpd does not need a permanent
	connection to the Internet to function properly. However, if
	a PPP connection is configured to dial out
	on demand, NTP traffic should be prevented
	from triggering a dial out or keeping the connection alive.
	This can be configured with filter
	directives in /etc/ppp/ppp.conf. For
	example:
set filter dial 0 deny udp src eq 123
 # Prevent NTP traffic from initiating dial out
 set filter dial 1 permit 0 0
 set filter alive 0 deny udp src eq 123
 # Prevent incoming NTP traffic from keeping the connection open
 set filter alive 1 deny udp dst eq 123
 # Prevent outgoing NTP traffic from keeping the connection open
 set filter alive 2 permit 0/0 0/0
For more details, refer to the
	PACKET FILTERING section in ppp(8) and
	the examples in
	/usr/share/examples/ppp/.
Note:
Some Internet access providers block low-numbered ports,
	 preventing NTP from functioning since replies never reach
	 the machine.

29.12. iSCSI Initiator and Target
 Configuration
iSCSI is a way to share storage over a
 network. Unlike NFS, which works at the file
 system level, iSCSI works at the block device
 level.
In iSCSI terminology, the system that
 shares the storage is known as the target.
 The storage can be a physical disk, or an area representing
 multiple disks or a portion of a physical disk. For example, if
 the disk(s) are formatted with ZFS, a zvol
 can be created to use as the iSCSI
 storage.
The clients which access the iSCSI
 storage are called initiators. To
 initiators, the storage available through
 iSCSI appears as a raw, unformatted disk
 known as a LUN. Device nodes for the disk
 appear in /dev/ and the device must be
 separately formatted and mounted.
FreeBSD provides a native,
 kernel-based iSCSI target and initiator.
 This section describes how to configure a FreeBSD system as a
 target or an initiator.
29.12.1. Configuring an iSCSI Target
To configure an iSCSI target, create
	the /etc/ctl.conf configuration file, add
	a line to /etc/rc.conf to make sure the
	ctld(8) daemon is automatically started at boot, and then
	start the daemon.
The following is an example of a simple
	/etc/ctl.conf configuration file. Refer
	to ctl.conf(5) for a more complete description of this
	file's available options.
portal-group pg0 {
	discovery-auth-group no-authentication
	listen 0.0.0.0
	listen [::]
}

target iqn.2012-06.com.example:target0 {
	auth-group no-authentication
	portal-group pg0

	lun 0 {
		path /data/target0-0
		size 4G
	}
}
The first entry defines the pg0 portal
	group. Portal groups define which network addresses the
	ctld(8) daemon will listen on. The
	discovery-auth-group no-authentication
	entry indicates that any initiator is allowed to perform
	iSCSI target discovery without
	authentication. Lines three and four configure ctld(8)
	to listen on all IPv4
	(listen 0.0.0.0) and
	IPv6 (listen [::])
	addresses on the default port of 3260.
It is not necessary to define a portal group as there is a
	built-in portal group called default. In
	this case, the difference between default
	and pg0 is that with
	default, target discovery is always denied,
	while with pg0, it is always
	allowed.
The second entry defines a single target. Target has two
	possible meanings: a machine serving iSCSI
	or a named group of LUNs. This example
	uses the latter meaning, where
	iqn.2012-06.com.example:target0 is the
	target name. This target name is suitable for testing
	purposes. For actual use, change
	com.example to the real domain name,
	reversed. The 2012-06 represents the year
	and month of acquiring control of that domain name, and
	target0 can be any value. Any number of
	targets can be defined in this configuration file.
The auth-group no-authentication line
	allows all initiators to connect to the specified target and
	portal-group pg0 makes the target reachable
	through the pg0 portal group.
The next section defines the LUN. To
	the initiator, each LUN will be visible as
	a separate disk device. Multiple LUNs can
	be defined for each target. Each LUN is
	identified by a number, where LUN 0 is
	mandatory. The path /data/target0-0 line
	defines the full path to a file or zvol backing the
	LUN. That path must exist before starting
	ctld(8). The second line is optional and specifies the
	size of the LUN.
Next, to make sure the ctld(8) daemon is started at
	boot, add this line to
	/etc/rc.conf:
ctld_enable="YES"
To start ctld(8) now, run this command:
service ctld start
As the ctld(8) daemon is started, it reads
	/etc/ctl.conf. If this file is edited
	after the daemon starts, use this command so that the changes
	take effect immediately:
service ctld reload
29.12.1.1. Authentication
The previous example is inherently insecure as it uses
	 no authentication, granting anyone full access to all
	 targets. To require a username and password to access
	 targets, modify the configuration as follows:
auth-group ag0 {
	chap username1 secretsecret
	chap username2 anothersecret
}

portal-group pg0 {
	discovery-auth-group no-authentication
	listen 0.0.0.0
	listen [::]
}

target iqn.2012-06.com.example:target0 {
	auth-group ag0
	portal-group pg0
	lun 0 {
		path /data/target0-0
		size 4G
	}
}
The auth-group section defines
	 username and password pairs. An initiator trying to connect
	 to iqn.2012-06.com.example:target0 must
	 first specify a defined username and secret. However,
	 target discovery is still permitted without authentication.
	 To require target discovery authentication, set
	 discovery-auth-group to a defined
	 auth-group name instead of
	 no-authentication.
It is common to define a single exported target for
	 every initiator. As a shorthand for the syntax above, the
	 username and password can be specified directly in the
	 target entry:
target iqn.2012-06.com.example:target0 {
	portal-group pg0
	chap username1 secretsecret

	lun 0 {
		path /data/target0-0
		size 4G
	}
}
29.12.2. Configuring an iSCSI Initiator
Note:
The iSCSI initiator described in this
	 section is supported starting with FreeBSD 10.0-RELEASE. To
	 use the iSCSI initiator available in
	 older versions, refer to iscontrol(8).

The iSCSI initiator requires that the
	iscsid(8) daemon is running. This daemon does not use a
	configuration file. To start it automatically at boot, add
	this line to /etc/rc.conf:
iscsid_enable="YES"
To start iscsid(8) now, run this command:
service iscsid start
Connecting to a target can be done with or without an
	/etc/iscsi.conf configuration file. This
	section demonstrates both types of connections.
29.12.2.1. Connecting to a Target Without a Configuration
	 File
To connect an initiator to a single target, specify the
	 IP address of the portal and the name of
	 the target:
iscsictl -A -p 10.10.10.10 -t iqn.2012-06.com.example:target0
To verify if the connection succeeded, run
	 iscsictl without any arguments. The
	 output should look similar to this:
Target name Target portal State
iqn.2012-06.com.example:target0 10.10.10.10 Connected: da0
In this example, the iSCSI session
	 was successfully established, with
	 /dev/da0 representing the attached
	 LUN. If the
	 iqn.2012-06.com.example:target0 target
	 exports more than one LUN, multiple
	 device nodes will be shown in that section of the
	 output:
Connected: da0 da1 da2.
Any errors will be reported in the output, as well as
	 the system logs. For example, this message usually means
	 that the iscsid(8) daemon is not running:
Target name Target portal State
iqn.2012-06.com.example:target0 10.10.10.10 Waiting for iscsid(8)
The following message suggests a networking problem,
	 such as a wrong IP address or
	 port:
Target name Target portal State
iqn.2012-06.com.example:target0 10.10.10.11 Connection refused
This message means that the specified target name is
	 wrong:
Target name Target portal State
iqn.2012-06.com.example:target0 10.10.10.10 Not found
This message means that the target requires
	 authentication:
Target name Target portal State
iqn.2012-06.com.example:target0 10.10.10.10 Authentication failed
To specify a CHAP username and
	 secret, use this syntax:
iscsictl -A -p 10.10.10.10 -t iqn.2012-06.com.example:target0 -u user -s secretsecret
29.12.2.2. Connecting to a Target with a Configuration
	 File
To connect using a configuration file, create
	 /etc/iscsi.conf with contents like
	 this:
t0 {
	TargetAddress = 10.10.10.10
	TargetName = iqn.2012-06.com.example:target0
	AuthMethod = CHAP
	chapIName = user
	chapSecret = secretsecret
}
The t0 specifies a nickname for the
	 configuration file section. It will be used by the
	 initiator to specify which configuration to use. The other
	 lines specify the parameters to use during connection. The
	 TargetAddress and
	 TargetName are mandatory, whereas the
	 other options are optional. In this example, the
	 CHAP username and secret are
	 shown.
To connect to the defined target, specify the
	 nickname:
iscsictl -An t0
Alternately, to connect to all targets defined in the
	 configuration file, use:
iscsictl -Aa
To make the initiator automatically connect to all
	 targets in /etc/iscsi.conf, add the
	 following to /etc/rc.conf:
iscsictl_enable="YES"
iscsictl_flags="-Aa"
30.2. Firewall Concepts
A ruleset contains a group of rules which pass or block
 packets based on the values contained in the packet. The
 bi-directional exchange of packets between hosts comprises a
 session conversation. The firewall ruleset processes both the
 packets arriving from the public Internet, as well as the
 packets produced by the system as a response to them. Each
 TCP/IP service is predefined by its protocol
 and listening port. Packets destined for a specific service
 originate from the source address using an unprivileged port and
 target the specific service port on the destination address.
 All the above parameters can be used as selection criteria to
 create rules which will pass or block services.
To lookup unknown port numbers, refer to
 /etc/services. Alternatively, visit http://en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers
 and do a port number lookup to find the purpose of a particular
 port number.
Check out this link for port numbers used by Trojans.
FTP has two modes: active mode and passive mode. The
 difference is in how the data channel is acquired. Passive
 mode is more secure as the data channel is acquired by the
 ordinal ftp session requester. For a good explanation of FTP
 and the different modes, see http://www.slacksite.com/other/ftp.html.
A firewall ruleset can be either
 “exclusive” or “inclusive”. An
 exclusive firewall allows all traffic through except for the
 traffic matching the ruleset. An inclusive firewall does the
 reverse as it only allows traffic matching the rules through and
 blocks everything else.
An inclusive firewall offers better control of the outgoing
 traffic, making it a better choice for systems that offer
 services to the public Internet. It also controls the type of
 traffic originating from the public Internet that can gain
 access to a private network. All traffic that does not match
 the rules is blocked and logged. Inclusive firewalls are
 generally safer than exclusive firewalls because they
 significantly reduce the risk of allowing unwanted
 traffic.
Note:
Unless noted otherwise, all configuration and example
	rulesets in this chapter create inclusive firewall
	rulesets.

Security can be tightened further using a “stateful
	firewall”. This type of firewall keeps track of open
 connections and only allows traffic which either matches an
 existing connection or opens a new, allowed connection.
Stateful filtering treats traffic as a bi-directional
 exchange of packets comprising a session. When state is
 specified on a matching rule the firewall dynamically generates
 internal rules for each anticipated packet being exchanged
 during the session. It has sufficient matching capabilities to
 determine if a packet is valid for a session. Any packets that
 do not properly fit the session template are automatically
 rejected.
When the session completes, it is removed from the dynamic
 state table.
Stateful filtering allows one to focus on blocking/passing
 new sessions. If the new session is passed, all its subsequent
 packets are allowed automatically and any impostor packets are
 automatically rejected. If a new session is blocked, none of
 its subsequent packets are allowed. Stateful filtering provides
 advanced matching abilities capable of defending against the
 flood of different attack methods employed by attackers.
NAT stands for Network
	Address Translation. NAT
 function enables the private LAN behind the firewall to share a
 single ISP-assigned IP address, even if that address is
 dynamically assigned. NAT allows each computer in the LAN to
 have Internet access, without having to pay the ISP for multiple
 Internet accounts or IP addresses.
NAT will automatically translate the
 private LAN IP address for each system on the LAN to the
 single public IP address as packets exit the firewall bound for
 the public Internet. It also performs the reverse translation
 for returning packets.
According to RFC 1918, the following IP address ranges are
 reserved for private networks which will never be routed
 directly to the public Internet, and therefore are available
 for use with NAT:
	10.0.0.0/8.

	172.16.0.0/12.

	192.168.0.0/16.

Warning:
When working with the firewall rules, be very
	 careful. Some configurations can
	 lock the administrator out of the server. To be
	on the safe side, consider performing the initial firewall
	configuration from the local console rather than doing it
	remotely over ssh.

30.3. PF
Revised and updated by John Ferrell. Since FreeBSD 5.3, a ported version of OpenBSD's
 PF firewall has been included as an
 integrated part of the base system.
 PF is a complete, full-featured
 firewall that has optional support for
 ALTQ (Alternate Queuing), which
 provides Quality of Service (QoS).
The OpenBSD Project maintains the definitive reference for
 PF in the PF FAQ.
 Peter Hansteen maintains a thorough
 PF tutorial at http://home.nuug.no/~peter/pf/.
Warning:
When reading the PF FAQ,
	keep in mind that FreeBSD's version of
	PF has diverged substantially from
	the upstream OpenBSD version over the years. Not all features
	work the same way on FreeBSD as they do in OpenBSD and vice
	versa.

The FreeBSD packet filter mailing list is a good place to ask questions about
 configuring and running the PF
 firewall. Check the mailing list archives before asking a
 question as it may have already been answered.
This section of the Handbook focuses on
 PF as it pertains to FreeBSD. It
 demonstrates how to enable PF and
 ALTQ. It also provides several
 examples for creating rulesets on a FreeBSD system.
30.3.1. Enabling PF
To use PF, its kernel
	module must be first loaded. This section describes the
	entries that can be added to /etc/rc.conf
	to enable PF.
Start by adding pf_enable=yes to
	/etc/rc.conf:
sysrc pf_enable=yes
Additional options, described in pfctl(8), can be
	passed to PF when it is started.
	Add or change this entry in /etc/rc.conf
	and specify any required flags between the two quotes
	(""):
pf_flags="" # additional flags for pfctl startup
PF will not start if it cannot
	find its ruleset configuration file. By default, FreeBSD does
	not ship with a ruleset and there is no
	/etc/pf.conf. Example rulesets can be
	found in /usr/share/examples/pf/. If a
	custom ruleset has been saved somewhere else, add a line to
	/etc/rc.conf which specifies the full
	path to the file:
pf_rules="/path/to/pf.conf"
Logging support for PF is
	provided by pflog(4). To enable logging support, add
	pflog_enable=yes to
	/etc/rc.conf:
sysrc pflog_enable=yes
The following lines can also be added to change the
	default location of the log file or to specify any additional
	flags to pass to pflog(4) when it is started:
pflog_logfile="/var/log/pflog" # where pflogd should store the logfile
pflog_flags="" # additional flags for pflogd startup
Finally, if there is a LAN behind the
	firewall and packets need to be forwarded for the computers on
	the LAN, or NAT is
	required, enable the following option:
gateway_enable="YES" # Enable as LAN gateway
After saving the needed edits,
	PF can be started with logging
	support by typing:
service pf start
service pflog start
By default, PF reads its
	configuration rules from /etc/pf.conf and
	modifies, drops, or passes packets according to the rules or
	definitions specified in this file. The FreeBSD installation
	includes several sample files located in
	/usr/share/examples/pf/. Refer to the
	PF
	 FAQ for complete coverage
	of PF rulesets.
To control PF, use
	pfctl. Table 30.1, “Useful pfctl Options” summarizes
	some useful options to this command. Refer to pfctl(8)
	for a description of all available options:
Table 30.1. Useful pfctl Options
	Command	Purpose
	pfctl
		 -e	Enable PF.
	pfctl
		 -d	Disable PF.
	pfctl -F all
		 -f /etc/pf.conf	Flush all NAT, filter, state,
		and table rules and reload
		/etc/pf.conf.
	pfctl -s [rules | nat |
		 states]	Report on the filter rules,
		NAT rules, or state
		table.
	pfctl -vnf
		 /etc/pf.conf	Check /etc/pf.conf for
		errors, but do not load ruleset.

Tip:
security/sudo is useful for running
	 commands like pfctl that require elevated
	 privileges. It can be installed from the Ports
	 Collection.

To keep an eye on the traffic that passes through the
	PF firewall, consider installing
	the sysutils/pftop package or port. Once
	installed, pftop can be run to
	view a running snapshot of traffic in a format which is
	similar to top(1).
30.3.2. PF Rulesets
Contributed by Peter N. M. Hansteen. This section demonstrates how to create a customized
	ruleset. It starts with the simplest of rulesets and builds
	upon its concepts using several examples to demonstrate
	real-world usage of PF's many
	features.
The simplest possible ruleset is for a single machine
	that does not run any services and which needs access to one
	network, which may be the Internet. To create this minimal
	ruleset, edit /etc/pf.conf so it looks
	like this:
block in all
pass out all keep state
The first rule denies all incoming traffic by default.
	The second rule allows connections created by this system to
	pass out, while retaining state information on those
	connections. This state information allows return traffic for
	those connections to pass back and should only be used on
	machines that can be trusted. The ruleset can be loaded
	with:
pfctl -e ; pfctl -f /etc/pf.conf
In addition to keeping state,
	PF provides
	lists and
	macros which can be defined for use
	when creating rules. Macros can include lists and need to be
	defined before use. As an example, insert these lines at the
	very top of the ruleset:
tcp_services = "{ ssh, smtp, domain, www, pop3, auth, pop3s }"
udp_services = "{ domain }"
PF understands port names as
	well as port numbers, as long as the names are listed in
	/etc/services. This example creates two
	macros. The first is a list of seven
	TCP port names and the second is one
	UDP port name. Once defined, macros can be
	used in rules. In this example, all traffic is blocked except
	for the connections initiated by this system for the seven
	specified TCP services and the one
	specified UDP service:
tcp_services = "{ ssh, smtp, domain, www, pop3, auth, pop3s }"
udp_services = "{ domain }"
block all
pass out proto tcp to any port $tcp_services keep state
pass proto udp to any port $udp_services keep state
Even though UDP is considered to be a
	stateless protocol, PF is able to
	track some state information. For example, when a
	UDP request is passed which asks a name
	server about a domain name, PF will
	watch for the response to pass it back.
Whenever an edit is made to a ruleset, the new rules must
	be loaded so they can be used:
pfctl -f /etc/pf.conf
If there are no syntax errors, pfctl
	will not output any messages during the rule load. Rules can
	also be tested before attempting to load them:
pfctl -nf /etc/pf.conf
Including -n causes the rules to be
	interpreted only, but not loaded. This provides an
	opportunity to correct any errors. At all times, the last
	valid ruleset loaded will be enforced until either
	PF is disabled or a new ruleset is
	loaded.
Tip:
Adding -v to a pfctl
	 ruleset verify or load will display the fully parsed rules
	 exactly the way they will be loaded. This is extremely
	 useful when debugging rules.

30.3.2.1. A Simple Gateway with NAT
This section demonstrates how to configure a FreeBSD system
	 running PF to act as a gateway
	 for at least one other machine. The gateway needs at least
	 two network interfaces, each connected to a separate
	 network. In this example, xl1 is
	 connected to the Internet and xl0 is
	 connected to the internal network.
First, enable the gateway to let the machine
	 forward the network traffic it receives on one interface to
	 another interface. This sysctl
	 setting will forward IPv4 packets:
sysctl net.inet.ip.forwarding=1
To forward IPv6 traffic, use:
sysctl net.inet6.ip6.forwarding=1
To enable these settings at system boot, use
	 sysrc(8) to add them to
	 /etc/rc.conf:
sysrc gateway_enable=yes
sysrc ipv6_gateway_enable=yes
Verify with ifconfig that both of the
	 interfaces are up and running.
Next, create the PF rules to
	 allow the gateway to pass traffic. While the following rule
	 allows stateful traffic to pass from the Internet to hosts
	 on the network, the to keyword does not
	 guarantee passage all the way from source to
	 destination:
pass in on xl1 from xl1:network to xl0:network port $ports keep state
That rule only lets the traffic pass in to the gateway
	 on the internal interface. To let the packets go further, a
	 matching rule is needed:
pass out on xl0 from xl1:network to xl0:network port $ports keep state
While these two rules will work, rules this specific are
	 rarely needed. For a busy network admin, a readable ruleset
	 is a safer ruleset. The remainder of this section
	 demonstrates how to keep the rules as simple as possible for
	 readability. For example, those two rules could be
	 replaced with one rule:
pass from xl1:network to any port $ports keep state
The interface:network notation can be
	 replaced with a macro to make the ruleset even more
	 readable. For example, a $localnet macro
	 could be defined as the network directly attached to the
	 internal interface ($xl1:network).
	 Alternatively, the definition of
	 $localnet could be changed to an
	 IP address/netmask notation to denote
	 a network, such as 192.168.100.1/24 for a
	 subnet of private addresses.
If required, $localnet could even be
	 defined as a list of networks. Whatever the specific needs,
	 a sensible $localnet definition could be
	 used in a typical pass rule as follows:
pass from $localnet to any port $ports keep state
The following sample ruleset allows all traffic
	 initiated by machines on the internal network. It first
	 defines two macros to represent the external and internal
	 3COM interfaces of the gateway.
Note:
For dialup users, the external interface will use
	 tun0. For an
	 ADSL connection, specifically those
	 using PPP over Ethernet
	 (PPPoE), the correct external
	 interface is tun0, not the physical
	 Ethernet interface.

ext_if = "xl0"	# macro for external interface - use tun0 for PPPoE
int_if = "xl1"	# macro for internal interface
localnet = $int_if:network
ext_if IP address could be dynamic, hence ($ext_if)
nat on $ext_if from $localnet to any -> ($ext_if)
block all
pass from { lo0, $localnet } to any keep state
This ruleset introduces the nat rule
	 which is used to handle the network address translation from
	 the non-routable addresses inside the internal network to
	 the IP address assigned to the external
	 interface. The parentheses surrounding the last part of the
	 nat rule ($ext_if) is included when the
	 IP address of the external interface is
	 dynamically assigned. It ensures that network traffic runs
	 without serious interruptions even if the external
	 IP address changes.
Note that this ruleset probably allows more traffic to
	 pass out of the network than is needed. One reasonable
	 setup could create this macro:
client_out = "{ ftp-data, ftp, ssh, domain, pop3, auth, nntp, http, \
 https, cvspserver, 2628, 5999, 8000, 8080 }"
to use in the main pass rule:
pass inet proto tcp from $localnet to any port $client_out \
 flags S/SA keep state
A few other pass rules may be needed. This one enables
	 SSH on the external interface:
pass in inet proto tcp to $ext_if port ssh
This macro definition and rule allows
	 DNS and NTP for
	 internal clients:
udp_services = "{ domain, ntp }"
pass quick inet proto { tcp, udp } to any port $udp_services keep state
Note the quick keyword in this rule.
	 Since the ruleset consists of several rules, it is important
	 to understand the relationships between the rules in a
	 ruleset. Rules are evaluated from top to bottom, in the
	 sequence they are written. For each packet or connection
	 evaluated by PF,
	 the last matching rule in the ruleset
	 is the one which is applied. However, when a packet matches
	 a rule which contains the quick keyword,
	 the rule processing stops and the packet is treated
	 according to that rule. This is very useful when an
	 exception to the general rules is needed.
30.3.2.2. Creating an FTP Proxy
Configuring working FTP rules can be
	 problematic due to the nature of the FTP
	 protocol. FTP pre-dates firewalls by
	 several decades and is insecure in its design. The most
	 common points against using FTP
	 include:
	Passwords are transferred in the clear.

	The protocol demands the use of at least two
	 TCP connections (control and data) on
	 separate ports.

	When a session is established, data is communicated
	 using randomly selected ports.

All of these points present security challenges, even
	 before considering any potential security weaknesses in
	 client or server software. More secure alternatives for
	 file transfer exist, such as sftp(1) or scp(1),
	 which both feature authentication and data transfer over
	 encrypted connections..
For those situations when FTP is
	 required, PF provides
	 redirection of FTP traffic to a small
	 proxy program called ftp-proxy(8), which is included in
	 the base system of FreeBSD. The role of the proxy is to
	 dynamically insert and delete rules in the ruleset, using a
	 set of anchors, to correctly handle
	 FTP traffic.
To enable the FTP proxy, add this
	 line to /etc/rc.conf:
ftpproxy_enable="YES"
Then start the proxy by running service
	 ftp-proxy start.
For a basic configuration, three elements need to be
	 added to /etc/pf.conf. First, the
	 anchors which the proxy will use to insert the rules it
	 generates for the FTP sessions:
nat-anchor "ftp-proxy/*"
rdr-anchor "ftp-proxy/*"
Second, a pass rule is needed to allow
	 FTP traffic in to the proxy.
Third, redirection and NAT rules need
	 to be defined before the filtering rules. Insert this
	 rdr rule immediately after the
	 nat rule:
rdr pass on $int_if proto tcp from any to any port ftp -> 127.0.0.1 port 8021
Finally, allow the redirected traffic to pass:
pass out proto tcp from $proxy to any port ftp
where $proxy expands to the address
	 the proxy daemon is bound to.
Save /etc/pf.conf, load the new
	 rules, and verify from a client that FTP
	 connections are working:
pfctl -f /etc/pf.conf
This example covers a basic setup where the clients in
	 the local network need to contact FTP
	 servers elsewhere. This basic configuration should
	 work well with most combinations of FTP
	 clients and servers. As shown in ftp-proxy(8), the
	 proxy's behavior can be changed in various ways by adding
	 options to the ftpproxy_flags= line.
	 Some clients or servers may have specific quirks that must
	 be compensated for in the configuration, or there may be a
	 need to integrate the proxy in specific ways such as
	 assigning FTP traffic to a specific
	 queue.
For ways to run an FTP server
	 protected by PF and
	 ftp-proxy(8), configure a separate
	 ftp-proxy in reverse mode, using
	 -R, on a separate port with its own
	 redirecting pass rule.
30.3.2.3. Managing ICMP
Many of the tools used for debugging or troubleshooting
	 a TCP/IP network rely on the Internet
	 Control Message Protocol (ICMP), which
	 was designed specifically with debugging in mind.
The ICMP protocol sends and receives
	 control messages between hosts and
	 gateways, mainly to provide feedback to a sender about any
	 unusual or difficult conditions enroute to the target host.
	 Routers use ICMP to negotiate packet
	 sizes and other transmission parameters in a process often
	 referred to as path MTU
	 discovery.
From a firewall perspective, some
	 ICMP control messages are vulnerable to
	 known attack vectors. Also, letting all diagnostic traffic
	 pass unconditionally makes debugging easier, but it also
	 makes it easier for others to extract information about the
	 network. For these reasons, the following rule may not be
	 optimal:
pass inet proto icmp from any to any
One solution is to let all ICMP
	 traffic from the local network through while stopping all
	 probes from outside the network:
pass inet proto icmp from $localnet to any keep state
pass inet proto icmp from any to $ext_if keep state
Additional options are available which demonstrate some
	 of PF's flexibility. For
	 example, rather than allowing all ICMP
	 messages, one can specify the messages used by ping(8)
	 and traceroute(8). Start by defining a macro for that
	 type of message:
icmp_types = "echoreq"
and a rule which uses the macro:
pass inet proto icmp all icmp-type $icmp_types keep state
If other types of ICMP packets are
	 needed, expand icmp_types to a list of
	 those packet types. Type more
	 /usr/src/sbin/pfctl/pfctl_parser.c to see
	 the list of ICMP message types supported
	 by PF. Refer to http://www.iana.org/assignments/icmp-parameters/icmp-parameters.xhtml
	 for an explanation of each message type.
Since Unix traceroute uses
	 UDP by default, another rule is needed to
	 allow Unix traceroute:
allow out the default range for traceroute(8):
pass out on $ext_if inet proto udp from any to any port 33433 >< 33626 keep state
Since TRACERT.EXE on Microsoft
	 Windows systems uses ICMP echo request
	 messages, only the first rule is needed to allow network
	 traces from those systems. Unix
	 traceroute can be instructed to use other
	 protocols as well, and will use ICMP echo
	 request messages if -I is used. Check the
	 traceroute(8) man page for details.
30.3.2.3.1. Path MTU Discovery
Internet protocols are designed to be device
	 independent, and one consequence of device independence is
	 that the optimal packet size for a given connection cannot
	 always be predicted reliably. The main constraint on
	 packet size is the Maximum Transmission
	 Unit (MTU) which sets the
	 upper limit on the packet size for an interface. Type
	 ifconfig to view the
	 MTUs for a system's network
	 interfaces.
TCP/IP uses a process known as path
	 MTU discovery to determine the right
	 packet size for a connection. This process sends packets
	 of varying sizes with the “Do not fragment”
	 flag set, expecting an ICMP return
	 packet of “type 3, code 4” when the upper
	 limit has been reached. Type 3 means “destination
	 unreachable”, and code 4 is short for
	 “fragmentation needed, but the do-not-fragment flag
	 is set”. To allow path MTU discovery in order
	 to support connections to other MTUs,
	 add the destination unreachable type to
	 the icmp_types macro:
icmp_types = "{ echoreq, unreach }"
Since the pass rule already uses that macro, it does
	 not need to be modified to support the new
	 ICMP type:
pass inet proto icmp all icmp-type $icmp_types keep state
PF allows filtering on all
	 variations of ICMP types and codes.
	 The list of possible types and codes are documented in
	 icmp(4) and icmp6(4).
30.3.2.4. Using Tables
Some types of data are relevant to filtering and
	 redirection at a given time, but their definition is too
	 long to be included in the ruleset file.
	 PF supports the use of tables,
	 which are defined lists that can be manipulated without
	 needing to reload the entire ruleset, and which can provide
	 fast lookups. Table names are always enclosed within
	 < >, like this:
table <clients> { 192.168.2.0/24, !192.168.2.5 }
In this example, the 192.168.2.0/24
	 network is part of the table, except for the address
	 192.168.2.5, which is excluded using the
	 ! operator. It is also possible to load
	 tables from files where each item is on a separate line, as
	 seen in this example
	 /etc/clients:
192.168.2.0/24
!192.168.2.5
To refer to the file, define the table like this:
table <clients> persist file "/etc/clients"
Once the table is defined, it can be referenced by a
	 rule:
pass inet proto tcp from <clients> to any port $client_out flags S/SA keep state
A table's contents can be manipulated live, using
	 pfctl. This example adds another network
	 to the table:
pfctl -t clients -T add 192.168.1.0/16
Note that any changes made this way will take affect
	 now, making them ideal for testing, but will not survive a
	 power failure or reboot. To make the changes permanent,
	 modify the definition of the table in the ruleset or edit
	 the file that the table refers to. One can maintain the
	 on-disk copy of the table using a cron(8) job which
	 dumps the table's contents to disk at regular intervals,
	 using a command such as pfctl -t clients -T show
	 >/etc/clients. Alternatively,
	 /etc/clients can be updated with the
	 in-memory table contents:
pfctl -t clients -T replace -f /etc/clients
30.3.2.5. Using Overload Tables to Protect
	 SSH
Those who run SSH on an external
	 interface have probably seen something like this in the
	 authentication logs:
Sep 26 03:12:34 skapet sshd[25771]: Failed password for root from 200.72.41.31 port 40992 ssh2
Sep 26 03:12:34 skapet sshd[5279]: Failed password for root from 200.72.41.31 port 40992 ssh2
Sep 26 03:12:35 skapet sshd[5279]: Received disconnect from 200.72.41.31: 11: Bye Bye
Sep 26 03:12:44 skapet sshd[29635]: Invalid user admin from 200.72.41.31
Sep 26 03:12:44 skapet sshd[24703]: input_userauth_request: invalid user admin
Sep 26 03:12:44 skapet sshd[24703]: Failed password for invalid user admin from 200.72.41.31 port 41484 ssh2
This is indicative of a brute force attack where
	 somebody or some program is trying to discover the user name
	 and password which will let them into the system.
If external SSH access is needed for
	 legitimate users, changing the default port used by
	 SSH can offer some protection. However,
	 PF provides a more elegant
	 solution. Pass rules can contain limits on what connecting
	 hosts can do and violators can be banished to a table of
	 addresses which are denied some or all access. It is even
	 possible to drop all existing connections from machines
	 which overreach the limits.
To configure this, create this table in the tables
	 section of the ruleset:
table <bruteforce> persist
Then, somewhere early in the ruleset, add rules to block
	 brute access while allowing legitimate access:
block quick from <bruteforce>
pass inet proto tcp from any to $localnet port $tcp_services \
 flags S/SA keep state \
 (max-src-conn 100, max-src-conn-rate 15/5, \
 overload <bruteforce> flush global)
The part in parentheses defines the limits and the
	 numbers should be changed to meet local requirements. It
	 can be read as follows:
max-src-conn is the number of
	 simultaneous connections allowed from one host.
max-src-conn-rate is the rate of new
	 connections allowed from any single host
	 (15) per number of seconds
	 (5).
overload <bruteforce> means
	 that any host which exceeds these limits gets its address
	 added to the bruteforce table. The
	 ruleset blocks all traffic from addresses in the
	 bruteforce table.
Finally, flush global says that when
	 a host reaches the limit, that all
	 (global) of that host's connections will
	 be terminated (flush).
Note:
These rules will not block slow
	 bruteforcers, as described in http://home.nuug.no/~peter/hailmary2013/.

This example ruleset is intended mainly as an
	 illustration. For example, if a generous number of
	 connections in general are wanted, but the desire is to be
	 more restrictive when it comes to
	 ssh, supplement the rule above
	 with something like the one below, early on in the rule
	 set:
pass quick proto { tcp, udp } from any to any port ssh \
 flags S/SA keep state \
 (max-src-conn 15, max-src-conn-rate 5/3, \
 overload <bruteforce> flush global)
It May Not be Necessary to Block All
	 Overloaders:
It is worth noting that the overload mechanism is a
	 general technique which does not apply exclusively to
	 SSH, and it is not always optimal to
	 entirely block all traffic from offenders.
For example, an overload rule could be used to
	 protect a mail service or a web service, and the overload
	 table could be used in a rule to assign offenders to a
	 queue with a minimal bandwidth allocation or to redirect
	 to a specific web page.

Over time, tables will be filled by overload rules and
	 their size will grow incrementally, taking up more memory.
	 Sometimes an IP address that is blocked
	 is a dynamically assigned one, which has since been assigned
	 to a host who has a legitimate reason to communicate with
	 hosts in the local network.
For situations like these,
	 pfctl provides the ability to
	 expire table entries. For example, this command will remove
	 <bruteforce> table entries which
	 have not been referenced for 86400
	 seconds:
pfctl -t bruteforce -T expire 86400
Similar functionality is provided by
	 security/expiretable, which removes table
	 entries which have not been accessed for a specified period
	 of time.
Once installed, expiretable
	 can be run to remove <bruteforce>
	 table entries older than a specified age. This example
	 removes all entries older than 24 hours:
/usr/local/sbin/expiretable -v -d -t 24h bruteforce
30.3.2.6. Protecting Against SPAM
Not to be confused with the
	 spamd daemon which comes bundled
	 with spamassassin,
	 mail/spamd can be configured with
	 PF to provide an outer defense
	 against SPAM. This
	 spamd hooks into the
	 PF configuration using a set of
	 redirections.
Spammers tend to send a large number of messages, and
	 SPAM is mainly sent from a few spammer
	 friendly networks and a large number of hijacked machines,
	 both of which are reported to
	 blacklists fairly quickly.
When an SMTP connection from an
	 address in a blacklist is received,
	 spamd presents its banner and
	 immediately switches to a mode where it answers
	 SMTP traffic one byte at a time. This
	 technique, which is intended to waste as much time as
	 possible on the spammer's end, is called
	 tarpitting. The specific
	 implementation which uses one byte SMTP
	 replies is often referred to as
	 stuttering.
This example demonstrates the basic procedure for
	 setting up spamd with
	 automatically updated blacklists. Refer to the man pages
	 which are installed with mail/spamd for
	 more information.
Procedure 30.1. Configuring spamd
	Install the mail/spamd package
	 or port. To use spamd's
	 greylisting features, fdescfs(5) must be mounted at
	 /dev/fd. Add the following line to
	 /etc/fstab:
 fdescfs /dev/fd fdescfs rw 0 0
Then, mount the filesystem:
mount fdescfs

	Next, edit the PF ruleset
	 to include:
table <spamd> persist
table <spamd-white> persist
rdr pass on $ext_if inet proto tcp from <spamd> to \
 { $ext_if, $localnet } port smtp -> 127.0.0.1 port 8025
rdr pass on $ext_if inet proto tcp from !<spamd-white> to \
 { $ext_if, $localnet } port smtp -> 127.0.0.1 port 8025
The two tables <spamd> and
	 <spamd-white> are essential.
	 SMTP traffic from an address listed
	 in <spamd> but not in
	 <spamd-white> is redirected to
	 the spamd daemon listening at
	 port 8025.

	The next step is to configure
	 spamd in
	 /usr/local/etc/spamd.conf and to
	 add some rc.conf parameters.
The installation of mail/spamd
	 includes a sample configuration file
	 (/usr/local/etc/spamd.conf.sample)
	 and a man page for spamd.conf.
	 Refer to these for additional configuration options
	 beyond those shown in this example.
One of the first lines in the configuration file
	 that does not begin with a # comment
	 sign contains the block which defines the
	 all list, which specifies the lists
	 to use:
all:\
 :traplist:whitelist:
This entry adds the desired blacklists, separated by
	 colons (:). To use a whitelist to
	 subtract addresses from a blacklist, add the name of the
	 whitelist immediately after the
	 name of that blacklist. For example:
	 :blacklist:whitelist:.
This is followed by the specified blacklist's
	 definition:
traplist:\
 :black:\
 :msg="SPAM. Your address %A has sent spam within the last 24 hours":\
 :method=http:\
 :file=www.openbsd.org/spamd/traplist.gz
where the first line is the name of the blacklist
	 and the second line specifies the list type. The
	 msg field contains the message to
	 display to blacklisted senders during the
	 SMTP dialogue. The
	 method field specifies how
	 spamd-setup fetches the list
	 data; supported methods are http,
	 ftp, from a
	 file in a mounted file system, and
	 via exec of an external program.
	 Finally, the file field specifies
	 the name of the file spamd
	 expects to receive.
The definition of the specified whitelist is
	 similar, but omits the msg field
	 since a message is not needed:
whitelist:\
 :white:\
 :method=file:\
 :file=/var/mail/whitelist.txt
Choose Data Sources with Care:
Using all the blacklists in the sample
		spamd.conf will blacklist large
		blocks of the Internet. Administrators need to edit
		the file to create an optimal configuration which uses
		applicable data sources and, when necessary, uses
		custom lists.

Next, add this entry to
	 /etc/rc.conf. Additional flags are
	 described in the man page specified by the
	 comment:
spamd_flags="-v" # use "" and see spamd-setup(8) for flags
When finished, reload the ruleset, start
	 spamd by typing
	 service obspamd start, and complete
	 the configuration using spamd-setup.
	 Finally, create a cron(8) job which calls
	 spamd-setup to update the tables at
	 reasonable intervals.

On a typical gateway in front of a mail server, hosts
	 will soon start getting trapped within a few seconds to
	 several minutes.
PF also supports
	 greylisting, which temporarily
	 rejects messages from unknown hosts with
	 45n codes. Messages from
	 greylisted hosts which try again within a reasonable time
	 are let through. Traffic from senders which are set up to
	 behave within the limits set by RFC 1123 and RFC 2821 are
	 immediately let through.
More information about greylisting as a technique can be
	 found at the greylisting.org
	 web site. The most amazing thing about greylisting, apart
	 from its simplicity, is that it still works. Spammers and
	 malware writers have been very slow to adapt to bypass this
	 technique.
The basic procedure for configuring greylisting is as
	 follows:
Procedure 30.2. Configuring Greylisting
	Make sure that fdescfs(5) is mounted as
	 described in Step 1 of the previous Procedure.

	To run spamd in
	 greylisting mode, add this line to
	 /etc/rc.conf:
spamd_grey="YES" # use spamd greylisting if YES
Refer to the spamd man
	 page for descriptions of additional related
	 parameters.

	To complete the greylisting setup:
service obspamd restart
service obspamlogd start

Behind the scenes, the spamdb
	 database tool and the spamlogd
	 whitelist updater perform essential functions for the
	 greylisting feature. spamdb is
	 the administrator's main interface to managing the black,
	 grey, and white lists via the contents of the
	 /var/db/spamdb database.
30.3.2.7. Network Hygiene
This section describes how
	 block-policy, scrub,
	 and antispoof can be used to make the
	 ruleset behave sanely.
The block-policy is an option which
	 can be set in the options part of the
	 ruleset, which precedes the redirection and filtering rules.
	 This option determines which feedback, if any,
	 PF sends to hosts that are
	 blocked by a rule. The option has two possible values:
	 drop drops blocked packets with no
	 feedback, and return returns a status
	 code such as
	 Connection refused.
If not set, the default policy is
	 drop. To change the
	 block-policy, specify the desired
	 value:
set block-policy return
In PF,
	 scrub is a keyword which enables network
	 packet normalization. This process reassembles fragmented
	 packets and drops TCP packets that have invalid flag
	 combinations. Enabling scrub provides a
	 measure of protection against certain kinds of attacks
	 based on incorrect handling of packet fragments. A number
	 of options are available, but the simplest form is suitable
	 for most configurations:
scrub in all
Some services, such as NFS, require
	 specific fragment handling options. Refer to https://home.nuug.no/~peter/pf/en/scrub.html
	 for more information.
This example reassembles fragments, clears the
	 “do not fragment” bit, and sets the maximum
	 segment size to 1440 bytes:
scrub in all fragment reassemble no-df max-mss 1440
The antispoof mechanism protects
	 against activity from spoofed or forged
	 IP addresses, mainly by blocking packets
	 appearing on interfaces and in directions which are
	 logically not possible.
These rules weed out spoofed traffic coming in from the
	 rest of the world as well as any spoofed packets which
	 originate in the local network:
antispoof for $ext_if
antispoof for $int_if
30.3.2.8. Handling Non-Routable Addresses
Even with a properly configured gateway to handle
	 network address translation, one may have to compensate for
	 other people's misconfigurations. A common misconfiguration
	 is to let traffic with non-routable addresses out to the
	 Internet. Since traffic from non-routeable addresses can
	 play a part in several DoS attack
	 techniques, consider explicitly blocking traffic from
	 non-routeable addresses from entering the network through
	 the external interface.
In this example, a macro containing non-routable
	 addresses is defined, then used in blocking rules. Traffic
	 to and from these addresses is quietly dropped on the
	 gateway's external
	 interface.
martians = "{ 127.0.0.0/8, 192.168.0.0/16, 172.16.0.0/12, \
	 10.0.0.0/8, 169.254.0.0/16, 192.0.2.0/24, \
	 0.0.0.0/8, 240.0.0.0/4 }"

block drop in quick on $ext_if from $martians to any
block drop out quick on $ext_if from any to $martians
30.3.3. Enabling ALTQ
On FreeBSD, ALTQ can be used with
	PF to provide Quality of Service
	(QOS). Once
	ALTQ is enabled, queues can be
	defined in the ruleset which determine the processing priority
	of outbound packets.
Before enabling ALTQ, refer to
	altq(4) to determine if the drivers for the network cards
	installed on the system support it.
ALTQ is not available as a
	loadable kernel module. If the system's interfaces support
	ALTQ, create a custom kernel using
	the instructions in Chapter 8, Configuring the FreeBSD Kernel. The
	following kernel options are available. The first is needed
	to enable ALTQ. At least one of
	the other options is necessary to specify the queueing
	scheduler algorithm:
options ALTQ
options ALTQ_CBQ # Class Based Queuing (CBQ)
options ALTQ_RED # Random Early Detection (RED)
options ALTQ_RIO # RED In/Out
options ALTQ_HFSC # Hierarchical Packet Scheduler (HFSC)
options ALTQ_PRIQ # Priority Queuing (PRIQ)
The following scheduler algorithms are available:
	CBQ
	Class Based Queuing (CBQ) is
	 used to divide a connection's bandwidth into different
	 classes or queues to prioritize traffic based on filter
	 rules.

	RED
	Random Early Detection (RED) is
	 used to avoid network congestion by measuring the length
	 of the queue and comparing it to the minimum and maximum
	 thresholds for the queue. When the queue is over the
	 maximum, all new packets are randomly dropped.

	RIO
	In Random Early Detection In and Out
	 (RIO) mode, RED
	 maintains multiple average queue lengths and multiple
	 threshold values, one for each
	 QOS level.

	HFSC
	Hierarchical Fair Service Curve Packet Scheduler
	 (HFSC) is described in http://www-2.cs.cmu.edu/~hzhang/HFSC/main.html.

	PRIQ
	Priority Queuing (PRIQ) always
	 passes traffic that is in a higher queue first.

More information about the scheduling
	algorithms and example rulesets are available at the OpenBSD's web archive.
30.4. IPFW
IPFW is a stateful firewall
 written for FreeBSD which supports both IPv4 and
 IPv6. It is comprised of several components:
 the kernel firewall filter rule processor and its integrated
 packet accounting facility, the logging facility,
 NAT, the dummynet(4) traffic shaper, a
 forward facility, a bridge facility, and an ipstealth
 facility.
FreeBSD provides a sample ruleset in
 /etc/rc.firewall which defines several
 firewall types for common scenarios to assist novice users in
 generating an appropriate ruleset.
 IPFW provides a powerful syntax which
 advanced users can use to craft customized rulesets that meet
 the security requirements of a given environment.
This section describes how to enable
 IPFW, provides an overview of its
 rule syntax, and demonstrates several rulesets for common
 configuration scenarios.
30.4.1. Enabling IPFW
IPFW is included in the basic
	FreeBSD install as a kernel loadable module, meaning that a
	custom kernel is not needed in order to enable
	IPFW.
For those users who wish to statically compile
	IPFW support into a custom kernel,
	see Section 30.4.6, “IPFW Kernel Options”.
To configure the system to enable
	IPFW at boot time, add
	firewall_enable="YES" to
	/etc/rc.conf:
sysrc firewall_enable="YES"
To use one of the default firewall types provided by FreeBSD,
	add another line which specifies the type:
sysrc firewall_type="open"
The available types are:
	open: passes all traffic.

	client: protects only this
	 machine.

	simple: protects the whole
	 network.

	closed: entirely disables IP
	 traffic except for the loopback interface.

	workstation: protects only this
	 machine using stateful rules.

	UNKNOWN: disables the loading of
	 firewall rules.

	filename:
	 full path of the file containing the firewall
	 ruleset.

If firewall_type is set to either
	client or simple,
	modify the default rules found in
	/etc/rc.firewall to fit the
	configuration of the system.
Note that the filename type is used to
	load a custom ruleset.
An alternate way to load a custom ruleset is to set the
	firewall_script variable to the absolute
	path of an executable script that
	includes IPFW commands. The
	examples used in this section assume that the
	firewall_script is set to
	/etc/ipfw.rules:
sysrc firewall_script="/etc/ipfw.rules"
To enable logging through syslogd(8), include this
	line:
sysrc firewall_logging="YES"
Warning:
Only firewall rules with the log option will
	 be logged. The default rules do not include this option and it
	 must be manually added. Therefor it is advisable that the default
	 ruleset is edited for logging. In addition, log rotation may be
	 desired if the logs are stored in a separate file.

There is no /etc/rc.conf variable to
	set logging limits. To limit the number of times a rule is
	logged per connection attempt, specify the number using this
	line in /etc/sysctl.conf:
echo "net.inet.ip.fw.verbose_limit=5" >> /etc/sysctl.conf
To enable logging through a dedicated interface named
	ipfw0, add this line to
	/etc/rc.conf instead:
sysrc firewall_logif="YES"
Then use tcpdump to see what is
	being logged:
tcpdump -t -n -i ipfw0
Tip:
There is no overhead due to logging unless
	 tcpdump is attached.

After saving the needed edits, start the firewall. To
	enable logging limits now, also set the
	sysctl value specified above:
service ipfw start
sysctl net.inet.ip.fw.verbose_limit=5
30.4.2. IPFW Rule Syntax
When a packet enters the IPFW
	firewall, it is compared against the first rule in the ruleset
	and progresses one rule at a time, moving from top to bottom
	in sequence. When the packet matches the selection parameters
	of a rule, the rule's action is executed and the search of the
	ruleset terminates for that packet. This is referred to as
	“first match wins”. If the packet does not match
	any of the rules, it gets caught by the mandatory
	IPFW default rule number 65535,
	which denies all packets and silently discards them. However,
	if the packet matches a rule that contains the
	count, skipto, or
	tee keywords, the search continues. Refer
	to ipfw(8) for details on how these keywords affect rule
	processing.
When creating an
	IPFW rule, keywords must be
	written in the following order. Some keywords are mandatory
	while other keywords are optional. The words shown in
	uppercase represent a variable and the words shown in
	lowercase must precede the variable that follows it. The
	# symbol is used to mark the start of a
	comment and may appear at the end of a rule or on its own
	line. Blank lines are ignored.
CMD RULE_NUMBER set SET_NUMBER ACTION log
	 LOG_AMOUNT PROTO from SRC SRC_PORT to DST DST_PORT
	 OPTIONS
This section provides an overview of these keywords and
	their options. It is not an exhaustive list of every possible
	option. Refer to ipfw(8) for a complete description of
	the rule syntax that can be used when creating
	IPFW rules.
	CMD
	Every rule must start with
	 ipfw add.

	RULE_NUMBER
	Each rule is associated with a number from
	 1 to
	 65534. The number is used to
	 indicate the order of rule processing. Multiple rules
	 can have the same number, in which case they are applied
	 according to the order in which they have been
	 added.

	SET_NUMBER
	Each rule is associated with a set number from
	 0 to 31.
	 Sets can be individually disabled or enabled, making it
	 possible to quickly add or delete a set of rules. If a
	 SET_NUMBER is not specified, the rule will be added to
	 set 0.

	ACTION
	A rule can be associated with one of the following
	 actions. The specified action will be executed when the
	 packet matches the selection criterion of the
	 rule.
allow | accept | pass |
		permit: these keywords are equivalent and
	 allow packets that match the rule.
check-state: checks the
	 packet against the dynamic state table. If a match is
	 found, execute the action associated with the rule which
	 generated this dynamic rule, otherwise move to the next
	 rule. A check-state rule does not
	 have selection criterion. If no
	 check-state rule is present in the
	 ruleset, the dynamic rules table is checked at the first
	 keep-state or
	 limit rule.
count: updates counters for
	 all packets that match the rule. The search continues
	 with the next rule.
deny | drop: either word
	 silently discards packets that match this rule.
Additional actions are available. Refer to
	 ipfw(8) for details.

	LOG_AMOUNT
	When a packet matches a rule with the
	 log keyword, a message will be logged
	 to syslogd(8) with a facility name of
	 SECURITY. Logging only occurs if the
	 number of packets logged for that particular rule does
	 not exceed a specified LOG_AMOUNT. If no
	 LOG_AMOUNT is specified, the limit is taken from the
	 value of
	 net.inet.ip.fw.verbose_limit. A
	 value of zero removes the logging limit. Once the limit
	 is reached, logging can be re-enabled by clearing the
	 logging counter or the packet counter for that rule,
	 using ipfw resetlog.
Note:
Logging is done after all other packet matching
		conditions have been met, and before performing the
		final action on the packet. The administrator decides
		which rules to enable logging on.

	PROTO
	This optional value can be used to specify any
	 protocol name or number found in
	 /etc/protocols.

	SRC
	The from keyword must be followed
	 by the source address or a keyword that represents the
	 source address. An address can be represented by
	 any, me (any
	 address configured on an interface on this system),
	 me6, (any IPv6
	 address configured on an interface on this system), or
	 table followed by the number of a
	 lookup table which contains a list of addresses. When
	 specifying an IP address, it can be
	 optionally followed by its CIDR mask
	 or subnet mask. For example,
	 1.2.3.4/25 or
	 1.2.3.4:255.255.255.128.

	SRC_PORT
	An optional source port can be specified using the
	 port number or name from
	 /etc/services.

	DST
	The to keyword must be followed
	 by the destination address or a keyword that represents
	 the destination address. The same keywords and
	 addresses described in the SRC section can be used to
	 describe the destination.

	DST_PORT
	An optional destination port can be specified using
	 the port number or name from
	 /etc/services.

	OPTIONS
	Several keywords can follow the source and
	 destination. As the name suggests, OPTIONS are
	 optional. Commonly used options include
	 in or out, which
	 specify the direction of packet flow,
	 icmptypes followed by the type of
	 ICMP message, and
	 keep-state.
When a keep-state rule is
	 matched, the firewall will create a dynamic rule which
	 matches bidirectional traffic between the source and
	 destination addresses and ports using the same
	 protocol.
The dynamic rules facility is vulnerable to resource
	 depletion from a SYN-flood attack which would open a
	 huge number of dynamic rules. To counter this type of
	 attack with IPFW, use
	 limit. This option limits the number
	 of simultaneous sessions by checking the open dynamic
	 rules, counting the number of times this rule and
	 IP address combination occurred. If
	 this count is greater than the value specified by
	 limit, the packet is
	 discarded.
Dozens of OPTIONS are available. Refer to
	 ipfw(8) for a description of each available
	 option.

30.4.3. Example Ruleset
This section demonstrates how to create an example
	stateful firewall ruleset script named
	/etc/ipfw.rules. In this example, all
	connection rules use in or
	out to clarify the direction. They also
	use via
	interface-name to specify
	the interface the packet is traveling over.
Note:
When first creating or testing a firewall ruleset,
	 consider temporarily setting this tunable:
net.inet.ip.fw.default_to_accept="1"
This sets the default policy of ipfw(8) to be more
	 permissive than the default deny ip from any to
	 any, making it slightly more difficult to get
	 locked out of the system right after a reboot.

The firewall script begins by indicating that it is a
	Bourne shell script and flushes any existing rules. It then
	creates the cmd variable so that
	ipfw add does not have to be typed at the
	beginning of every rule. It also defines the
	pif variable which represents the name of
	the interface that is attached to the Internet.
#!/bin/sh
Flush out the list before we begin.
ipfw -q -f flush

Set rules command prefix
cmd="ipfw -q add"
pif="dc0" # interface name of NIC attached to Internet
The first two rules allow all traffic on the trusted
	internal interface and on the loopback interface:
Change xl0 to LAN NIC interface name
$cmd 00005 allow all from any to any via xl0

No restrictions on Loopback Interface
$cmd 00010 allow all from any to any via lo0
The next rule allows the packet through if it matches an
	existing entry in the dynamic rules table:
$cmd 00101 check-state
The next set of rules defines which stateful connections
	internal systems can create to hosts on the Internet:
Allow access to public DNS
Replace x.x.x.x with the IP address of a public DNS server
and repeat for each DNS server in /etc/resolv.conf
$cmd 00110 allow tcp from any to x.x.x.x 53 out via $pif setup keep-state
$cmd 00111 allow udp from any to x.x.x.x 53 out via $pif keep-state

Allow access to ISP's DHCP server for cable/DSL configurations.
Use the first rule and check log for IP address.
Then, uncomment the second rule, input the IP address, and delete the first rule
$cmd 00120 allow log udp from any to any 67 out via $pif keep-state
#$cmd 00120 allow udp from any to x.x.x.x 67 out via $pif keep-state

Allow outbound HTTP and HTTPS connections
$cmd 00200 allow tcp from any to any 80 out via $pif setup keep-state
$cmd 00220 allow tcp from any to any 443 out via $pif setup keep-state

Allow outbound email connections
$cmd 00230 allow tcp from any to any 25 out via $pif setup keep-state
$cmd 00231 allow tcp from any to any 110 out via $pif setup keep-state

Allow outbound ping
$cmd 00250 allow icmp from any to any out via $pif keep-state

Allow outbound NTP
$cmd 00260 allow udp from any to any 123 out via $pif keep-state

Allow outbound SSH
$cmd 00280 allow tcp from any to any 22 out via $pif setup keep-state

deny and log all other outbound connections
$cmd 00299 deny log all from any to any out via $pif
The next set of rules controls connections from Internet
	hosts to the internal network. It starts by denying packets
	typically associated with attacks and then explicitly allows
	specific types of connections. All the authorized services
	that originate from the Internet use limit
	to prevent flooding.
Deny all inbound traffic from non-routable reserved address spaces
$cmd 00300 deny all from 192.168.0.0/16 to any in via $pif #RFC 1918 private IP
$cmd 00301 deny all from 172.16.0.0/12 to any in via $pif #RFC 1918 private IP
$cmd 00302 deny all from 10.0.0.0/8 to any in via $pif #RFC 1918 private IP
$cmd 00303 deny all from 127.0.0.0/8 to any in via $pif #loopback
$cmd 00304 deny all from 0.0.0.0/8 to any in via $pif #loopback
$cmd 00305 deny all from 169.254.0.0/16 to any in via $pif #DHCP auto-config
$cmd 00306 deny all from 192.0.2.0/24 to any in via $pif #reserved for docs
$cmd 00307 deny all from 204.152.64.0/23 to any in via $pif #Sun cluster interconnect
$cmd 00308 deny all from 224.0.0.0/3 to any in via $pif #Class D & E multicast

Deny public pings
$cmd 00310 deny icmp from any to any in via $pif

Deny ident
$cmd 00315 deny tcp from any to any 113 in via $pif

Deny all Netbios services.
$cmd 00320 deny tcp from any to any 137 in via $pif
$cmd 00321 deny tcp from any to any 138 in via $pif
$cmd 00322 deny tcp from any to any 139 in via $pif
$cmd 00323 deny tcp from any to any 81 in via $pif

Deny fragments
$cmd 00330 deny all from any to any frag in via $pif

Deny ACK packets that did not match the dynamic rule table
$cmd 00332 deny tcp from any to any established in via $pif

Allow traffic from ISP's DHCP server.
Replace x.x.x.x with the same IP address used in rule 00120.
#$cmd 00360 allow udp from any to x.x.x.x 67 in via $pif keep-state

Allow HTTP connections to internal web server
$cmd 00400 allow tcp from any to me 80 in via $pif setup limit src-addr 2

Allow inbound SSH connections
$cmd 00410 allow tcp from any to me 22 in via $pif setup limit src-addr 2

Reject and log all other incoming connections
$cmd 00499 deny log all from any to any in via $pif
The last rule logs all packets that do not match any of
	the rules in the ruleset:
Everything else is denied and logged
$cmd 00999 deny log all from any to any
30.4.4. Configuring NAT
Contributed by Chern Lee. FreeBSD's built-in NAT daemon,
	natd(8), works in conjunction with
	IPFW to provide network address
	translation. This can be used to provide an Internet
	Connection Sharing solution so that several internal computers
	can connect to the Internet using a single
	IP address.
To do this, the FreeBSD machine connected to the Internet
	must act as a gateway. This system must have two
	NICs, where one is connected to the
	Internet and the other is connected to the internal
	LAN. Each machine connected to the
	LAN should be assigned an
	IP address in the private network space, as
	defined by RFC
	 1918, and have the default gateway set to the
	natd(8) system's internal IP
	address.
Some additional configuration is needed in order to
	activate the NAT function of
	IPFW. If the system has a custom
	kernel, the kernel configuration file needs to include
	option IPDIVERT along with the other
	IPFIREWALL options described in Section 30.4.1, “Enabling IPFW”.
To enable NAT support at boot time, the
	following must be in /etc/rc.conf:
gateway_enable="YES"		# enables the gateway
natd_enable="YES"		# enables NAT
natd_interface="rl0"		# specify interface name of NIC attached to Internet
natd_flags="-dynamic -m"	# -m = preserve port numbers; additional options are listed in natd(8)
Note:
It is also possible to specify a configuration file
	 which contains the options to pass to natd(8):
natd_flags="-f /etc/natd.conf"
The specified file must contain a list of configuration
	 options, one per line. For example:
redirect_port tcp 192.168.0.2:6667 6667
redirect_port tcp 192.168.0.3:80 80
For more information about this configuration file,
	 consult natd(8).

Next, add the NAT rules to the firewall
	ruleset. When the rulest contains stateful rules, the
	positioning of the NAT rules is critical
	and the skipto action is used. The
	skipto action requires a rule number so
	that it knows which rule to jump to.
The following example builds upon the firewall ruleset
	shown in the previous section. It adds some additional
	entries and modifies some existing rules in order to configure
	the firewall for NAT. It starts by adding
	some additional variables which represent the rule number to
	skip to, the keep-state option, and a list
	of TCP ports which will be used to reduce
	the number of rules:
#!/bin/sh
ipfw -q -f flush
cmd="ipfw -q add"
skip="skipto 500"
pif=dc0
ks="keep-state"
good_tcpo="22,25,37,53,80,443,110"
The inbound NAT rule is inserted
	after the two rules which allow all
	traffic on the trusted internal interface and on the loopback
	interface and before the
	check-state rule. It is important that the
	rule number selected for this NAT rule, in
	this example 100, is higher than the first
	two rules and lower than the check-state
	rule:
$cmd 005 allow all from any to any via xl0 # exclude LAN traffic
$cmd 010 allow all from any to any via lo0 # exclude loopback traffic
$cmd 100 divert natd ip from any to any in via $pif # NAT any inbound packets
Allow the packet through if it has an existing entry in the dynamic rules table
$cmd 101 check-state
The outbound rules are modified to replace the
	allow action with the
	$skip variable, indicating that rule
	processing will continue at rule 500. The
	seven tcp rules have been replaced by rule
	125 as the
	$good_tcpo variable contains the
	seven allowed outbound ports.
Authorized outbound packets
$cmd 120 $skip udp from any to x.x.x.x 53 out via $pif $ks
$cmd 121 $skip udp from any to x.x.x.x 67 out via $pif $ks
$cmd 125 $skip tcp from any to any $good_tcpo out via $pif setup $ks
$cmd 130 $skip icmp from any to any out via $pif $ks
The inbound rules remain the same, except for the very
	last rule which removes the via $pif in
	order to catch both inbound and outbound rules. The
	NAT rule must follow this last outbound
	rule, must have a higher number than that last rule, and the
	rule number must be referenced by the
	skipto action. In this ruleset, rule
	number 500 diverts all packets which match
	the outbound rules to natd(8) for
	NAT processing. The next rule allows any
	packet which has undergone NAT processing
	to pass.
$cmd 499 deny log all from any to any
$cmd 500 divert natd ip from any to any out via $pif # skipto location for outbound stateful rules
$cmd 510 allow ip from any to any
In this example, rules 100,
	101, 125,
	500, and 510 control the
	address translation of the outbound and inbound packets so
	that the entries in the dynamic state table always register
	the private LAN IP
	address.
Consider an internal web browser which initializes a new
	outbound HTTP session over port 80. When
	the first outbound packet enters the firewall, it does not
	match rule 100 because it is headed out
	rather than in. It passes rule 101 because
	this is the first packet and it has not been posted to the
	dynamic state table yet. The packet finally matches rule
	125 as it is outbound on an allowed port
	and has a source IP address from the
	internal LAN. On matching this rule, two
	actions take place. First, the keep-state
	action adds an entry to the dynamic state table and the
	specified action, skipto rule 500, is
	executed. Next, the packet undergoes NAT
	and is sent out to the Internet. This packet makes its way to
	the destination web server, where a response packet is
	generated and sent back. This new packet enters the top of
	the ruleset. It matches rule 100 and has
	its destination IP address mapped back to
	the original internal address. It then is processed by the
	check-state rule, is found in the table as
	an existing session, and is released to the
	LAN.
On the inbound side, the ruleset has to deny bad packets
	and allow only authorized services. A packet which matches an
	inbound rule is posted to the dynamic state table and the
	packet is released to the LAN. The packet
	generated as a response is recognized by the
	check-state rule as belonging to an
	existing session. It is then sent to rule
	500 to undergo
	NAT before being released to the outbound
	interface.
30.4.4.1. Port Redirection
The drawback with natd(8) is that the
	 LAN clients are not accessible from the
	 Internet. Clients on the LAN can make
	 outgoing connections to the world but cannot receive
	 incoming ones. This presents a problem if trying to run
	 Internet services on one of the LAN
	 client machines. A simple way around this is to redirect
	 selected Internet ports on the natd(8) machine to a
	 LAN client.
For example, an IRC server runs on
	 client A and a web server runs on
	 client B. For this to work
	 properly, connections received on ports 6667
	 (IRC) and 80 (HTTP)
	 must be redirected to the respective machines.
The syntax for -redirect_port is as
	 follows:
 -redirect_port proto targetIP:targetPORT[-targetPORT]
 [aliasIP:]aliasPORT[-aliasPORT]
 [remoteIP[:remotePORT[-remotePORT]]]
In the above example, the argument should be:
 -redirect_port tcp 192.168.0.2:6667 6667
 -redirect_port tcp 192.168.0.3:80 80
This redirects the proper TCP ports
	 to the LAN client machines.
Port ranges over individual ports can be indicated with
	 -redirect_port. For example,
	 tcp 192.168.0.2:2000-3000
	 2000-3000 would redirect all connections
	 received on ports 2000 to 3000 to ports 2000 to 3000 on
	 client A.
These options can be used when directly running
	 natd(8), placed within the
	 natd_flags="" option in
	 /etc/rc.conf, or passed via a
	 configuration file.
For further configuration options, consult
	 natd(8).
30.4.4.2. Address Redirection
Address redirection is useful if more than one
	 IP address is available. Each
	 LAN client can be assigned its own
	 external IP address by natd(8),
	 which will then rewrite outgoing packets from the
	 LAN clients with the proper external
	 IP address and redirects all traffic
	 incoming on that particular IP address
	 back to the specific LAN client. This is
	 also known as static NAT. For example,
	 if IP addresses 128.1.1.1, 128.1.1.2, and 128.1.1.3 are available,
	 128.1.1.1 can be
	 used as the natd(8) machine's external
	 IP address, while 128.1.1.2 and 128.1.1.3 are forwarded
	 back to LAN clients
	 A and
	 B.
The -redirect_address syntax is as
	 follows:
-redirect_address localIP publicIP
	localIP	The internal IP address of
		 the LAN client.
	publicIP	The external IP address
		 corresponding to the LAN
		 client.

In the example, this argument would read:
-redirect_address 192.168.0.2 128.1.1.2
-redirect_address 192.168.0.3 128.1.1.3
Like -redirect_port, these arguments
	 are placed within the natd_flags=""
	 option of /etc/rc.conf, or passed via a
	 configuration file. With address redirection, there is no
	 need for port redirection since all data received on a
	 particular IP address is
	 redirected.
The external IP addresses on the
	 natd(8) machine must be active and aliased to the
	 external interface. Refer to rc.conf(5) for
	 details.
30.4.5. The IPFW Command
ipfw can be used to make manual,
	single rule additions or deletions to the active firewall
	while it is running. The problem with using this method is
	that all the changes are lost when the system reboots. It is
	recommended to instead write all the rules in a file and to
	use that file to load the rules at boot time and to replace
	the currently running firewall rules whenever that file
	changes.
ipfw is a useful way to display the
	running firewall rules to the console screen. The
	IPFW accounting facility
	dynamically creates a counter for each rule that counts each
	packet that matches the rule. During the process of testing a
	rule, listing the rule with its counter is one way to
	determine if the rule is functioning as expected.
To list all the running rules in sequence:
ipfw list
To list all the running rules with a time stamp of when
	the last time the rule was matched:
ipfw -t list
The next example lists accounting information and the
	packet count for matched rules along with the rules
	themselves. The first column is the rule number, followed by
	the number of matched packets and bytes, followed by the rule
	itself.
ipfw -a list
To list dynamic rules in addition to static rules:
ipfw -d list
To also show the expired dynamic rules:
ipfw -d -e list
To zero the counters:
ipfw zero
To zero the counters for just the rule with number
	NUM:
ipfw zero NUM
30.4.5.1. Logging Firewall Messages
Even with the logging facility enabled,
	 IPFW will not generate any rule
	 logging on its own. The firewall administrator decides
	 which rules in the ruleset will be logged, and adds the
	 log keyword to those rules. Normally
	 only deny rules are logged. It is customary to duplicate
	 the “ipfw default deny everything” rule with
	 the log keyword included as the last rule
	 in the ruleset. This way, it is possible to see all the
	 packets that did not match any of the rules in the
	 ruleset.
Logging is a two edged sword. If one is not careful,
	 an over abundance of log data or a DoS attack can fill the
	 disk with log files. Log messages are not only written to
	 syslogd, but also are displayed
	 on the root console screen and soon become annoying.
The IPFIREWALL_VERBOSE_LIMIT=5
	 kernel option limits the number of consecutive messages
	 sent to syslogd(8), concerning the packet matching of a
	 given rule. When this option is enabled in the kernel, the
	 number of consecutive messages concerning a particular rule
	 is capped at the number specified. There is nothing to be
	 gained from 200 identical log messages. With this option
	 set to five,
	 five consecutive messages concerning a particular rule
	 would be logged to syslogd and
	 the remainder identical consecutive messages would be
	 counted and posted to syslogd
	 with a phrase like the following:
last message repeated 45 times
All logged packets messages are written by default to
	 /var/log/security, which is
	 defined in /etc/syslog.conf.
30.4.5.2. Building a Rule Script
Most experienced IPFW users
	 create a file containing the rules and code them in a manner
	 compatible with running them as a script. The major benefit
	 of doing this is the firewall rules can be refreshed in mass
	 without the need of rebooting the system to activate them.
	 This method is convenient in testing new rules as the
	 procedure can be executed as many times as needed. Being a
	 script, symbolic substitution can be used for frequently
	 used values to be substituted into multiple rules.
This example script is compatible with the syntax used
	 by the sh(1), csh(1), and tcsh(1) shells.
	 Symbolic substitution fields are prefixed with a dollar sign
	 ($). Symbolic fields do not have the $
	 prefix. The value to populate the symbolic field must be
	 enclosed in double quotes ("").
Start the rules file like this:
############### start of example ipfw rules script #############
#
ipfw -q -f flush # Delete all rules
Set defaults
oif="tun0" # out interface
odns="192.0.2.11" # ISP's DNS server IP address
cmd="ipfw -q add " # build rule prefix
ks="keep-state" # just too lazy to key this each time
$cmd 00500 check-state
$cmd 00502 deny all from any to any frag
$cmd 00501 deny tcp from any to any established
$cmd 00600 allow tcp from any to any 80 out via $oif setup $ks
$cmd 00610 allow tcp from any to $odns 53 out via $oif setup $ks
$cmd 00611 allow udp from any to $odns 53 out via $oif $ks
################### End of example ipfw rules script ############
The rules are not important as the focus of this example
	 is how the symbolic substitution fields are
	 populated.
If the above example was in
	 /etc/ipfw.rules, the rules could be
	 reloaded by the following command:
sh /etc/ipfw.rules
/etc/ipfw.rules can be located
	 anywhere and the file can have any name.
The same thing could be accomplished by running these
	 commands by hand:
ipfw -q -f flush
ipfw -q add check-state
ipfw -q add deny all from any to any frag
ipfw -q add deny tcp from any to any established
ipfw -q add allow tcp from any to any 80 out via tun0 setup keep-state
ipfw -q add allow tcp from any to 192.0.2.11 53 out via tun0 setup keep-state
ipfw -q add 00611 allow udp from any to 192.0.2.11 53 out via tun0 keep-state
30.4.6. IPFW Kernel Options
In order to statically compile
	IPFW support into a custom kernel,
	refer to the instructions in Chapter 8, Configuring the FreeBSD Kernel.
	The following options are available for the
	custom kernel configuration file:
options IPFIREWALL			# enables IPFW
options IPFIREWALL_VERBOSE		# enables logging for rules with log keyword to syslogd(8)
options IPFIREWALL_VERBOSE_LIMIT=5	# limits number of logged packets per-entry
options IPFIREWALL_DEFAULT_TO_ACCEPT # sets default policy to pass what is not explicitly denied
options IPFIREWALL_NAT		# enables in-kernel NAT support
options IPFIREWALL_NAT64		# enables in-kernel NAT64 support
options IPFIREWALL_NPTV6		# enables in-kernel IPv6 NPT support
options IPFIREWALL_PMOD		# enables protocols modification module support
options IPDIVERT			# enables NAT through natd(8)
Note:
IPFW can be loaded as
	 a kernel module: options above are built by default
	 as modules or can be set at runtime using tunables.

30.5. IPFILTER (IPF)
IPFILTER, also known as
 IPF, is a cross-platform, open source
 firewall which has been ported to several operating systems,
 including FreeBSD, NetBSD, OpenBSD, and Solaris™.
IPFILTER is a kernel-side
 firewall and NAT mechanism that can be
 controlled and monitored by userland programs. Firewall rules
 can be set or deleted using ipf,
 NAT rules can be set or deleted using
 ipnat, run-time statistics for the
 kernel parts of IPFILTER can be
 printed using ipfstat, and
 ipmon can be used to log
 IPFILTER actions to the system log
 files.
IPF was originally written using
 a rule processing logic of “the last matching rule
	wins” and only used stateless rules. Since then,
 IPF has been enhanced to include the
 quick and keep state
 options.
The IPF FAQ is at http://www.phildev.net/ipf/index.html.
 A searchable archive of the IPFilter mailing list is available
 at http://marc.info/?l=ipfilter.
This section of the Handbook focuses on
 IPF as it pertains to FreeBSD. It
 provides examples of rules that contain the
 quick and keep state
 options.
30.5.1. Enabling IPF
IPF is included in the basic
	FreeBSD install as a kernel loadable module, meaning that a
	custom kernel is not needed in order to enable
	IPF.
For users who prefer to statically compile
	IPF support into a custom kernel,
	refer to the instructions in Chapter 8, Configuring the FreeBSD Kernel.
	The following kernel options are available:
options IPFILTER
options IPFILTER_LOG
options IPFILTER_LOOKUP
options IPFILTER_DEFAULT_BLOCK
where options IPFILTER enables support
	for IPFILTER,
	options IPFILTER_LOG enables
	IPF logging using the
	ipl packet logging pseudo-device for
	every rule that has the log keyword,
	IPFILTER_LOOKUP enables
	IP pools in order to speed up
	IP lookups, and options
	 IPFILTER_DEFAULT_BLOCK changes the default
	behavior so that any packet not matching a firewall
	pass rule gets blocked.
To configure the system to enable
	IPF at boot time, add the following
	entries to /etc/rc.conf. These entries
	will also enable logging and default pass
	 all. To change the default policy to
	block all without compiling a custom
	kernel, remember to add a block all rule at
	the end of the ruleset.
ipfilter_enable="YES" # Start ipf firewall
ipfilter_rules="/etc/ipf.rules" # loads rules definition text file
ipmon_enable="YES" # Start IP monitor log
ipmon_flags="-Ds" # D = start as daemon
 # s = log to syslog
 # v = log tcp window, ack, seq
 # n = map IP & port to names
If NAT functionality is needed, also
	add these lines:
gateway_enable="YES" # Enable as LAN gateway
ipnat_enable="YES" # Start ipnat function
ipnat_rules="/etc/ipnat.rules" # rules definition file for ipnat
Then, to start IPF now:
service ipfilter start
To load the firewall rules, specify the name of the
	ruleset file using ipf. The following
	command can be used to replace the currently running firewall
	rules:
ipf -Fa -f /etc/ipf.rules
where -Fa flushes all the internal rules
	tables and -f specifies the file containing
	the rules to load.
This provides the ability to make changes to a custom
	ruleset and update the running firewall with a fresh copy of
	the rules without having to reboot the system. This method is
	convenient for testing new rules as the procedure can be
	executed as many times as needed.
Refer to ipf(8) for details on the other flags
	available with this command.
30.5.2. IPF Rule Syntax
This section describes the IPF
	rule syntax used to create stateful rules. When creating
	rules, keep in mind that unless the quick
	keyword appears in a rule, every rule is read in order, with
	the last matching rule being the one
	that is applied. This means that even if the first rule to
	match a packet is a pass, if there is a
	later matching rule that is a block, the
	packet will be dropped. Sample rulesets can be found in
	/usr/share/examples/ipfilter.
When creating rules, a # character is
	used to mark the start of a comment and may appear at the end
	of a rule, to explain that rule's function, or on its own
	line. Any blank lines are ignored.
The keywords which are used in rules must be written in a
	specific order, from left to right. Some keywords are
	mandatory while others are optional. Some keywords have
	sub-options which may be keywords themselves and also include
	more sub-options. The keyword order is as follows, where the
	words shown in uppercase represent a variable and the words
	shown in lowercase must precede the variable that follows
	it:
ACTION DIRECTION OPTIONS proto PROTO_TYPE
	 from SRC_ADDR SRC_PORT to DST_ADDR DST_PORT
	 TCP_FLAG|ICMP_TYPE keep state STATE
This section describes each of these keywords and their
	options. It is not an exhaustive list of every possible
	option. Refer to ipf(5) for a complete description of
	the rule syntax that can be used when creating
	IPF rules and examples for using
	each keyword.
	ACTION
	The action keyword indicates what to do with the
	 packet if it matches that rule. Every rule
	 must have an action. The
	 following actions are recognized:
block: drops the packet.
pass: allows the packet.
log: generates a log
	 record.
count: counts the number of
	 packets and bytes which can provide an indication of
	 how often a rule is used.
auth: queues the packet for
	 further processing by another program.
call: provides access to
	 functions built into IPF that
	 allow more complex actions.
decapsulate: removes any headers
	 in order to process the contents of the packet.

	DIRECTION
	Next, each rule must explicitly state the direction
	 of traffic using one of these keywords:
in: the rule is applied against
	 an inbound packet.
out: the rule is applied against
	 an outbound packet.
all: the rule applies to either
	 direction.
If the system has multiple interfaces, the interface
	 can be specified along with the direction. An example
	 would be in on fxp0.

	OPTIONS
	Options are optional. However, if multiple options
	 are specified, they must be used in the order shown
	 here.
log: when performing the
	 specified ACTION, the contents of the packet's headers
	 will be written to the ipl(4) packet log
	 pseudo-device.
quick: if a packet matches this
	 rule, the ACTION specified by the rule occurs and no
	 further processing of any following rules will occur for
	 this packet.
on: must be followed by the
	 interface name as displayed by ifconfig(8). The
	 rule will only match if the packet is going through the
	 specified interface in the specified direction.
When using the
	 log keyword, the following qualifiers
	 may be used in this order:
body: indicates that the first
	 128 bytes of the packet contents will be logged after
	 the headers.
first: if the
	 log keyword is being used in
	 conjunction with a keep state option,
	 this option is recommended so that only the triggering
	 packet is logged and not every packet which matches the
	 stateful connection.
Additional options are available to specify error
	 return messages. Refer to ipf(5) for more
	 details.

	PROTO_TYPE
	The protocol type is optional. However, it is
	 mandatory if the rule needs to specify a SRC_PORT or
	 a DST_PORT as it defines the type of protocol. When
	 specifying the type of protocol, use the
	 proto keyword followed by either a
	 protocol number or name from
	 /etc/protocols.
	 Example protocol names include tcp,
	 udp, or icmp. If
	 PROTO_TYPE is specified but no SRC_PORT or DST_PORT is
	 specified, all port numbers for that protocol will match
	 that rule.

	SRC_ADDR
	The from keyword is mandatory and
	 is followed by a keyword which represents the source of
	 the packet. The source can be a hostname, an
	 IP address followed by the
	 CIDR mask, an address pool, or the
	 keyword all. Refer to ipf(5)
	 for examples.
There is no way to match ranges of
	 IP addresses which do not express
	 themselves easily using the dotted numeric form /
	 mask-length notation. The
	 net-mgmt/ipcalc package or port may
	 be used to ease the calculation of the
	 CIDR mask. Additional information is
	 available at the utility's web page: http://jodies.de/ipcalc.

	SRC_PORT
	The port number of the source is optional. However,
	 if it is used, it requires PROTO_TYPE to be first
	 defined in the rule. The port number must also be
	 preceded by the proto keyword.
A number of different comparison operators are
	 supported: = (equal to),
	 != (not equal to),
	 < (less than),
	 > (greater than),
	 <= (less than or equal to), and
	 >= (greater than or equal
	 to).
To specify port ranges, place the two port numbers
	 between <> (less than and
	 greater than), >< (greater
	 than and less than), or : (greater
	 than or equal to and less than or equal to).

	DST_ADDR
	The to keyword is mandatory and
	 is followed by a keyword which represents the
	 destination of the packet. Similar to SRC_ADDR, it can
	 be a hostname, an IP address
	 followed by the CIDR mask, an address
	 pool, or the keyword all.

	DST_PORT
	Similar to SRC_PORT, the port number of the
	 destination is optional. However, if it is used, it
	 requires PROTO_TYPE to be first defined in the rule.
	 The port number must also be preceded by the
	 proto keyword.

	TCP_FLAG|ICMP_TYPE
	If tcp is specified as the
	 PROTO_TYPE, flags can be specified as letters, where
	 each letter represents one of the possible
	 TCP flags used to determine the state
	 of a connection. Possible values are:
	 S (SYN),
	 A (ACK),
	 P (PSH),
	 F (FIN),
	 U (URG),
	 R (RST),
	 C (CWN), and
	 E (ECN).
If icmp is specified as the
	 PROTO_TYPE, the ICMP type to match
	 can be specified. Refer to ipf(5) for the
	 allowable types.

	STATE
	If a pass rule contains
	 keep state,
	 IPF will add an entry to its
	 dynamic state table and allow subsequent packets that
	 match the connection.
	 IPF can track state for
	 TCP, UDP, and
	 ICMP sessions. Any packet that
	 IPF can be certain is part of
	 an active session, even if it is a different protocol,
	 will be allowed.
In IPF, packets destined
	 to go out through the interface connected to the public
	 Internet are first checked against the dynamic state
	 table. If the packet matches the next expected packet
	 comprising an active session conversation, it exits the
	 firewall and the state of the session conversation flow
	 is updated in the dynamic state table. Packets that do
	 not belong to an already active session are checked
	 against the outbound ruleset. Packets coming in from
	 the interface connected to the public Internet are first
	 checked against the dynamic state table. If the packet
	 matches the next expected packet comprising an active
	 session, it exits the firewall and the state of the
	 session conversation flow is updated in the dynamic
	 state table. Packets that do not belong to an already
	 active session are checked against the inbound
	 ruleset.
Several keywords can be added after
	 keep state. If used, these keywords
	 set various options that control stateful filtering,
	 such as setting connection limits or connection age.
	 Refer to ipf(5) for the list of available options
	 and their descriptions.

30.5.3. Example Ruleset
This section demonstrates how to create an example ruleset
	which only allows services matching
	pass rules and blocks all others.
FreeBSD uses the loopback interface
	(lo0) and the IP
	address 127.0.0.1
	for internal communication. The firewall ruleset must contain
	rules to allow free movement of these internally used
	packets:
no restrictions on loopback interface
pass in quick on lo0 all
pass out quick on lo0 all
The public interface connected to the Internet is used to
	authorize and control access of all outbound and inbound
	connections. If one or more interfaces are cabled to private
	networks, those internal interfaces may require rules to allow
	packets originating from the LAN to flow
	between the internal networks or to the interface attached to
	the Internet. The ruleset should be organized into three
	major sections: any trusted internal interfaces, outbound
	connections through the public interface, and inbound
	connections through the public interface.
These two rules allow all traffic to pass through a
	trusted LAN interface named
	xl0:
no restrictions on inside LAN interface for private network
pass out quick on xl0 all
pass in quick on xl0 all
The rules for the public interface's outbound and inbound
	sections should have the most frequently matched rules placed
	before less commonly matched rules, with the last rule in the
	section blocking and logging all packets for that interface
	and direction.
This set of rules defines the outbound section of the
	public interface named dc0. These rules
	keep state and identify the specific services that internal
	systems are authorized for public Internet access. All the
	rules use quick and specify the
	appropriate port numbers and, where applicable, destination
	addresses.
interface facing Internet (outbound)
Matches session start requests originating from or behind the
firewall, destined for the Internet.

Allow outbound access to public DNS servers.
Replace x.x.x. with address listed in /etc/resolv.conf.
Repeat for each DNS server.
pass out quick on dc0 proto tcp from any to x.x.x. port = 53 flags S keep state
pass out quick on dc0 proto udp from any to xxx port = 53 keep state

Allow access to ISP's specified DHCP server for cable or DSL networks.
Use the first rule, then check log for the IP address of DHCP server.
Then, uncomment the second rule, replace z.z.z.z with the IP address,
and comment out the first rule
pass out log quick on dc0 proto udp from any to any port = 67 keep state
#pass out quick on dc0 proto udp from any to z.z.z.z port = 67 keep state

Allow HTTP and HTTPS
pass out quick on dc0 proto tcp from any to any port = 80 flags S keep state
pass out quick on dc0 proto tcp from any to any port = 443 flags S keep state

Allow email
pass out quick on dc0 proto tcp from any to any port = 110 flags S keep state
pass out quick on dc0 proto tcp from any to any port = 25 flags S keep state

Allow NTP
pass out quick on dc0 proto tcp from any to any port = 37 flags S keep state

Allow FTP
pass out quick on dc0 proto tcp from any to any port = 21 flags S keep state

Allow SSH
pass out quick on dc0 proto tcp from any to any port = 22 flags S keep state

Allow ping
pass out quick on dc0 proto icmp from any to any icmp-type 8 keep state

Block and log everything else
block out log first quick on dc0 all
This example of the rules in the inbound section of the
	public interface blocks all undesirable packets first. This
	reduces the number of packets that are logged by the last
	rule.
interface facing Internet (inbound)
Block all inbound traffic from non-routable or reserved address spaces
block in quick on dc0 from 192.168.0.0/16 to any #RFC 1918 private IP
block in quick on dc0 from 172.16.0.0/12 to any #RFC 1918 private IP
block in quick on dc0 from 10.0.0.0/8 to any #RFC 1918 private IP
block in quick on dc0 from 127.0.0.0/8 to any #loopback
block in quick on dc0 from 0.0.0.0/8 to any #loopback
block in quick on dc0 from 169.254.0.0/16 to any #DHCP auto-config
block in quick on dc0 from 192.0.2.0/24 to any #reserved for docs
block in quick on dc0 from 204.152.64.0/23 to any #Sun cluster interconnect
block in quick on dc0 from 224.0.0.0/3 to any #Class D & E multicast

Block fragments and too short tcp packets
block in quick on dc0 all with frags
block in quick on dc0 proto tcp all with short

block source routed packets
block in quick on dc0 all with opt lsrr
block in quick on dc0 all with opt ssrr

Block OS fingerprint attempts and log first occurrence
block in log first quick on dc0 proto tcp from any to any flags FUP

Block anything with special options
block in quick on dc0 all with ipopts

Block public pings and ident
block in quick on dc0 proto icmp all icmp-type 8
block in quick on dc0 proto tcp from any to any port = 113

Block incoming Netbios services
block in log first quick on dc0 proto tcp/udp from any to any port = 137
block in log first quick on dc0 proto tcp/udp from any to any port = 138
block in log first quick on dc0 proto tcp/udp from any to any port = 139
block in log first quick on dc0 proto tcp/udp from any to any port = 81
Any time there are logged messages on a rule with
	the log first option, run
	ipfstat -hio to evaluate how many times the
	rule has been matched. A large number of matches may indicate
	that the system is under attack.
The rest of the rules in the inbound section define which
	connections are allowed to be initiated from the Internet.
	The last rule denies all connections which were not explicitly
	allowed by previous rules in this section.
Allow traffic in from ISP's DHCP server. Replace z.z.z.z with
the same IP address used in the outbound section.
pass in quick on dc0 proto udp from z.z.z.z to any port = 68 keep state

Allow public connections to specified internal web server
pass in quick on dc0 proto tcp from any to x.x.x.x port = 80 flags S keep state

Block and log only first occurrence of all remaining traffic.
block in log first quick on dc0 all
30.5.4. Configuring NAT
To enable NAT, add these statements
	to /etc/rc.conf and specify the name of
	the file containing the NAT rules:
gateway_enable="YES"
ipnat_enable="YES"
ipnat_rules="/etc/ipnat.rules"
NAT rules are flexible and can
	accomplish many different things to fit the needs of both
	commercial and home users. The rule syntax presented here has
	been simplified to demonstrate common usage. For a complete
	rule syntax description, refer to ipnat(5).
The basic syntax for a NAT rule is as
	follows, where map starts the rule and
	IF should be replaced with the
	name of the external interface:
map IF LAN_IP_RANGE -> PUBLIC_ADDRESS
The LAN_IP_RANGE is the range
	of IP addresses used by internal clients.
	Usually, it is a private address range such as 192.168.1.0/24. The
	PUBLIC_ADDRESS can either be the
	static external IP address or the keyword
	0/32 which represents the
	IP address assigned to
	IF.
In IPF, when a packet arrives
	at the firewall from the LAN with a public
	destination, it first passes through the outbound rules of the
	firewall ruleset. Then, the packet is passed to the
	NAT ruleset which is read from the top
	down, where the first matching rule wins.
	IPF tests each
	NAT rule against the packet's interface
	name and source IP address. When a
	packet's interface name matches a NAT rule,
	the packet's source IP address in the
	private LAN is checked to see if it falls
	within the IP address range specified in
	LAN_IP_RANGE. On a match, the
	packet has its source IP address rewritten
	with the public IP address specified by
	PUBLIC_ADDRESS.
	IPF posts an entry in its internal
	NAT table so that when the packet returns
	from the Internet, it can be mapped back to its original
	private IP address before being passed to
	the firewall rules for further processing.
For networks that have large numbers of internal systems
	or multiple subnets, the process of funneling every private
	IP address into a single public
	IP address becomes a resource problem.
	Two methods are available to relieve this issue.
The first method is to assign a range of ports to use as
	source ports. By adding the portmap
	keyword, NAT can be directed to only use
	source ports in the specified range:
map dc0 192.168.1.0/24 -> 0/32 portmap tcp/udp 20000:60000
Alternately, use the auto keyword
	which tells NAT to determine the ports
	that are available for use:
map dc0 192.168.1.0/24 -> 0/32 portmap tcp/udp auto
The second method is to use a pool of public addresses.
	This is useful when there are too many
	LAN addresses to fit into a single public
	address and a block of public IP addresses
	is available. These public addresses can be used as a pool
	from which NAT selects an
	IP address as a packet's address is
	mapped on its way out.
The range of public IP addresses can
	be specified using a netmask or CIDR
	notation. These two rules are equivalent:
map dc0 192.168.1.0/24 -> 204.134.75.0/255.255.255.0
map dc0 192.168.1.0/24 -> 204.134.75.0/24
A common practice is to have a publically accessible web
	server or mail server segregated to an internal network
	segment. The traffic from these servers still has to undergo
	NAT, but port redirection is needed to
	direct inbound traffic to the correct server. For example, to
	map a web server using the internal address 10.0.10.25 to its public
	IP address of 20.20.20.5, use this
	rule:
rdr dc0 20.20.20.5/32 port 80 -> 10.0.10.25 port 80
If it is the only web server, this rule would also work as
	it redirects all external HTTP requests to
	10.0.10.25:
rdr dc0 0.0.0.0/0 port 80 -> 10.0.10.25 port 80
IPF has a built in
	FTP proxy which can be used with
	NAT. It monitors all outbound traffic for
	active or passive FTP connection requests
	and dynamically creates temporary filter rules containing the
	port number used by the FTP data channel.
	This eliminates the need to open large ranges of high order
	ports for FTP connections.
In this example, the first rule calls the proxy for
	outbound FTP traffic from the internal
	LAN. The second rule passes the
	FTP traffic from the firewall to the
	Internet, and the third rule handles all
	non-FTP traffic from the internal
	LAN:
map dc0 10.0.10.0/29 -> 0/32 proxy port 21 ftp/tcp
map dc0 0.0.0.0/0 -> 0/32 proxy port 21 ftp/tcp
map dc0 10.0.10.0/29 -> 0/32
The FTP map rules go
	before the NAT rule so that when a packet
	matches an FTP rule, the
	FTP proxy creates temporary filter rules to
	let the FTP session packets pass and
	undergo NAT. All LAN packets that are not
	FTP will not match the
	FTP rules but will undergo
	NAT if they match the third rule.
Without the FTP proxy, the following
	firewall rules would instead be needed. Note that without the
	proxy, all ports above 1024 need to be
	allowed:
Allow out LAN PC client FTP to public Internet
Active and passive modes
pass out quick on rl0 proto tcp from any to any port = 21 flags S keep state

Allow out passive mode data channel high order port numbers
pass out quick on rl0 proto tcp from any to any port > 1024 flags S keep state

Active mode let data channel in from FTP server
pass in quick on rl0 proto tcp from any to any port = 20 flags S keep state
Whenever the file containing the NAT
	rules is edited, run ipnat with
	-CF to delete the current
	NAT rules and flush the contents of the
	dynamic translation table. Include -f and
	specify the name of the NAT ruleset to
	load:
ipnat -CF -f /etc/ipnat.rules
To display the NAT statistics:
ipnat -s
To list the NAT table's current
	mappings:
ipnat -l
To turn verbose mode on and display information relating
	to rule processing and active rules and table entries:
ipnat -v
30.5.5. Viewing IPF Statistics
IPF includes ipfstat(8)
	which can be used to retrieve
	and display statistics which are gathered
	as packets match rules as they go through the
	firewall. Statistics are accumulated since the firewall was
	last started or since the last time they
	were reset to zero using ipf
	 -Z.
The default ipfstat output looks
	like this:
input packets: blocked 99286 passed 1255609 nomatch 14686 counted 0
 output packets: blocked 4200 passed 1284345 nomatch 14687 counted 0
 input packets logged: blocked 99286 passed 0
 output packets logged: blocked 0 passed 0
 packets logged: input 0 output 0
 log failures: input 3898 output 0
 fragment state(in): kept 0 lost 0
 fragment state(out): kept 0 lost 0
 packet state(in): kept 169364 lost 0
 packet state(out): kept 431395 lost 0
 ICMP replies: 0 TCP RSTs sent: 0
 Result cache hits(in): 1215208 (out): 1098963
 IN Pullups succeeded: 2 failed: 0
 OUT Pullups succeeded: 0 failed: 0
 Fastroute successes: 0 failures: 0
 TCP cksum fails(in): 0 (out): 0
 Packet log flags set: (0)
Several options are available. When supplied with either
	-i for inbound or -o for
	outbound, the command will retrieve and display the
	appropriate list of filter rules currently installed and in
	use by the kernel. To also see the rule numbers, include
	-n. For example, ipfstat
	 -on displays the outbound rules table with rule
	numbers:
@1 pass out on xl0 from any to any
@2 block out on dc0 from any to any
@3 pass out quick on dc0 proto tcp/udp from any to any keep state
Include -h to prefix each rule with a
	count of how many times the rule was matched. For example,
	ipfstat -oh displays the outbound internal
	rules table, prefixing each rule with its usage count:
2451423 pass out on xl0 from any to any
354727 block out on dc0 from any to any
430918 pass out quick on dc0 proto tcp/udp from any to any keep state
To display the state table in a format similar to
	top(1), use ipfstat -t. When the
	firewall is under attack, this option provides the ability to
	identify and see the attacking packets. The optional
	sub-flags give the ability to select the destination or source
	IP, port, or protocol to be monitored in
	real time. Refer to ipfstat(8) for details.
30.5.6. IPF Logging
IPF provides
	ipmon, which can be used to write the
	firewall's logging information in a human readable format. It
	requires that options IPFILTER_LOG be first
	added to a custom kernel using the instructions in Chapter 8, Configuring the FreeBSD Kernel.
This command is typically run in daemon mode in order to
	provide a continuous system log file so that logging of past
	events may be reviewed. Since FreeBSD has a built in
	syslogd(8) facility to automatically rotate system logs,
	the default rc.conf
	ipmon_flags statement uses
	-Ds:
ipmon_flags="-Ds" # D = start as daemon
 # s = log to syslog
 # v = log tcp window, ack, seq
 # n = map IP & port to names
Logging provides the ability to review, after the fact,
	information such as which packets were dropped, what addresses
	they came from, and where they were going. This information
	is useful in tracking down attackers.
Once the logging facility is enabled in
	rc.conf and started with service
	 ipmon start, IPF will
	only log the rules which contain the log
	keyword. The firewall administrator decides which rules in
	the ruleset should be logged and normally only deny rules are
	logged. It is customary to include the
	log keyword in the last rule in the
	ruleset. This makes it possible to see all the packets that
	did not match any of the rules in the ruleset.
By default, ipmon -Ds mode uses
	local0 as the logging facility. The
	following logging levels can be used to further segregate the
	logged data:
LOG_INFO - packets logged using the "log" keyword as the action rather than pass or block.
LOG_NOTICE - packets logged which are also passed
LOG_WARNING - packets logged which are also blocked
LOG_ERR - packets which have been logged and which can be considered short due to an incomplete header
In order to setup IPF to
	loChapter 31. Advanced Networking

Chapter 31. Advanced Networking
31.1. Synopsis
This chapter covers a number of advanced networking
 topics.
After reading this chapter, you will know:
	The basics of gateways and routes.

	How to set up USB tethering.

	How to set up IEEE® 802.11 and Bluetooth®
	 devices.

	How to make FreeBSD act as a bridge.

	How to set up network PXE
	 booting.

	How to set up IPv6 on a FreeBSD
	 machine.

	How to enable and utilize the features of the Common
	 Address Redundancy Protocol (CARP) in
	 FreeBSD.

	How to configure multiple VLANs on
	 FreeBSD.

	Configure bluetooth headset.

Before reading this chapter, you should:
	Understand the basics of the
	 /etc/rc scripts.

	Be familiar with basic network terminology.

	Know how to configure and install a new FreeBSD kernel
	 (Chapter 8, Configuring the FreeBSD Kernel).

	Know how to install additional third-party software
	 (Chapter 4, Installing Applications: Packages and Ports).

31.2. Gateways and Routes

31.2. Gateways and Routes
Contributed by Coranth Gryphon. Routing is the mechanism that allows
 a system to find the network path to another system. A
 route is a defined pair of addresses
 which represent the “destination” and a
 “gateway”. The route indicates that when trying
 to get to the specified destination, send the packets through
 the specified gateway. There are three types of destinations:
 individual hosts, subnets, and “default”. The
 “default route” is used if no other routes apply.
 There are also three types of gateways: individual hosts,
 interfaces, also called links, and Ethernet hardware
 (MAC) addresses. Known routes are stored in
 a routing table.
This section provides an overview of routing basics. It
 then demonstrates how to configure a FreeBSD system as a router and
 offers some troubleshooting tips.
31.2.1. Routing Basics
To view the routing table of a FreeBSD system, use
	netstat(1):
% netstat -r
Routing tables

Internet:
Destination Gateway Flags Refs Use Netif Expire
default outside-gw UGS 37 418 em0
localhost localhost UH 0 181 lo0
test0 0:e0:b5:36:cf:4f UHLW 5 63288 re0 77
10.20.30.255 link#1 UHLW 1 2421
example.com link#1 UC 0 0
host1 0:e0:a8:37:8:1e UHLW 3 4601 lo0
host2 0:e0:a8:37:8:1e UHLW 0 5 lo0 =>
host2.example.com link#1 UC 0 0
224 link#1 UC 0 0
The entries in this example are as follows:
	default
	The first route in this table specifies the
	 default route. When the local system
	 needs to make a connection to a remote host, it checks
	 the routing table to determine if a known path exists.
	 If the remote host matches an entry in the table, the
	 system checks to see if it can connect using the
	 interface specified in that entry.
If the destination does not match an entry, or if
	 all known paths fail, the system uses the entry for the
	 default route. For hosts on a local area network, the
	 Gateway field in the default route is
	 set to the system which has a direct connection to the
	 Internet. When reading this entry, verify that the
	 Flags column indicates that the
	 gateway is usable (UG).
The default route for a machine which itself is
	 functioning as the gateway to the outside world will be
	 the gateway machine at the Internet Service Provider
	 (ISP).

	localhost
	The second route is the localhost
	 route. The interface specified in the
	 Netif column for
	 localhost is
	 lo0, also known as the loopback
	 device. This indicates that all traffic for this
	 destination should be internal, rather than sending it
	 out over the network.

	MAC address
	The addresses beginning with 0:e0: are
	 MAC addresses. FreeBSD will
	 automatically identify any hosts,
	 test0 in the example, on the
	 local Ethernet and add a route for that host over the
	 Ethernet interface, re0. This type
	 of route has a timeout, seen in the
	 Expire column, which is used if the
	 host does not respond in a specific amount of time.
	 When this happens, the route to this host will be
	 automatically deleted. These hosts are identified using
	 the Routing Information Protocol
	 (RIP), which calculates routes to
	 local hosts based upon a shortest path
	 determination.

	subnet
	FreeBSD will automatically add subnet routes for the
	 local subnet. In this example, 10.20.30.255 is the
	 broadcast address for the subnet 10.20.30 and
	 example.com is the
	 domain name associated with that subnet. The
	 designation link#1 refers to the
	 first Ethernet card in the machine.
Local network hosts and local subnets have their
	 routes automatically configured by a daemon called
	 routed(8). If it is not running, only routes which
	 are statically defined by the administrator will
	 exist.

	host
	The host1 line refers to the host
	 by its Ethernet address. Since it is the sending host,
	 FreeBSD knows to use the loopback interface
	 (lo0) rather than the Ethernet
	 interface.
The two host2 lines represent
	 aliases which were created using ifconfig(8). The
	 => symbol after the
	 lo0 interface says that an alias
	 has been set in addition to the loopback address. Such
	 routes only show up on the host that supports the alias
	 and all other hosts on the local network will have a
	 link#1 line for such routes.

	224
	The final line (destination subnet 224) deals with
	 multicasting.

Various attributes of each route can be seen in the
	Flags column. Table 31.1, “Commonly Seen Routing Table Flags”
	summarizes some of these flags and their meanings:
Table 31.1. Commonly Seen Routing Table Flags
	Command	Purpose
	U	The route is active (up).
	H	The route destination is a single host.
	G	Send anything for this destination on to this
		gateway, which will figure out from there where to
		send it.
	S	This route was statically configured.
	C	Clones a new route based upon this route for
		machines to connect to. This type of route is
		normally used for local networks.
	W	The route was auto-configured based upon a local
		area network (clone) route.
	L	Route involves references to Ethernet (link)
		hardware.

On a FreeBSD system, the default route can defined in
	/etc/rc.conf by specifying the
	IP address of the default gateway:
defaultrouter="10.20.30.1"
It is also possible to manually add the route using
	route:
route add default 10.20.30.1
Note that manually added routes will not survive a reboot.
	For more information on manual manipulation of network
	routing tables, refer to route(8).
31.2.2. Configuring a Router with Static Routes
Contributed by Al Hoang. A FreeBSD system can be configured as the default gateway, or
	router, for a network if it is a dual-homed system. A
	dual-homed system is a host which resides on at least two
	different networks. Typically, each network is connected to a
	separate network interface, though IP
	aliasing can be used to bind multiple addresses, each on a
	different subnet, to one physical interface.
In order for the system to forward packets between
	interfaces, FreeBSD must be configured as a router. Internet
	standards and good engineering practice prevent the FreeBSD
	Project from enabling this feature by default, but it can be
	configured to start at boot by adding this line to
	/etc/rc.conf:
gateway_enable="YES" # Set to YES if this host will be a gateway
To enable routing now, set the sysctl(8) variable
	net.inet.ip.forwarding to
	1. To stop routing, reset this variable to
	0.
The routing table of a router needs additional routes so
	it knows how to reach other networks. Routes can be either
	added manually using static routes or routes can be
	automatically learned using a routing protocol. Static routes
	are appropriate for small networks and this section describes
	how to add a static routing entry for a small network.
Note:
For large networks, static routes quickly become
	 unscalable. FreeBSD comes with the standard
	 BSD routing daemon routed(8), which
	 provides the routing protocols RIP,
	 versions 1 and 2, and IRDP. Support for
	 the BGP and OSPF
	 routing protocols can be installed using the
	 net/zebra package or port.

Consider the following network:

In this scenario, RouterA is a
	FreeBSD machine that is acting as a router to the rest of the
	Internet. It has a default route set to 10.0.0.1 which allows it to
	connect with the outside world.
	RouterB is already configured to use
	192.168.1.1 as its
	default gateway.
Before adding any static routes, the routing table on
	RouterA looks like this:
% netstat -nr
Routing tables

Internet:
Destination Gateway Flags Refs Use Netif Expire
default 10.0.0.1 UGS 0 49378 xl0
127.0.0.1 127.0.0.1 UH 0 6 lo0
10.0.0.0/24 link#1 UC 0 0 xl0
192.168.1.0/24 link#2 UC 0 0 xl1
With the current routing table,
	RouterA does not have a route to the
	192.168.2.0/24
	network. The following command adds the Internal Net
	 2 network to RouterA's
	routing table using 192.168.1.2 as the next
	hop:
route add -net 192.168.2.0/24 192.168.1.2
Now, RouterA can reach any host
	on the 192.168.2.0/24 network.
	However, the routing information will not persist if the FreeBSD
	system reboots. If a static route needs to be persistent, add
	it to /etc/rc.conf:
Add Internal Net 2 as a persistent static route
static_routes="internalnet2"
route_internalnet2="-net 192.168.2.0/24 192.168.1.2"
The static_routes configuration
	variable is a list of strings separated by a space, where each
	string references a route name. The variable
	route_internalnet2
	contains the static route for that route name.
Using more than one string in
	static_routes creates multiple static
	routes. The following shows an example of adding static
	routes for the 192.168.0.0/24 and
	192.168.1.0/24
	networks:
static_routes="net1 net2"
route_net1="-net 192.168.0.0/24 192.168.0.1"
route_net2="-net 192.168.1.0/24 192.168.1.1"
31.2.3. Troubleshooting
When an address space is assigned to a network, the
	service provider configures their routing tables so that all
	traffic for the network will be sent to the link for the site.
	But how do external sites know to send their packets to the
	network's ISP?
There is a system that keeps track of all assigned
	address spaces and defines their point of connection to the
	Internet backbone, or the main trunk lines that carry Internet
	traffic across the country and around the world. Each
	backbone machine has a copy of a master set of tables, which
	direct traffic for a particular network to a specific
	backbone carrier, and from there down the chain of service
	providers until it reaches a particular network.
It is the task of the service provider to advertise to
	the backbone sites that they are the point of connection, and
	thus the path inward, for a site. This is known as route
	propagation.
Sometimes, there is a problem with route propagation and
	some sites are unable to connect. Perhaps the most useful
	command for trying to figure out where routing is breaking
	down is traceroute. It is useful when
	ping fails.
When using traceroute, include the
	address of the remote host to connect to. The output will
	show the gateway hosts along the path of the attempt,
	eventually either reaching the target host, or terminating
	because of a lack of connection. For more information, refer
	to traceroute(8).
31.2.4. Multicast Considerations
FreeBSD natively supports both multicast applications and
	multicast routing. Multicast applications do not require any
	special configuration in order to run on FreeBSD. Support for
	multicast routing requires that the following option be
	compiled into a custom kernel:
options MROUTING
The multicast routing daemon,
	mrouted can be installed using the
	net/mrouted package or port. This daemon
	implements the DVMRP multicast routing
	protocol and is configured by editing
	/usr/local/etc/mrouted.conf in order to
	set up the tunnels and DVMRP. The
	installation of mrouted also
	installs map-mbone and
	mrinfo, as well as their associated
	man pages. Refer to these for configuration examples.
Note:
DVMRP has largely been replaced by
	 the PIM protocol in many multicast
	 installations. Refer to pim(4) for more
	 information.

31.3. Wireless Networking

31.3. Wireless Networking
Loader, Marc Fonvieille and Murray Stokely. 31.3.1. Wireless Networking Basics
Most wireless networks are based on the IEEE® 802.11
	standards. A basic wireless network consists of multiple
	stations communicating with radios that broadcast in either
	the 2.4GHz or 5GHz band, though this varies according to the
	locale and is also changing to enable communication in the
	2.3GHz and 4.9GHz ranges.
802.11 networks are organized in two ways. In
	infrastructure mode, one station acts as
	a
	master with all the other stations associating to it, the
	network is known as a BSS, and the master
	station is termed an access point (AP).
	In a BSS, all communication passes through
	the AP; even when one station wants to
	communicate with another wireless station, messages must go
	through the AP. In the second form of
	network, there is no master and stations communicate directly.
	This form of network is termed an IBSS
	and is commonly known as an ad-hoc
	 network.
802.11 networks were first deployed in the 2.4GHz band
	using protocols defined by the IEEE® 802.11 and 802.11b
	standard. These specifications include the operating
	frequencies and the MAC layer
	characteristics, including framing and transmission rates,
	as communication can occur at various rates. Later, the
	802.11a standard defined operation in the 5GHz band, including
	different signaling mechanisms and higher transmission rates.
	Still later, the 802.11g standard defined the use of 802.11a
	signaling and transmission mechanisms in the 2.4GHz band in
	such a way as to be backwards compatible with 802.11b
	networks.
Separate from the underlying transmission techniques,
	802.11 networks have a variety of security mechanisms. The
	original 802.11 specifications defined a simple security
	protocol called WEP. This protocol uses a
	fixed pre-shared key and the RC4 cryptographic cipher to
	encode data transmitted on a network. Stations must all
	agree on the fixed key in order to communicate. This scheme
	was shown to be easily broken and is now rarely used except
	to discourage transient users from joining networks. Current
	security practice is given by the IEEE® 802.11i specification
	that defines new cryptographic ciphers and an additional
	protocol to authenticate stations to an access point and
	exchange keys for data communication. Cryptographic keys
	are periodically refreshed and there are mechanisms for
	detecting and countering intrusion attempts. Another
	security protocol specification commonly used in wireless
	networks is termed WPA, which was a
	precursor to 802.11i. WPA specifies a
	subset of the requirements found in 802.11i and is designed
	for implementation on legacy hardware. Specifically,
	WPA requires only the
	TKIP cipher that is derived from the
	original WEP cipher. 802.11i permits use
	of TKIP but also requires support for a
	stronger cipher, AES-CCM, for encrypting data. The
	AES cipher was not required in
	WPA because it was deemed too
	computationally costly to be implemented on legacy
	hardware.
The other standard to be aware of is 802.11e. It defines
	protocols for deploying multimedia applications, such as
	streaming video and voice over IP (VoIP),
	in an 802.11 network. Like 802.11i, 802.11e also has a
	precursor specification termed WME (later
	renamed WMM) that has been defined by an
	industry group as a subset of 802.11e that can be deployed now
	to enable multimedia applications while waiting for the final
	ratification of 802.11e. The most important thing to know
	about 802.11e and
	WME/WMM is that it
	enables prioritized traffic over a wireless network through
	Quality of Service (QoS) protocols and
	enhanced media access protocols. Proper implementation of
	these protocols enables high speed bursting of data and
	prioritized traffic flow.
FreeBSD supports networks that operate using 802.11a,
	802.11b, and 802.11g. The WPA and 802.11i
	security protocols are likewise supported (in conjunction with
	any of 11a, 11b, and 11g) and QoS and
	traffic prioritization required by the
	WME/WMM protocols are
	supported for a limited set of wireless devices.
31.3.2. Quick Start
Connecting a computer to an existing wireless network is
	a very common situation. This procedure shows the steps
	required.
	Obtain the SSID (Service Set
	 Identifier) and PSK (Pre-Shared Key)
	 for the wireless network from the network
	 administrator.

	Identify the wireless adapter. The FreeBSD
	 GENERIC kernel includes drivers for
	 many common wireless adapters. If the wireless adapter is
	 one of those models, it will be shown in the output from
	 ifconfig(8):
% ifconfig | grep -B3 -i wireless
On FreeBSD 11 or higher, use this command
	 instead:
% sysctl net.wlan.devices
If a wireless adapter is not listed, an additional
	 kernel module might be required, or it might be a model
	 not supported by FreeBSD.
This example shows the Atheros ath0
	 wireless adapter.

	Add an entry for this network to
	 /etc/wpa_supplicant.conf. If the
	 file does not exist, create it. Replace
	 myssid and
	 mypsk with the
	 SSID and PSK
	 provided by the network administrator.
network={
	ssid="myssid"
	psk="mypsk"
}

	Add entries to /etc/rc.conf to
	 configure the network on startup:
wlans_ath0="wlan0"
ifconfig_wlan0="WPA SYNCDHCP"

	Restart the computer, or restart the network service
	 to connect to the network:
service netif restart

31.3.3. Basic Setup
31.3.3.1. Kernel Configuration
To use wireless networking, a wireless networking card
	 is needed and the kernel needs to be configured with the
	 appropriate wireless networking support. The kernel is
	 separated into multiple modules so that only the required
	 support needs to be configured.
The most
	 commonly used wireless devices are those that use parts made
	 by Atheros. These devices are supported by ath(4)
	 and require the following line to be added to
	 /boot/loader.conf:
if_ath_load="YES"
The Atheros driver is split up into three separate
	 pieces: the driver (ath(4)), the hardware support
	 layer that handles chip-specific functions
	 (ath_hal(4)), and an algorithm for selecting the
	 rate for transmitting frames. When this support is loaded
	 as kernel modules, any dependencies are automatically
	 handled. To load support for a different type of wireless
	 device, specify the module for that device. This example
	 is for devices based on the Intersil Prism parts
	 (wi(4)) driver:
if_wi_load="YES"
Note:
The examples in this section use an ath(4)
	 device and the device name in the examples must be
	 changed according to the configuration. A list of
	 available wireless drivers and supported adapters can be
	 found in the FreeBSD Hardware Notes, available on
	 the Release
	 Information page of the FreeBSD website. If a
	 native FreeBSD driver for the wireless device does not
	 exist, it may be possible to use the Windows® driver
	 with the help of the NDIS driver
	 wrapper.

In addition, the modules that implement cryptographic
	 support for the security protocols to use must be loaded.
	 These are intended to be dynamically loaded on demand by
	 the wlan(4) module, but for now they must be manually
	 configured. The following modules are available:
	 wlan_wep(4), wlan_ccmp(4), and wlan_tkip(4).
	 The wlan_ccmp(4) and wlan_tkip(4) drivers are
	 only needed when using the WPA or
	 802.11i security protocols. If the network does not use
	 encryption, wlan_wep(4) support is not needed. To
	 load these modules at boot time, add the following lines to
	 /boot/loader.conf:
wlan_wep_load="YES"
wlan_ccmp_load="YES"
wlan_tkip_load="YES"
Once this information has been added to
	 /boot/loader.conf, reboot the FreeBSD
	 box. Alternately, load the modules by hand using
	 kldload(8).
Note:
For users who do not want to use modules, it is
	 possible to compile these drivers into the kernel by
	 adding the following lines to a custom kernel
	 configuration file:
device wlan # 802.11 support
device wlan_wep # 802.11 WEP support
device wlan_ccmp # 802.11 CCMP support
device wlan_tkip # 802.11 TKIP support
device wlan_amrr # AMRR transmit rate control algorithm
device ath # Atheros pci/cardbus NIC's
device ath_hal # pci/cardbus chip support
options AH_SUPPORT_AR5416 # enable AR5416 tx/rx descriptors
device ath_rate_sample # SampleRate tx rate control for ath
With this information in the kernel configuration
	 file, recompile the kernel and reboot the FreeBSD
	 machine.

Information about the wireless device should appear
	 in the boot messages, like this:
ath0: <Atheros 5212> mem 0x88000000-0x8800ffff irq 11 at device 0.0 on cardbus1
ath0: [ITHREAD]
ath0: AR2413 mac 7.9 RF2413 phy 4.5
31.3.3.2. Setting the Correct Region
Since the regulatory situation is different
	 in various parts of the world, it is necessary to
	 correctly set the domains that apply to your location to
	 have the correct information about what channels can be
	 used.
The available region definitions can be found in
	 /etc/regdomain.xml. To set the data at
	 runtime, use ifconfig:
ifconfig wlan0 regdomain ETSI country AT
To persist the settings, add it to
	 /etc/rc.conf:
sysrc create_args_wlan0="country AT regdomain ETSI"
31.3.4. Infrastructure Mode
Infrastructure (BSS) mode is the
	mode that is typically used. In this mode, a number of
	wireless access points are connected to a wired network.
	Each wireless network has its own name, called the
	SSID. Wireless clients connect to the
	wireless access points.
31.3.4.1. FreeBSD Clients
31.3.4.1.1. How to Find Access Points
To scan for available networks, use ifconfig(8).
	 This request may take a few moments to complete as it
	 requires the system to switch to each available wireless
	 frequency and probe for available access points. Only
	 the superuser can initiate a scan:
ifconfig wlan0 create wlandev ath0
ifconfig wlan0 up scan
SSID/MESH ID BSSID CHAN RATE S:N INT CAPS
dlinkap 00:13:46:49:41:76 11 54M -90:96 100 EPS WPA WME
freebsdap 00:11:95:c3:0d:ac 1 54M -83:96 100 EPS WPA
Note:
The interface must be up before
	 it can scan. Subsequent scan requests do not require
	 the interface to be marked as up again.

The output of a scan request lists each
	 BSS/IBSS network
	 found. Besides listing the name of the network, the
	 SSID, the output also shows the
	 BSSID, which is the
	 MAC address of the access point. The
	 CAPS field identifies the type of
	 each network and the capabilities of the stations
	 operating there:
Table 31.2. Station Capability Codes
	Capability Code	Meaning
	E	Extended Service Set
		 (ESS). Indicates that
		 the station is part of an infrastructure network
		 rather than an IBSS/ad-hoc
		 network.
	I	IBSS/ad-hoc network.
		 Indicates that the station is part of an ad-hoc
		 network rather than an ESS
		 network.
	P	Privacy. Encryption is required for all
		 data frames exchanged within the
		 BSS using cryptographic means
		 such as WEP,
		 TKIP or
		 AES-CCMP.
	S	Short Preamble. Indicates that the network
		 is using short preambles, defined in 802.11b High
		 Rate/DSSS PHY, and utilizes a 56 bit sync field
		 rather than the 128 bit field used in long
		 preamble mode.
	s	Short slot time. Indicates that the 802.11g
		 network is using a short slot time because there
		 are no legacy (802.11b) stations present.

One can also display the current list of known
	 networks with:
ifconfig wlan0 list scan
This information may be updated automatically by the
	 adapter or manually with a scan request.
	 Old data is automatically removed from the cache, so over
	 time this list may shrink unless more scans are
	 done.
31.3.4.1.2. Basic Settings
This section provides a simple example of how to make
	 the wireless network adapter work in FreeBSD without
	 encryption. Once familiar with these concepts, it is
	 strongly recommend to use WPA to set up
	 the wireless network.
There are three basic steps to configure a wireless
	 network: select an access point, authenticate the
	 station, and configure an IP address.
	 The following sections discuss each step.
31.3.4.1.2.1. Selecting an Access Point
Most of the time, it is sufficient to let the system
	 choose an access point using the builtin heuristics.
	 This is the default behavior when an interface is
	 marked as up or it is listed in
	 /etc/rc.conf:
wlans_ath0="wlan0"
ifconfig_wlan0="DHCP"
If there are multiple access points, a specific
	 one can be selected by its
	 SSID:
wlans_ath0="wlan0"
ifconfig_wlan0="ssid your_ssid_here DHCP"
In an environment where there are multiple access
	 points with the same SSID, which
	 is often done to simplify roaming, it may be necessary
	 to associate to one specific device. In this case, the
	 BSSID of the access point can be
	 specified, with or without the
	 SSID:
wlans_ath0="wlan0"
ifconfig_wlan0="ssid your_ssid_here bssid xx:xx:xx:xx:xx:xx DHCP"
There are other ways to constrain the choice of an
	 access point, such as limiting the set of frequencies
	 the system will scan on. This may be useful for a
	 multi-band wireless card as scanning all the possible
	 channels can be time-consuming. To limit operation to a
	 specific band, use the mode
	 parameter:
wlans_ath0="wlan0"
ifconfig_wlan0="mode 11g ssid your_ssid_here DHCP"
This example will force the card to operate in
	 802.11g, which is defined only for 2.4GHz frequencies
	 so any 5GHz channels will not be considered. This can
	 also be achieved with the
	 channel parameter, which locks
	 operation to one specific frequency, and the
	 chanlist parameter, to specify a list
	 of channels for scanning. More information about these
	 parameters can be found in ifconfig(8).
31.3.4.1.2.2. Authentication
Once an access point is selected, the station
	 needs to authenticate before it can pass data.
	 Authentication can happen in several ways. The most
	 common scheme, open authentication, allows any station
	 to join the network and communicate. This is the
	 authentication to use for test purposes the first time
	 a wireless network is setup. Other schemes require
	 cryptographic handshakes to be completed before data
	 traffic can flow, either using pre-shared keys or
	 secrets, or more complex schemes that involve backend
	 services such as RADIUS. Open
	 authentication is the default setting. The next most
	 common setup is WPA-PSK, also
	 known as WPA Personal, which is
	 described in Section 31.3.4.1.3.1, “WPA-PSK”.
Note:
If using an Apple® AirPort® Extreme base
		station for an access point, shared-key authentication
		together with a WEP key needs to
		be configured. This can be configured in
		/etc/rc.conf or by using
		wpa_supplicant(8). For a single AirPort® base
		station, access can be configured with:
wlans_ath0="wlan0"
ifconfig_wlan0="authmode shared wepmode on weptxkey 1 wepkey 01234567 DHCP"
In general, shared key authentication should be
		avoided because it uses the WEP key
		material in a highly-constrained manner, making it
		even easier to crack the key. If
		WEP must be used for compatibility
		with legacy devices, it is better to use
		WEP with open
		authentication. More information regarding
		WEP can be found in Section 31.3.4.1.4, “WEP”.

31.3.4.1.2.3. Getting an IP Address with
	 DHCP
Once an access point is selected and the
	 authentication parameters are set, an
	 IP address must be obtained in
	 order to communicate. Most of the time, the
	 IP address is obtained via
	 DHCP. To achieve that, edit
	 /etc/rc.conf and add
	 DHCP to the configuration for the
	 device:
wlans_ath0="wlan0"
ifconfig_wlan0="DHCP"
The
	 wireless interface is now ready to bring up:
service netif start
Once the interface is running, use ifconfig(8)
	 to see the status of the interface
	 ath0:
ifconfig wlan0
wlan0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500
 ether 00:11:95:d5:43:62
 inet 192.168.1.100 netmask 0xffffff00 broadcast 192.168.1.255
 media: IEEE 802.11 Wireless Ethernet OFDM/54Mbps mode 11g
 status: associated
 ssid dlinkap channel 11 (2462 Mhz 11g) bssid 00:13:46:49:41:76
 country US ecm authmode OPEN privacy OFF txpower 21.5 bmiss 7
 scanvalid 60 bgscan bgscanintvl 300 bgscanidle 250 roam:rssi 7
 roam:rate 5 protmode CTS wme burst
The status: associated line means
	 that it is connected to the wireless network. The
	 bssid 00:13:46:49:41:76 is the
	 MAC address of the access point and
	 authmode OPEN indicates that the
	 communication is not encrypted.
31.3.4.1.2.4. Static IP Address
If an IP address cannot be
	 obtained from a DHCP server, set a
	 fixed IP address. Replace the
	 DHCP keyword shown above with the
	 address information. Be sure to retain any other
	 parameters for selecting the access point:
wlans_ath0="wlan0"
ifconfig_wlan0="inet 192.168.1.100 netmask 255.255.255.0 ssid your_ssid_here"
31.3.4.1.3. WPA
Wi-Fi Protected Access (WPA) is a
	 security protocol used together with 802.11 networks to
	 address the lack of proper authentication and the weakness
	 of WEP. WPA leverages the 802.1X
	 authentication protocol and uses one of several ciphers
	 instead of WEP for data integrity.
	 The only cipher required by WPA is the
	 Temporary Key Integrity Protocol
	 (TKIP). TKIP is a
	 cipher that extends the basic RC4 cipher used by
	 WEP by adding integrity checking,
	 tamper detection, and measures for responding to detected
	 intrusions. TKIP is designed to work
	 on legacy hardware with only software modification. It
	 represents a compromise that improves security but is
	 still not entirely immune to attack.
	 WPA also specifies the
	 AES-CCMP cipher as an alternative to
	 TKIP, and that is preferred when
	 possible. For this specification, the term
	 WPA2 or RSN is
	 commonly used.
WPA defines authentication and
	 encryption protocols. Authentication is most commonly
	 done using one of two techniques: by 802.1X and a backend
	 authentication service such as RADIUS,
	 or by a minimal handshake between the station and the
	 access point using a pre-shared secret. The former is
	 commonly termed WPA Enterprise and the
	 latter is known as WPA Personal. Since
	 most people will not set up a RADIUS
	 backend server for their wireless network,
	 WPA-PSK is by far the most commonly
	 encountered configuration for
	 WPA.
The control of the wireless connection and the key
	 negotiation or authentication with a server is done using
	 wpa_supplicant(8). This program requires a
	 configuration file,
	 /etc/wpa_supplicant.conf, to run.
	 More information regarding this file can be found in
	 wpa_supplicant.conf(5).
31.3.4.1.3.1. WPA-PSK
WPA-PSK, also known as
	 WPA Personal, is based on a
	 pre-shared key (PSK) which is
	 generated from a given password and used as the master
	 key in the wireless network. This means every wireless
	 user will share the same key.
	 WPA-PSK is intended for small
	 networks where the use of an authentication server is
	 not possible or desired.
Warning:
Always use strong passwords that are sufficiently
		long and made from a rich alphabet so that they will
		not be easily guessed or attacked.

The first step is the configuration of
	 /etc/wpa_supplicant.conf with
	 the SSID and the pre-shared key of
	 the network:
network={
 ssid="freebsdap"
 psk="freebsdmall"
}
Then, in /etc/rc.conf,
	 indicate that the wireless device configuration will be
	 done with WPA and the
	 IP address will be obtained with
	 DHCP:
wlans_ath0="wlan0"
ifconfig_wlan0="WPA DHCP"
Then, bring up the interface:
service netif start
Starting wpa_supplicant.
DHCPDISCOVER on wlan0 to 255.255.255.255 port 67 interval 5
DHCPDISCOVER on wlan0 to 255.255.255.255 port 67 interval 6
DHCPOFFER from 192.168.0.1
DHCPREQUEST on wlan0 to 255.255.255.255 port 67
DHCPACK from 192.168.0.1
bound to 192.168.0.254 -- renewal in 300 seconds.
wlan0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500
 ether 00:11:95:d5:43:62
 inet 192.168.0.254 netmask 0xffffff00 broadcast 192.168.0.255
 media: IEEE 802.11 Wireless Ethernet OFDM/36Mbps mode 11g
 status: associated
 ssid freebsdap channel 1 (2412 Mhz 11g) bssid 00:11:95:c3:0d:ac
 country US ecm authmode WPA2/802.11i privacy ON deftxkey UNDEF
 AES-CCM 3:128-bit txpower 21.5 bmiss 7 scanvalid 450 bgscan
 bgscanintvl 300 bgscanidle 250 roam:rssi 7 roam:rate 5 protmode CTS
 wme burst roaming MANUAL
Or, try to configure the interface manually using
	 the information in
	 /etc/wpa_supplicant.conf:
wpa_supplicant -i wlan0 -c /etc/wpa_supplicant.conf
Trying to associate with 00:11:95:c3:0d:ac (SSID='freebsdap' freq=2412 MHz)
Associated with 00:11:95:c3:0d:ac
WPA: Key negotiation completed with 00:11:95:c3:0d:ac [PTK=CCMP GTK=CCMP]
CTRL-EVENT-CONNECTED - Connection to 00:11:95:c3:0d:ac completed (auth) [id=0 id_str=]
The next operation is to launch dhclient(8)
	 to get the IP address from the
	 DHCP server:
dhclient wlan0
DHCPREQUEST on wlan0 to 255.255.255.255 port 67
DHCPACK from 192.168.0.1
bound to 192.168.0.254 -- renewal in 300 seconds.
ifconfig wlan0
wlan0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500
 ether 00:11:95:d5:43:62
 inet 192.168.0.254 netmask 0xffffff00 broadcast 192.168.0.255
 media: IEEE 802.11 Wireless Ethernet OFDM/36Mbps mode 11g
 status: associated
 ssid freebsdap channel 1 (2412 Mhz 11g) bssid 00:11:95:c3:0d:ac
 country US ecm authmode WPA2/802.11i privacy ON deftxkey UNDEF
 AES-CCM 3:128-bit txpower 21.5 bmiss 7 scanvalid 450 bgscan
 bgscanintvl 300 bgscanidle 250 roam:rssi 7 roam:rate 5 protmode CTS
 wme burst roaming MANUAL
Note:
If /etc/rc.conf has an
		ifconfig_wlan0="DHCP" entry,
		dhclient(8) will be launched automatically after
		wpa_supplicant(8) associates with the access
		point.

If DHCP is not possible or
	 desired, set a static IP address
	 after wpa_supplicant(8) has authenticated the
	 station:
ifconfig wlan0 inet 192.168.0.100 netmask 255.255.255.0
ifconfig wlan0
wlan0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500
 ether 00:11:95:d5:43:62
 inet 192.168.0.100 netmask 0xffffff00 broadcast 192.168.0.255
 media: IEEE 802.11 Wireless Ethernet OFDM/36Mbps mode 11g
 status: associated
 ssid freebsdap channel 1 (2412 Mhz 11g) bssid 00:11:95:c3:0d:ac
 country US ecm authmode WPA2/802.11i privacy ON deftxkey UNDEF
 AES-CCM 3:128-bit txpower 21.5 bmiss 7 scanvalid 450 bgscan
 bgscanintvl 300 bgscanidle 250 roam:rssi 7 roam:rate 5 protmode CTS
 wme burst roaming MANUAL
When DHCP is not used, the
	 default gateway and the nameserver also have to be
	 manually set:
route add default your_default_router
echo "nameserver your_DNS_server" >> /etc/resolv.conf
31.3.4.1.3.2. WPA with
	 EAP-TLS
The second way to use WPA is with
	 an 802.1X backend authentication server. In this case,
	 WPA is called
	 WPA Enterprise to differentiate it
	 from the less secure WPA Personal.
	 Authentication in WPA Enterprise is
	 based on the Extensible Authentication Protocol
	 (EAP).
EAP does not come with an
	 encryption method. Instead, EAP is
	 embedded inside an encrypted tunnel. There are many
	 EAP authentication methods, but
	 EAP-TLS, EAP-TTLS,
	 and EAP-PEAP are the most
	 common.
EAP with Transport Layer Security
	 (EAP-TLS) is a well-supported
	 wireless authentication protocol since it was the
	 first EAP method to be certified
	 by the Wi-Fi
		Alliance. EAP-TLS requires
	 three certificates to run: the certificate of the
	 Certificate Authority (CA) installed
	 on all machines, the server certificate for the
	 authentication server, and one client certificate for
	 each wireless client. In this EAP
	 method, both the authentication server and wireless
	 client authenticate each other by presenting their
	 respective certificates, and then verify that these
	 certificates were signed by the organization's
	 CA.
As previously, the configuration is done via
	 /etc/wpa_supplicant.conf:
network={
 ssid="freebsdap" [image: 1]
 proto=RSN [image: 2]
 key_mgmt=WPA-EAP [image: 3]
 eap=TLS [image: 4]
 identity="loader" [image: 5]
 ca_cert="/etc/certs/cacert.pem" [image: 6]
 client_cert="/etc/certs/clientcert.pem" [image: 7]
 private_key="/etc/certs/clientkey.pem" [image: 8]
 private_key_passwd="freebsdmallclient" [image: 9]
}
	[image: 1]
	This field indicates the network name
		 (SSID).

	[image: 2]
	This example uses the RSN
		 IEEE® 802.11i protocol, also known as
		 WPA2.

	[image: 3]
	The key_mgmt line refers to
		 the key management protocol to use. In this
		 example, it is WPA using
		 EAP authentication.

	[image: 4]
	This field indicates the EAP
		 method for the connection.

	[image: 5]
	The identity field contains
		 the identity string for
		 EAP.

	[image: 6]
	The ca_cert field indicates
		 the pathname of the CA
		 certificate file. This file is needed to verify
		 the server certificate.

	[image: 7]
	The client_cert line gives
		 the pathname to the client certificate file. This
		 certificate is unique to each wireless client of the
		 network.

	[image: 8]
	The private_key field is the
		 pathname to the client certificate private key
		 file.

	[image: 9]
	The private_key_passwd field
		 contains the passphrase for the private key.

Then, add the following lines to
	 /etc/rc.conf:
wlans_ath0="wlan0"
ifconfig_wlan0="WPA DHCP"
The next step is to bring up the interface:
service netif start
Starting wpa_supplicant.
DHCPREQUEST on wlan0 to 255.255.255.255 port 67 interval 7
DHCPREQUEST on wlan0 to 255.255.255.255 port 67 interval 15
DHCPACK from 192.168.0.20
bound to 192.168.0.254 -- renewal in 300 seconds.
wlan0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500
 ether 00:11:95:d5:43:62
 inet 192.168.0.254 netmask 0xffffff00 broadcast 192.168.0.255
 media: IEEE 802.11 Wireless Ethernet DS/11Mbps mode 11g
 status: associated
 ssid freebsdap channel 1 (2412 Mhz 11g) bssid 00:11:95:c3:0d:ac
 country US ecm authmode WPA2/802.11i privacy ON deftxkey UNDEF
 AES-CCM 3:128-bit txpower 21.5 bmiss 7 scanvalid 450 bgscan
 bgscanintvl 300 bgscanidle 250 roam:rssi 7 roam:rate 5 protmode CTS
 wme burst roaming MANUAL
It is also possible to bring up the interface
	 manually using wpa_supplicant(8) and
	 ifconfig(8).
31.3.4.1.3.3. WPA with
	 EAP-TTLS
With EAP-TLS, both the
	 authentication server and the client need a certificate.
	 With EAP-TTLS, a client certificate
	 is optional. This method is similar to a web server
	 which creates a secure SSL tunnel
	 even if visitors do not have client-side certificates.
	 EAP-TTLS uses an encrypted
	 TLS tunnel for safe transport of
	 the authentication data.
The required configuration can be added to
	 /etc/wpa_supplicant.conf:
network={
 ssid="freebsdap"
 proto=RSN
 key_mgmt=WPA-EAP
 eap=TTLS [image: 1]
 identity="test" [image: 2]
 password="test" [image: 3]
 ca_cert="/etc/certs/cacert.pem" [image: 4]
 phase2="auth=MD5" [image: 5]
}
	[image: 1]
	This field specifies the EAP
		 method for the connection.

	[image: 2]
	The identity field contains
		 the identity string for EAP
		 authentication inside the encrypted
		 TLS tunnel.

	[image: 3]
	The password field contains
		 the passphrase for the EAP
		 authentication.

	[image: 4]
	The ca_cert field indicates
		 the pathname of the CA
		 certificate file. This file is needed to verify
		 the server certificate.

	[image: 5]
	This field specifies the authentication
		 method used in the encrypted TLS
		 tunnel. In this example,
		 EAP with MD5-Challenge is used.
		 The “inner authentication” phase is
		 often called “phase2”.

Next, add the following lines to
	 /etc/rc.conf:
wlans_ath0="wlan0"
ifconfig_wlan0="WPA DHCP"
The next step is to bring up the interface:
service netif start
Starting wpa_supplicant.
DHCPREQUEST on wlan0 to 255.255.255.255 port 67 interval 7
DHCPREQUEST on wlan0 to 255.255.255.255 port 67 interval 15
DHCPREQUEST on wlan0 to 255.255.255.255 port 67 interval 21
DHCPACK from 192.168.0.20
bound to 192.168.0.254 -- renewal in 300 seconds.
wlan0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500
 ether 00:11:95:d5:43:62
 inet 192.168.0.254 netmask 0xffffff00 broadcast 192.168.0.255
 media: IEEE 802.11 Wireless Ethernet DS/11Mbps mode 11g
 status: associated
 ssid freebsdap channel 1 (2412 Mhz 11g) bssid 00:11:95:c3:0d:ac
 country US ecm authmode WPA2/802.11i privacy ON deftxkey UNDEF
 AES-CCM 3:128-bit txpower 21.5 bmiss 7 scanvalid 450 bgscan
 bgscanintvl 300 bgscanidle 250 roam:rssi 7 roam:rate 5 protmode CTS
 wme burst roaming MANUAL
31.3.4.1.3.4. WPA with
	 EAP-PEAP
Note:
PEAPv0/EAP-MSCHAPv2 is the most
		common PEAP method. In this
		chapter, the term PEAP is used to
		refer to that method.

Protected EAP (PEAP) is designed
	 as an alternative to EAP-TTLS and
	 is the most used EAP standard after
	 EAP-TLS. In a network with mixed
	 operating systems, PEAP should be
	 the most supported standard after
	 EAP-TLS.
PEAP is similar to
	 EAP-TTLS as it uses a server-side
	 certificate to authenticate clients by creating an
	 encrypted TLS tunnel between the
	 client and the authentication server, which protects
	 the ensuing exchange of authentication information.
	 PEAP authentication differs from
	 EAP-TTLS as it broadcasts the
	 username in the clear and only the password is sent
	 in the encrypted TLS tunnel.
	 EAP-TTLS will use the
	 TLS tunnel for both the username
	 and password.
Add the following lines to
	 /etc/wpa_supplicant.conf to
	 configure the EAP-PEAP related
	 settings:
network={
 ssid="freebsdap"
 proto=RSN
 key_mgmt=WPA-EAP
 eap=PEAP [image: 1]
 identity="test" [image: 2]
 password="test" [image: 3]
 ca_cert="/etc/certs/cacert.pem" [image: 4]
 phase1="peaplabel=0" [image: 5]
 phase2="auth=MSCHAPV2" [image: 6]
}
	[image: 1]
	This field specifies the EAP
		 method for the connection.

	[image: 2]
	The identity field contains
		 the identity string for EAP
		 authentication inside the encrypted
		 TLS tunnel.

	[image: 3]
	The password field contains
		 the passphrase for the EAP
		 authentication.

	[image: 4]
	The ca_cert field indicates
		 the pathname of the CA
		 certificate file. This file is needed to verify
		 the server certificate.

	[image: 5]
	This field contains the parameters for the
		 first phase of authentication, the
		 TLS tunnel. According to the
		 authentication server used, specify a specific
		 label for authentication. Most of the time, the
		 label will be “client EAP
		 encryption” which is set by using
		 peaplabel=0. More information
		 can be found in wpa_supplicant.conf(5).

	[image: 6]
	This field specifies the authentication
		 protocol used in the encrypted
		 TLS tunnel. In the
		 case of PEAP, it is
		 auth=MSCHAPV2.

Add the following to
	 /etc/rc.conf:
wlans_ath0="wlan0"
ifconfig_wlan0="WPA DHCP"
Then, bring up the interface:
service netif start
Starting wpa_supplicant.
DHCPREQUEST on wlan0 to 255.255.255.255 port 67 interval 7
DHCPREQUEST on wlan0 to 255.255.255.255 port 67 interval 15
DHCPREQUEST on wlan0 to 255.255.255.255 port 67 interval 21
DHCPACK from 192.168.0.20
bound to 192.168.0.254 -- renewal in 300 seconds.
wlan0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500
 ether 00:11:95:d5:43:62
 inet 192.168.0.254 netmask 0xffffff00 broadcast 192.168.0.255
 media: IEEE 802.11 Wireless Ethernet DS/11Mbps mode 11g
 status: associated
 ssid freebsdap channel 1 (2412 Mhz 11g) bssid 00:11:95:c3:0d:ac
 country US ecm authmode WPA2/802.11i privacy ON deftxkey UNDEF
 AES-CCM 3:128-bit txpower 21.5 bmiss 7 scanvalid 450 bgscan
 bgscanintvl 300 bgscanidle 250 roam:rssi 7 roam:rate 5 protmode CTS
 wme burst roaming MANUAL
31.3.4.1.4. WEP
Wired Equivalent Privacy (WEP) is
	 part of the original 802.11 standard. There is no
	 authentication mechanism, only a weak form of access
	 control which is easily cracked.
WEP can be set up using
	 ifconfig(8):
ifconfig wlan0 create wlandev ath0
ifconfig wlan0 inet 192.168.1.100 netmask 255.255.255.0 \
	 ssid my_net wepmode on weptxkey 3 wepkey 3:0x3456789012
	The weptxkey specifies which
		WEP key will be used in the
		transmission. This example uses the third key.
		This must match the setting on the access point.
		When unsure which key is used by the access point,
		try 1 (the first key) for this
		value.

	The wepkey selects one of the
		WEP keys. It should be in the
		format index:key. Key
		1 is used by default; the index
		only needs to be set when using a key other than the
		first key.
Note:
Replace the 0x3456789012
		 with the key configured for use on the access
		 point.

Refer to ifconfig(8) for further
	 information.
The wpa_supplicant(8) facility can be used to
	 configure a wireless interface with
	 WEP. The example above can be set up
	 by adding the following lines to
	 /etc/wpa_supplicant.conf:
network={
 ssid="my_net"
 key_mgmt=NONE
 wep_key3=3456789012
 wep_tx_keyidx=3
}
Then:
wpa_supplicant -i wlan0 -c /etc/wpa_supplicant.conf
Trying to associate with 00:13:46:49:41:76 (SSID='dlinkap' freq=2437 MHz)
Associated with 00:13:46:49:41:76
31.3.5. Ad-hoc Mode
IBSS mode, also called ad-hoc mode, is
	designed for point to point connections. For example, to
	establish an ad-hoc network between the machines
	A and B,
	choose two IP addresses and a
	SSID.
On A:
ifconfig wlan0 create wlandev ath0 wlanmode adhoc
ifconfig wlan0 inet 192.168.0.1 netmask 255.255.255.0 ssid freebsdap
ifconfig wlan0
 wlan0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> metric 0 mtu 1500
	 ether 00:11:95:c3:0d:ac
	 inet 192.168.0.1 netmask 0xffffff00 broadcast 192.168.0.255
	 media: IEEE 802.11 Wireless Ethernet autoselect mode 11g <adhoc>
	 status: running
	 ssid freebsdap channel 2 (2417 Mhz 11g) bssid 02:11:95:c3:0d:ac
	 country US ecm authmode OPEN privacy OFF txpower 21.5 scanvalid 60
	 protmode CTS wme burst
The adhoc parameter indicates that the
	interface is running in IBSS mode.
B should now be able to detect
	A:
ifconfig wlan0 create wlandev ath0 wlanmode adhoc
ifconfig wlan0 up scan
 SSID/MESH ID BSSID CHAN RATE S:N INT CAPS
 freebsdap 02:11:95:c3:0d:ac 2 54M -64:-96 100 IS WME
The I in the output confirms that
	A is in ad-hoc mode. Now, configure
	B with a different
	IP address:
ifconfig wlan0 inet 192.168.0.2 netmask 255.255.255.0 ssid freebsdap
ifconfig wlan0
 wlan0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> metric 0 mtu 1500
	 ether 00:11:95:d5:43:62
	 inet 192.168.0.2 netmask 0xffffff00 broadcast 192.168.0.255
	 media: IEEE 802.11 Wireless Ethernet autoselect mode 11g <adhoc>
	 status: running
	 ssid freebsdap channel 2 (2417 Mhz 11g) bssid 02:11:95:c3:0d:ac
	 country US ecm authmode OPEN privacy OFF txpower 21.5 scanvalid 60
	 protmode CTS wme burst
Both A and
	B are now ready to exchange
	information.
31.3.6. FreeBSD Host Access Points
FreeBSD can act as an Access Point (AP)
	which eliminates the need to buy a hardware
	AP or run an ad-hoc network. This can
	be particularly useful when a FreeBSD machine is acting as a
	gateway to another network such as the Internet.
31.3.6.1. Basic Settings
Before configuring a FreeBSD machine as an
	 AP, the kernel must be configured with
	 the appropriate networking support for the wireless card
	 as well as the security protocols being used. For more
	 details, see Section 31.3.3, “Basic Setup”.
Note:
The NDIS driver wrapper for
	 Windows® drivers does not currently support
	 AP operation. Only native FreeBSD
	 wireless drivers support AP
	 mode.

Once wireless networking support is loaded, check if
	 the wireless device supports the host-based access point
	 mode, also known as hostap mode:
ifconfig wlan0 create wlandev ath0
ifconfig wlan0 list caps
drivercaps=6f85edc1<STA,FF,TURBOP,IBSS,HOSTAP,AHDEMO,TXPMGT,SHSLOT,SHPREAMBLE,MONITOR,MBSS,WPA1,WPA2,BURST,WME,WDS,BGSCAN,TXFRAG>
cryptocaps=1f<WEP,TKIP,AES,AES_CCM,TKIPMIC>
This output displays the card's capabilities. The
	 HOSTAP word confirms that this wireless
	 card can act as an AP. Various supported
	 ciphers are also listed: WEP,
	 TKIP, and AES. This
	 information indicates which security protocols can be used
	 on the AP.
The wireless device can only be put into hostap mode
	 during the creation of the network pseudo-device, so a
	 previously created device must be destroyed first:
ifconfig wlan0 destroy
then regenerated with the correct option before setting
	 the other parameters:
ifconfig wlan0 create wlandev ath0 wlanmode hostap
ifconfig wlan0 inet 192.168.0.1 netmask 255.255.255.0 ssid freebsdap mode 11g channel 1
Use ifconfig(8) again to see the status of the
	 wlan0 interface:
ifconfig wlan0
 wlan0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> metric 0 mtu 1500
	 ether 00:11:95:c3:0d:ac
	 inet 192.168.0.1 netmask 0xffffff00 broadcast 192.168.0.255
	 media: IEEE 802.11 Wireless Ethernet autoselect mode 11g <hostap>
	 status: running
	 ssid freebsdap channel 1 (2412 Mhz 11g) bssid 00:11:95:c3:0d:ac
	 country US ecm authmode OPEN privacy OFF txpower 21.5 scanvalid 60
	 protmode CTS wme burst dtimperiod 1 -dfs
The hostap parameter indicates the
	 interface is running in the host-based access point
	 mode.
The interface configuration can be done automatically at
	 boot time by adding the following lines to
	 /etc/rc.conf:
wlans_ath0="wlan0"
create_args_wlan0="wlanmode hostap"
ifconfig_wlan0="inet 192.168.0.1 netmask 255.255.255.0 ssid freebsdap mode 11g channel 1"
31.3.6.2. Host-based Access Point Without Authentication or
	 Encryption
Although it is not recommended to run an
	 AP without any authentication or
	 encryption, this is a simple way to check if the
	 AP is working. This configuration is
	 also important for debugging client issues.
Once the AP is configured, initiate
	 a scan from another wireless machine to find the
	 AP:
ifconfig wlan0 create wlandev ath0
ifconfig wlan0 up scan
SSID/MESH ID BSSID CHAN RATE S:N INT CAPS
freebsdap 00:11:95:c3:0d:ac 1 54M -66:-96 100 ES WME
The client machine found the AP and
	 can be associated with it:
ifconfig wlan0 inet 192.168.0.2 netmask 255.255.255.0 ssid freebsdap
ifconfig wlan0
 wlan0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> metric 0 mtu 1500
	 ether 00:11:95:d5:43:62
	 inet 192.168.0.2 netmask 0xffffff00 broadcast 192.168.0.255
	 media: IEEE 802.11 Wireless Ethernet OFDM/54Mbps mode 11g
	 status: associated
	 ssid freebsdap channel 1 (2412 Mhz 11g) bssid 00:11:95:c3:0d:ac
	 country US ecm authmode OPEN privacy OFF txpower 21.5 bmiss 7
	 scanvalid 60 bgscan bgscanintvl 300 bgscanidle 250 roam:rssi 7
	 roam:rate 5 protmode CTS wme burst
31.3.6.3. WPA2 Host-based Access Point
This section focuses on setting up a FreeBSD
	 access point using the WPA2
	 security protocol. More details regarding
	 WPA and the configuration of
	 WPA-based wireless clients can be found
	 in Section 31.3.4.1.3, “WPA”.
The hostapd(8) daemon is used to deal with client
	 authentication and key management on the
	 WPA2-enabled
	 AP.
The following configuration operations are performed
	 on the FreeBSD machine acting as the AP.
	 Once the AP is correctly working,
	 hostapd(8) can be automatically started at boot
	 with this line in
	 /etc/rc.conf:
hostapd_enable="YES"
Before trying to configure hostapd(8), first
	 configure the basic settings introduced in Section 31.3.6.1, “Basic Settings”.
31.3.6.3.1. WPA2-PSK
WPA2-PSK is intended for small
	 networks where the use of a backend authentication server
	 is not possible or desired.
The configuration is done in
	 /etc/hostapd.conf:
interface=wlan0 [image: 1]
debug=1 [image: 2]
ctrl_interface=/var/run/hostapd [image: 3]
ctrl_interface_group=wheel [image: 4]
ssid=freebsdap [image: 5]
wpa=2 [image: 6]
wpa_passphrase=freebsdmall [image: 7]
wpa_key_mgmt=WPA-PSK [image: 8]
wpa_pairwise=CCMP [image: 9]
	[image: 1]
	Wireless interface used
		for the access point.

	[image: 2]
	Level of verbosity used during the
		execution of hostapd(8). A value of
		1 represents the minimal
		level.

	[image: 3]
	Pathname of the directory used by hostapd(8)
		to store domain socket files for communication
		with external programs such as hostapd_cli(8).
		The default value is used in this example.

	[image: 4]
	The group allowed to access the control
		interface files.

	[image: 5]
	The wireless network name, or
		SSID, that will appear in wireless
		scans.

	[image: 6]
	Enable
		WPA and specify which
		WPA authentication protocol will
		be required. A value of 2
		configures the AP for
		WPA2 and is recommended.
		Set to 1 only if the obsolete
		WPA is required.

	[image: 7]
	ASCII passphrase for
		WPA authentication.
Warning:
Always use strong passwords that are at least
		 8 characters long and made from a rich alphabet so
		 that they will not be easily guessed or
		 attacked.

	[image: 8]
	The
		key management protocol to use. This example
		sets WPA-PSK.

	[image: 9]
	Encryption algorithms accepted by
		the access point. In this example, only
		the
		CCMP (AES)
		cipher is accepted. CCMP
		is an alternative to TKIP
		and is strongly preferred when possible.
		TKIP should be allowed only when
		there are stations incapable of using
		CCMP.

The next step is to start hostapd(8):
service hostapd forcestart
ifconfig wlan0
wlan0: flags=8943<UP,BROADCAST,RUNNING,PROMISC,SIMPLEX,MULTICAST> metric 0 mtu 1500
	ether 04:f0:21:16:8e:10
	inet6 fe80::6f0:21ff:fe16:8e10%wlan0 prefixlen 64 scopeid 0x9
	nd6 options=21<PERFORMNUD,AUTO_LINKLOCAL>
	media: IEEE 802.11 Wireless Ethernet autoselect mode 11na <hostap>
	status: running
	ssid No5ignal channel 36 (5180 MHz 11a ht/40+) bssid 04:f0:21:16:8e:10
	country US ecm authmode WPA2/802.11i privacy MIXED deftxkey 2
	AES-CCM 2:128-bit AES-CCM 3:128-bit txpower 17 mcastrate 6 mgmtrate 6
	scanvalid 60 ampdulimit 64k ampdudensity 8 shortgi wme burst
	dtimperiod 1 -dfs
	groups: wlan
Once the AP is running, the
	 clients can associate with it. See Section 31.3.4.1.3, “WPA” for more details. It
	 is possible to see the stations associated with the
	 AP using ifconfig
	 wlan0 list
	 sta.
31.3.6.4. WEP Host-based Access Point
It is not recommended to use WEP for
	 setting up an AP since there is no
	 authentication mechanism and the encryption is easily
	 cracked. Some legacy wireless cards only support
	 WEP and these cards will only support
	 an AP without authentication or
	 encryption.
The wireless device can now be put into hostap mode and
	 configured with the correct SSID and
	 IP address:
ifconfig wlan0 create wlandev ath0 wlanmode hostap
ifconfig wlan0 inet 192.168.0.1 netmask 255.255.255.0 \
	ssid freebsdap wepmode on weptxkey 3 wepkey 3:0x3456789012 mode 11g
	The weptxkey indicates which
	 WEP key will be used in the
	 transmission. This example uses the third key as key
	 numbering starts with 1. This
	 parameter must be specified in order to encrypt the
	 data.

	The wepkey sets the selected
	 WEP key. It should be in the format
	 index:key. If the index is
	 not given, key 1 is set. The index
	 needs to be set when using keys other than the first
	 key.

Use ifconfig(8) to see the status of the
	 wlan0 interface:
ifconfig wlan0
 wlan0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> metric 0 mtu 1500
	 ether 00:11:95:c3:0d:ac
	 inet 192.168.0.1 netmask 0xffffff00 broadcast 192.168.0.255
	 media: IEEE 802.11 Wireless Ethernet autoselect mode 11g <hostap>
	 status: running
	 ssid freebsdap channel 4 (2427 Mhz 11g) bssid 00:11:95:c3:0d:ac
	 country US ecm authmode OPEN privacy ON deftxkey 3 wepkey 3:40-bit
	 txpower 21.5 scanvalid 60 protmode CTS wme burst dtimperiod 1 -dfs
From another wireless machine, it is now possible to
	 initiate a scan to find the AP:
ifconfig wlan0 create wlandev ath0
ifconfig wlan0 up scan
SSID BSSID CHAN RATE S:N INT CAPS
freebsdap 00:11:95:c3:0d:ac 1 54M 22:1 100 EPS
In this example, the client machine found the
	 AP and can associate with it using the
	 correct parameters. See Section 31.3.4.1.4, “WEP” for more details.
31.3.7. Using Both Wired and Wireless Connections
A wired connection provides better performance and
	reliability, while a wireless connection provides flexibility
	and mobility. Laptop users typically want to roam seamlessly
	between the two types of connections.
On FreeBSD, it is possible to combine two or even more
	network interfaces together in a “failover”
	fashion. This type of configuration uses the most preferred
	and available connection from a group of network interfaces,
	and the operating system switches automatically when the link
	state changes.
Link aggregation and failover is covered in Section 31.7, “Link Aggregation and Failover” and an example for using
	both wired and wireless connections is provided at Example 31.3, “Failover Mode Between Ethernet and Wireless
	 Interfaces”.
31.3.8. Troubleshooting
This section describes
	a number of steps to help troubleshoot common wireless
	networking problems.
	If the access point is not listed when scanning,
	 check that the configuration has not limited the wireless
	 device to a limited set of channels.

	If the device cannot associate with an access point,
	 verify that the configuration matches the settings on the
	 access point. This includes the authentication scheme and
	 any security protocols. Simplify the configuration as
	 much as possible. If using a security protocol such as
	 WPA or WEP,
	 configure the access point for open authentication and
	 no security to see if traffic will pass.
Debugging support is provided by
	 wpa_supplicant(8). Try running this utility manually
	 with -dd and look at the
	 system logs.

	Once the system can associate with the access point,
	 diagnose the network configuration using tools like
	 ping(8).

	There are many lower-level debugging tools.
	 Debugging messages can be enabled in the 802.11 protocol
	 support layer using wlandebug(8).
	 For example, to enable console messages related to
	 scanning for access points and the 802.11 protocol
	 handshakes required to arrange communication:
wlandebug -i wlan0 +scan+auth+debug+assoc
 net.wlan.0.debug: 0 => 0xc80000<assoc,auth,scan>
Many useful statistics are maintained by the 802.11
	 layer and wlanstats, found in /usr/src/tools/tools/net80211,
	 will dump this information. These statistics should
	 display all errors identified by the 802.11 layer.
	 However, some errors are identified in the device drivers
	 that lie below the 802.11 layer so they may not show up.
	 To diagnose device-specific problems, refer to the
	 drivers' documentation.

If the above information does not help to clarify the
	problem, submit a problem report and include output from the
	above tools.
31.4. USB Tethering

31.4. USB Tethering
Many cellphones provide the option to share their data
 connection over USB (often called "tethering"). This feature
 uses either the RNDIS, CDC
 or a custom Apple® iPhone®/iPad®
 protocol.
	Android™ devices generally use the urndis(4)
	 driver.

	Apple® devices use the ipheth(4) driver.

	Older devices will often use the cdce(4)
	 driver.

Before attaching a device, load the appropriate driver
 into the kernel:
kldload if_urndis
kldload if_cdce
kldload if_ipheth
Once the device is attached
 ue0 will be
 available for use like a normal network device. Be sure that
 the “USB tethering” option is enabled on the
 device.
31.8. Diskless Operation with PXE

31.8. Diskless Operation with PXE
Updated by Jean-François Dockès. Reorganized and enhanced by Alex Dupre. The Intel® Preboot eXecution Environment
 (PXE) allows an operating system to boot over
 the network. For example, a FreeBSD system can boot over the
 network and operate without a local disk, using file systems
 mounted from an NFS server.
 PXE support is usually available in the
 BIOS. To use PXE when the
 machine starts, select the Boot from network
 option in the BIOS setup or type a function
 key during system initialization.
In order to provide the files needed for an operating system
 to boot over the network, a PXE setup also
 requires properly configured DHCP,
 TFTP, and NFS servers,
 where:
	Initial parameters, such as an IP
	 address, executable boot filename and location, server name,
	 and root path are obtained from the
	 DHCP server.

	The operating system loader file is booted using
	 TFTP.

	The file systems are loaded using
	 NFS.

When a computer PXE boots, it receives
 information over DHCP about where to obtain
 the initial boot loader file. After the host computer receives
 this information, it downloads the boot loader via
 TFTP and then executes the boot loader. In
 FreeBSD, the boot loader file is
 /boot/pxeboot. After
 /boot/pxeboot executes, the FreeBSD kernel is
 loaded and the rest of the FreeBSD bootup sequence proceeds, as
 described in Chapter 12, The FreeBSD Booting Process.
This section describes how to configure these services on a
 FreeBSD system so that other systems can PXE
 boot into FreeBSD. Refer to diskless(8) for more
 information.
Caution:
As described, the system providing these services is
	insecure. It should live in a protected area of a network and
	be untrusted by other hosts.

31.8.1. Setting Up the PXE
	 Environment
Written by Craig Rodrigues. The steps shown in this section configure the built-in
	NFS and TFTP servers.
	The next section demonstrates how to install and configure the
	DHCP server. In this example, the
	directory which will contain the files used by
	PXE users is
	/b/tftpboot/FreeBSD/install. It is
	important that this directory exists and that the same
	directory name is set in both
	/etc/inetd.conf and
	/usr/local/etc/dhcpd.conf.
	Create the root directory which will contain a FreeBSD
	 installation to be NFS mounted:
export NFSROOTDIR=/b/tftpboot/FreeBSD/install
mkdir -p ${NFSROOTDIR}

	Enable the NFS server by adding
	 this line to /etc/rc.conf:
nfs_server_enable="YES"

	Export the diskless root directory via
	 NFS by adding the following to
	 /etc/exports:
/b -ro -alldirs -maproot=root

	Start the NFS server:
service nfsd start

	Enable inetd(8) by adding the following line to
	 /etc/rc.conf:
inetd_enable="YES"

	Uncomment the following line in
	 /etc/inetd.conf by making sure it
	 does not start with a # symbol:
tftp dgram udp wait root /usr/libexec/tftpd tftpd -l -s /b/tftpboot
Note:
Some PXE versions require the
	 TCP version of
	 TFTP. In this case, uncomment the
	 second tftp line which contains
	 stream tcp.

	Start inetd(8):
service inetd start

	Install the base system into
		${NFSROOTDIR}, either by
		decompressing the official archives or by rebuilding
		the FreeBSD kernel and userland (refer to
		Section 23.5, “Updating FreeBSD from Source” for more detailed
		instructions, but do not forget to add
		DESTDIR=${NFSROOTDIR}
		when running the
		make installkernel and
		make installworld commands.

	Test that the TFTP server works and
	 can download the boot loader which will be obtained via
	 PXE:
tftp localhost
tftp> get FreeBSD/install/boot/pxeboot
Received 264951 bytes in 0.1 seconds

	Edit ${NFSROOTDIR}/etc/fstab and
	 create an entry to mount the root file system over
	 NFS:
Device Mountpoint FSType Options Dump Pass
myhost.example.com:/b/tftpboot/FreeBSD/install / nfs ro 0 0
Replace myhost.example.com
	 with the hostname or IP address of the
	 NFS server. In this example, the root
	 file system is mounted read-only in order to prevent
	 NFS clients from potentially deleting
	 the contents of the root file system.

	Set the root password in the PXE
	 environment for client machines which are
	 PXE booting :
chroot ${NFSROOTDIR}
passwd

	If needed, enable ssh(1) root logins for client
	 machines which are PXE booting by
	 editing
	 ${NFSROOTDIR}/etc/ssh/sshd_config and
	 enabling PermitRootLogin. This option
	 is documented in sshd_config(5).

	Perform any other needed customizations of the
	 PXE environment in
	 ${NFSROOTDIR}. These customizations
	 could include things like installing packages or editing
	 the password file with vipw(8).

When booting from an NFS root volume,
	/etc/rc detects the
	NFS boot and runs
	/etc/rc.initdiskless. In this case,
	/etc and /var need
	to be memory backed file systems so that these directories are
	writable but the NFS root directory is
	read-only:
chroot ${NFSROOTDIR}
mkdir -p conf/base
tar -c -v -f conf/base/etc.cpio.gz --format cpio --gzip etc
tar -c -v -f conf/base/var.cpio.gz --format cpio --gzip var
When the system boots, memory file systems for
	/etc and /var will
	be created and mounted and the contents of the
	cpio.gz files will be copied into
	them. By default, these file systems have a maximum capacity
	of 5 megabytes. If your archives do not fit, which is
	usually the case for /var when binary
	packages have been installed, request a larger size by putting
	the number of 512 byte sectors needed (e.g., 5 megabytes
	is 10240 sectors) in
	${NFSROOTDIR}/conf/base/etc/md_size and
	${NFSROOTDIR}/conf/base/var/md_size
	files for /etc and
	/var file systems respectively.
31.8.2. Configuring the DHCP Server
The DHCP server does not need to be the
	same machine as the TFTP and
	NFS server, but it needs to be accessible
	in the network.
DHCP is not part of the FreeBSD base
	system but can be installed using the
	net/isc-dhcp43-server port or
	package.
Once installed, edit the configuration file,
	/usr/local/etc/dhcpd.conf. Configure
	the next-server,
	filename, and
	root-path settings as seen in this
	example:
subnet 192.168.0.0 netmask 255.255.255.0 {
 range 192.168.0.2 192.168.0.3 ;
 option subnet-mask 255.255.255.0 ;
 option routers 192.168.0.1 ;
 option broadcast-address 192.168.0.255 ;
 option domain-name-servers 192.168.35.35, 192.168.35.36 ;
 option domain-name "example.com";

 # IP address of TFTP server
 next-server 192.168.0.1 ;

 # path of boot loader obtained via tftp
 filename "FreeBSD/install/boot/pxeboot" ;

 # pxeboot boot loader will try to NFS mount this directory for root FS
 option root-path "192.168.0.1:/b/tftpboot/FreeBSD/install/" ;

}
The next-server directive is used to
	specify the IP address of the
	TFTP server.
The filename directive defines the path
	to /boot/pxeboot. A relative filename is
	used, meaning that /b/tftpboot is not
	included in the path.
The root-path option defines the path
	to the NFS root file system.
Once the edits are saved, enable DHCP
	at boot time by adding the following line to
	/etc/rc.conf:
dhcpd_enable="YES"
Then start the DHCP service:
service isc-dhcpd start
31.8.3. Debugging PXE Problems
Once all of the services are configured and started,
	PXE clients should be able to
	automatically load FreeBSD over the network. If a particular
	client is unable to connect, when that client machine boots
	up, enter the BIOS configuration menu and
	confirm that it is set to boot from the network.
This section describes some troubleshooting tips for
	isolating the source of the configuration problem should no
	clients be able to PXE boot.
	Use the net/wireshark package or
	 port to debug the network traffic involved during the
	 PXE booting process, which is
	 illustrated in the diagram below.
[image: PXE Booting Process with NFS Root Mount]	[image: 1]
	Client broadcasts a
		 DHCPDISCOVER message.

	[image: 2]
	The DHCP server responds
		 with the IP address,
		 next-server,
		 filename, and
		 root-path values.

	[image: 3]
	The client sends a TFTP
		 request to next-server,
		 asking to retrieve
		 filename.

	[image: 4]
	The TFTP server responds
		 and sends filename to
		 client.

	[image: 5]
	The client executes
		 filename, which is
		 pxeboot(8), which then loads the kernel.
		 When the kernel executes, the root file system
		 specified by root-path is
		 mounted over NFS.

Figure 31.1. PXE Booting Process with
	 NFS Root Mount

	On the
	 TFTP server, read
	 /var/log/xferlog to ensure that
	 pxeboot is being retrieved from
	 the correct location. To test this example
	 configuration:
tftp 192.168.0.1
tftp> get FreeBSD/install/boot/pxeboot
Received 264951 bytes in 0.1 seconds
The BUGS sections in tftpd(8)
	 and tftp(1) document some limitations with
	 TFTP.

	Make sure that the root file system can be mounted
	 via NFS. To test this example
	 configuration:
mount -t nfs 192.168.0.1:/b/tftpboot/FreeBSD/install /mnt

31.9. IPv6

31.9. IPv6
Originally Written by Aaron Kaplan. Restructured and Added by Tom Rhodes. Extended by Brad Davis. IPv6 is the new version of the well known
 IP protocol, also known as
 IPv4. IPv6 provides
 several advantages over IPv4 as well as many
 new features:
	Its 128-bit address space allows for
	 340,282,366,920,938,463,463,374,607,431,768,211,456
	 addresses. This addresses the IPv4
	 address shortage and eventual IPv4
	 address exhaustion.

	Routers only store network aggregation addresses in
	 their routing tables, thus reducing the average space of a
	 routing table to 8192 entries. This addresses the
	 scalability issues associated with IPv4,
	 which required every allocated block of
	 IPv4 addresses to be exchanged between
	 Internet routers, causing their routing tables to become too
	 large to allow efficient routing.

	Address autoconfiguration (RFC2462).

	Mandatory multicast addresses.

	Built-in IPsec (IP
	 security).

	Simplified header structure.

	Support for mobile IP.

	IPv6-to-IPv4
	 transition mechanisms.

FreeBSD includes the http://www.kame.net/
 IPv6 reference implementation and comes
 with everything needed to use IPv6. This
 section focuses on getting IPv6 configured
 and running.
31.9.1. Background on IPv6 Addresses
There are three different types of IPv6
	addresses:
	Unicast
	A packet sent to a unicast address arrives at the
	 interface belonging to the address.

	Anycast
	These addresses are syntactically indistinguishable
	 from unicast addresses but they address a group of
	 interfaces. The packet destined for an anycast address
	 will arrive at the nearest router interface. Anycast
	 addresses are only used by routers.

	Multicast
	These addresses identify a group of interfaces. A
	 packet destined for a multicast address will arrive at
	 all interfaces belonging to the multicast group. The
	 IPv4 broadcast address, usually
	 xxx.xxx.xxx.255, is
	 expressed by multicast addresses in
	 IPv6.

When reading an IPv6 address, the
	canonical form is represented as
	x:x:x:x:x:x:x:x, where each
	x represents a 16 bit hex value. An
	example is
	FEBC:A574:382B:23C1:AA49:4592:4EFE:9982.
Often, an address will have long substrings of all zeros.
	A :: (double colon) can be used to replace
	one substring per address. Also, up to three leading
	0s per hex value can be omitted. For
	example, fe80::1 corresponds to the
	canonical form
	fe80:0000:0000:0000:0000:0000:0000:0001.
A third form is to write the last 32 bits using the well
	known IPv4 notation. For example,
	2002::10.0.0.1 corresponds to the
	hexadecimal canonical representation
	2002:0000:0000:0000:0000:0000:0a00:0001,
	which in turn is equivalent to
	2002::a00:1.
To view a FreeBSD system's IPv6 address,
	use ifconfig(8):
ifconfig
rl0: flags=8943<UP,BROADCAST,RUNNING,PROMISC,SIMPLEX,MULTICAST> mtu 1500
 inet 10.0.0.10 netmask 0xffffff00 broadcast 10.0.0.255
 inet6 fe80::200:21ff:fe03:8e1%rl0 prefixlen 64 scopeid 0x1
 ether 00:00:21:03:08:e1
 media: Ethernet autoselect (100baseTX)
 status: active
In this example, the rl0 interface is
	using fe80::200:21ff:fe03:8e1%rl0, an
	auto-configured link-local address which was automatically
	generated from the MAC address.
Some IPv6 addresses are reserved. A
	summary of these reserved addresses is seen in Table 31.3, “Reserved IPv6 Addresses”:
Table 31.3. Reserved IPv6 Addresses
	IPv6 address	Prefixlength (Bits)	Description	Notes
	::	128 bits	unspecified	Equivalent to 0.0.0.0 in
		IPv4.
	::1	128 bits	loopback address	Equivalent to 127.0.0.1 in
		IPv4.
	::00:xx:xx:xx:xx	96 bits	embedded IPv4	The lower 32 bits are the compatible
		IPv4 address.
	::ff:xx:xx:xx:xx	96 bits	IPv4 mapped
		IPv6 address	The lower 32 bits are the IPv4
		address for hosts which do not support
		IPv6.
	fe80::/10	10 bits	link-local	Equivalent to 169.254.0.0/16 in
		IPv4.
	fc00::/7	7 bits	unique-local	Unique local addresses are intended for local
		communication and are only routable within a set of
		cooperating sites.
	ff00::	8 bits	multicast	
	2000::-3fff:: 	3 bits	global unicast	All global unicast addresses are assigned from
		this pool. The first 3 bits are
		001.

For further information on the structure of
	IPv6 addresses, refer to RFC3513.
31.9.2. Configuring IPv6
To configure a FreeBSD system as an IPv6
	client, add these two lines to
	rc.conf:
ifconfig_rl0_ipv6="inet6 accept_rtadv"
rtsold_enable="YES"
The first line enables the specified interface to receive
	router advertisement messages. The second line enables the
	router solicitation daemon, rtsol(8).
If the interface needs a statically assigned
	IPv6 address, add an entry to specify the
	static address and associated prefix length:
ifconfig_rl0_ipv6="inet6 2001:db8:4672:6565:2026:5043:2d42:5344 prefixlen 64"
To assign a default router, specify its address:
ipv6_defaultrouter="2001:db8:4672:6565::1"
31.9.3. Connecting to a Provider
In order to connect to other IPv6
	networks, one must have a provider or a tunnel that supports
	IPv6:
	Contact an Internet Service Provider to see if they
	 offer IPv6.

	Hurricane
	 Electric offers tunnels with end-points all
	 around the globe.

Note:
Install the net/freenet6 package or
	 port for a dial-up connection.

This section demonstrates how to take the directions from
	a tunnel provider and convert them into
	/etc/rc.conf settings that will persist
	through reboots.
The first /etc/rc.conf entry creates
	the generic tunneling interface
	gif0:
cloned_interfaces="gif0"
Next, configure that interface with the
	IPv4 addresses of the local and remote
	endpoints. Replace MY_IPv4_ADDR
	and REMOTE_IPv4_ADDR with the
	actual IPv4 addresses:
create_args_gif0="tunnel MY_IPv4_ADDR REMOTE_IPv4_ADDR"
To apply the IPv6 address that has been
	assigned for use as the IPv6 tunnel
	endpoint, add this line, replacing
	MY_ASSIGNED_IPv6_TUNNEL_ENDPOINT_ADDR
	with the assigned address:
ifconfig_gif0_ipv6="inet6 MY_ASSIGNED_IPv6_TUNNEL_ENDPOINT_ADDR"
Then, set the default route for the other side of the
	IPv6 tunnel. Replace
	MY_IPv6_REMOTE_TUNNEL_ENDPOINT_ADDR
	with the default gateway address assigned by the
	provider:
ipv6_defaultrouter="MY_IPv6_REMOTE_TUNNEL_ENDPOINT_ADDR"
If the FreeBSD system will route IPv6
	packets between the rest of the network and the world, enable
	the gateway using this line:
ipv6_gateway_enable="YES"
31.9.4. Router Advertisement and Host Auto Configuration
This section demonstrates how to setup rtadvd(8) to
	advertise the IPv6 default route.
To enable rtadvd(8), add the following to
	/etc/rc.conf:
rtadvd_enable="YES"
It is important to specify the interface on which to
	do IPv6 router advertisement. For example,
	to tell rtadvd(8) to use
	rl0:
rtadvd_interfaces="rl0"
Next, create the configuration file,
	/etc/rtadvd.conf as seen in this
	example:
rl0:\
	:addrs#1:addr="2001:db8:1f11:246::":prefixlen#64:tc=ether:
Replace rl0 with the interface
	to be used and 2001:db8:1f11:246::
	with the prefix of the allocation.
For a dedicated /64 subnet, nothing else needs
	to be changed. Otherwise, change the
	prefixlen# to the correct value.
31.9.5. IPv6 and IPv6
	Address Mapping
When IPv6 is enabled on a server, there
	may be a need to enable IPv4 mapped
	IPv6 address communication. This
	compatibility option allows for IPv4
	addresses to be represented as IPv6
	addresses. Permitting IPv6 applications
	to communicate with IPv4 and vice versa
	may be a security issue.
This option may not be required in most cases and is
	available only for compatibility. This option will allow
	IPv6-only applications to work with
	IPv4 in a dual stack environment. This
	is most useful for third party applications which may not
	support an IPv6-only environment. To
	enable this feature,
	add the following to /etc/rc.conf:
ipv6_ipv4mapping="YES"
Reviewing the information in RFC 3493,
	section 3.6 and 3.7 as well as RFC 4038
	section 4.2 may be useful to some administrators.
31.10. Common Address Redundancy Protocol (CARP)

31.10. Common Address Redundancy Protocol
	(CARP)
Contributed by Tom Rhodes. Updated by Allan Jude. The Common Address Redundancy Protocol
 (CARP) allows multiple hosts to share the
 same IP address and Virtual Host ID
 (VHID) in order to provide high
 availability for one or more services. This means
 that one or more hosts can fail, and the other hosts will
 transparently take over so that users do not see a service
 failure.
In addition to the shared IP address,
 each host has its own IP address for
 management and configuration. All of the machines that share an
 IP address have the same
 VHID. The VHID for each
 virtual IP address must be unique across the
 broadcast domain of the network interface.
High availability using CARP is built
 into FreeBSD, though the steps to configure it vary slightly
 depending upon the FreeBSD version. This section provides the same
 example configuration for versions before and equal to or after
 FreeBSD 10.
This example configures failover support with three hosts,
 all with unique IP addresses, but providing
 the same web content. It has two different masters named
 hosta.example.org and
 hostb.example.org, with a shared backup
 named hostc.example.org.
These machines are load balanced with a Round Robin
 DNS configuration. The master and backup
 machines are configured identically except for their hostnames
 and management IP addresses. These servers
 must have the same configuration and run the same services.
 When the failover occurs, requests to the service on the shared
 IP address can only be answered correctly if
 the backup server has access to the same content. The backup
 machine has two additional CARP interfaces,
 one for each of the master content server's
 IP addresses. When a failure occurs, the
 backup server will pick up the failed master machine's
 IP address.
31.10.1. Using CARP on FreeBSD 10 and
	Later
Enable boot-time support for CARP by
	adding an entry for the carp.ko kernel
	module in /boot/loader.conf:
carp_load="YES"
To load the module now without rebooting:
kldload carp
For users who prefer to use a custom kernel, include the
	following line in the custom kernel configuration file and
	compile the kernel as described in Chapter 8, Configuring the FreeBSD Kernel:
device	carp
The hostname, management IP address and
	subnet mask, shared IP address, and
	VHID are all set by adding entries to
	/etc/rc.conf. This example is for
	hosta.example.org:
hostname="hosta.example.org"
ifconfig_em0="inet 192.168.1.3 netmask 255.255.255.0"
ifconfig_em0_alias0="inet vhid 1 pass testpass alias 192.168.1.50/32"
The next set of entries are for
	hostb.example.org. Since it
	represents a second master, it uses a different shared
	IP address and VHID.
	However, the passwords specified with pass
	must be identical as CARP will only listen
	to and accept advertisements from machines with the correct
	password.
hostname="hostb.example.org"
ifconfig_em0="inet 192.168.1.4 netmask 255.255.255.0"
ifconfig_em0_alias0="inet vhid 2 pass testpass alias 192.168.1.51/32"
The third machine,
	hostc.example.org, is configured to
	handle failover from either master. This machine is
	configured with two CARP
	VHIDs, one to handle the virtual
	IP address for each of the master hosts.
	The CARP advertising skew,
	advskew, is set to ensure that the backup
	host advertises later than the master, since
	advskew controls the order of precedence when
	there are multiple backup servers.
hostname="hostc.example.org"
ifconfig_em0="inet 192.168.1.5 netmask 255.255.255.0"
ifconfig_em0_alias0="inet vhid 1 advskew 100 pass testpass alias 192.168.1.50/32"
ifconfig_em0_alias1="inet vhid 2 advskew 100 pass testpass alias 192.168.1.51/32"
Having two CARP
	VHIDs configured means that
	hostc.example.org will notice if
	either of the master servers becomes unavailable. If a master
	fails to advertise before the backup server, the backup server
	will pick up the shared IP address until
	the master becomes available again.
Note:
If the original master server becomes available again,
	 hostc.example.org will not release
	 the virtual IP address back to it
	 automatically. For this to happen, preemption has to be
	 enabled. The feature is disabled by default,
	 it is controlled via the sysctl(8) variable
	 net.inet.carp.preempt. The administrator
	 can force the backup server to return the
	 IP address to the master:
ifconfig em0 vhid 1 state backup

Once the configuration is complete, either restart
	networking or reboot each system. High availability is now
	enabled.
CARP functionality can be controlled
	via several sysctl(8) variables documented in the
	carp(4) manual pages. Other actions can be triggered
	from CARP events by using
	devd(8).
31.10.2. Using CARP on FreeBSD 9 and
	Earlier
The configuration for these versions of FreeBSD is similar to
	the one described in the previous section, except that a
	CARP device must first be created and
	referred to in the configuration.
Enable boot-time support for CARP by
	loading the if_carp.ko kernel module in
	/boot/loader.conf:
if_carp_load="YES"
To load the module now without rebooting:
kldload carp
For users who prefer to use a custom kernel, include the
	following line in the custom kernel configuration file and
	compile the kernel as described in Chapter 8, Configuring the FreeBSD Kernel:
device	carp
Next, on each host, create a CARP
	device:
ifconfig carp0 create
Set the hostname, management IP
	address, the shared IP address, and
	VHID by adding the required lines to
	/etc/rc.conf. Since a virtual
	CARP device is used instead of an alias,
	the actual subnet mask of /24 is used
	instead of /32. Here are the entries for
	hosta.example.org:
hostname="hosta.example.org"
ifconfig_fxp0="inet 192.168.1.3 netmask 255.255.255.0"
cloned_interfaces="carp0"
ifconfig_carp0="vhid 1 pass testpass 192.168.1.50/24"
On hostb.example.org:
hostname="hostb.example.org"
ifconfig_fxp0="inet 192.168.1.4 netmask 255.255.255.0"
cloned_interfaces="carp0"
ifconfig_carp0="vhid 2 pass testpass 192.168.1.51/24"
The third machine,
	hostc.example.org, is configured to
	handle failover from either of the master hosts:
hostname="hostc.example.org"
ifconfig_fxp0="inet 192.168.1.5 netmask 255.255.255.0"
cloned_interfaces="carp0 carp1"
ifconfig_carp0="vhid 1 advskew 100 pass testpass 192.168.1.50/24"
ifconfig_carp1="vhid 2 advskew 100 pass testpass 192.168.1.51/24"
Note:
Preemption is disabled in the
	 GENERIC FreeBSD kernel. If
	 preemption has been enabled with a custom kernel,
	 hostc.example.org may not release
	 the IP address back to the original
	 content server. The administrator can force the backup
	 server to return the IP address to the
	 master with the command:
ifconfig carp0 down && ifconfig carp0 up
This should be done on the carp
	 interface which corresponds to the correct host.

Once the configuration is complete, either restart
	networking or reboot each system. High availability is now
	enabled.
31.11. VLANs

31.11. VLANs
VLANs are a way of virtually dividing up
 a network into many different subnetworks, also referred
 to as segmenting. Each segment will have its
 own broadcast domain and be isolated from other
 VLANs.
On FreeBSD, VLANs must be supported by the
 network card driver. To see which drivers support vlans, refer
 to the vlan(4) manual page.
When configuring a VLAN, a couple pieces
 of information must be known. First, which network interface?
 Second, what is the VLAN tag?
To configure VLANs at run time, with a
 NIC of em0 and a
 VLAN tag of 5 the
 command would look like this:
ifconfig em0.5 create vlan 5 vlandev em0 inet 192.168.20.20/24
Note:
See how the interface name includes the
	NIC driver name and the
	VLAN tag, separated by a period? This is a
	best practice to make maintaining the VLAN
	configuration easy when many VLANs are
	present on a machine.

To configure VLANs at boot time,
 /etc/rc.conf must be updated. To duplicate
 the configuration above, the following will need to be
 added:
vlans_em0="5"
ifconfig_em0_5="inet 192.168.20.20/24"
Additional VLANs may be added, by simply
 adding the tag to the
 vlans_em0
 field and adding an additional line configuring the network on
 that VLAN tag's interface.
It is useful to assign a symbolic name to an interface so
 that when the associated hardware is changed, only a few
 configuration variables need to be updated. For example,
 security cameras need to be run over VLAN 1 on
 em0. Later, if the em0
 card is replaced with a card that uses the ixgb(4) driver,
 all references to em0.1 will not have to
 change to ixgb0.1.
To configure VLAN
 5, on the
 NIC em0, assign the
 interface name cameras, and assign the
 interface an IP address of 192.168.20.20
 with a 24-bit prefix,
 use this command:
ifconfig em0.5 create vlan 5 vlandev em0 name cameras inet 192.168.20.20/24
For an interface named video, use the
 following:
ifconfig video.5 create vlan 5 vlandev video name cameras inet 192.168.20.20/24
To apply the changes at boot time, add the following lines to
 /etc/rc.conf:
vlans_video="camera"
create_args_camera="vlan 5"
ifconfig_camera="inet 192.168.20.20/24"
Part V. Appendices

Part V. Appendices

Appendix A. Obtaining FreeBSD

Appendix A. Obtaining FreeBSD
A.1. CD and
 DVD Sets
FreeBSD CD and DVD sets
 are available from several online retailers:
	FreeBSD Mall, Inc.

	 2420 Sand Creek Rd C-1 #347

	 Brentwood, CA

	 94513

	 USA

	 Phone: +1 925 240-6652

	 Fax: +1 925 674-0821

	 Email: <info@freebsdmall.com>

	 WWW: https://www.freebsdmall.com

	

	Getlinux

	 78 Rue de la Croix Rochopt

	 Épinay-sous-Sénart

	 91860

	 France

	 Email: <contact@getlinux.fr>

	 WWW: http://www.getlinux.fr/

	

	Dr. Hinner EDV

	 Kochelseestr. 11

	 D-81371 München

	 Germany

	 Phone: (0177) 428 419 0

	 Email: <infow@hinner.de>

	 WWW: http://www.hinner.de/linux/freebsd.html

	

	Linux Center

	 Galernaya Street, 55

	 Saint-Petersburg

	 190000

	 Russia

	 Phone: +7-812-309-06-86

	 Email: <info@linuxcenter.ru>

	 WWW: http://linuxcenter.ru/shop/freebsd

	

A.2. FTP Sites

A.2. FTP Sites
The official sources for FreeBSD are available via anonymous
 FTP from a worldwide set of mirror sites.
 The site ftp://ftp.FreeBSD.org/pub/FreeBSD/
 is available via HTTP and
 FTP. It is made up of many machines operated
 by the project cluster administrators and behind GeoDNS to
 direct users to the closest available mirror.
Additionally, FreeBSD is available via anonymous
 FTP from the following mirror sites. When
 obtaining FreeBSD via anonymous FTP,
 please try to use a nearby site. The mirror sites listed as
 “Primary Mirror Sites” typically have the entire
 FreeBSD archive (all the currently available versions for each of
 the architectures) but faster download speeds are probably
 available from a site that is in your country or region. The
 regional sites carry the most recent versions for the most
 popular architecture(s) but might not carry the entire FreeBSD
 archive. All sites provide access via anonymous
 FTP but some sites also provide access via
 other methods. The access methods available for each site are
 provided in parentheses after the hostname.
Central Servers, Primary Mirror Sites, Armenia, Australia, Austria, Brazil, China, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hong Kong, Ireland, Japan, Korea, Latvia, Lithuania, Netherlands, New Zealand, Norway, Poland, Russia, Saudi Arabia, Slovenia, South Africa, Spain, Sweden, Switzerland, Taiwan, Ukraine, United Kingdom, USA.
(as of UTC)
	Central Servers
		ftp://ftp.FreeBSD.org/pub/FreeBSD/ (ftp / ftpv6 / http://ftp.FreeBSD.org/pub/FreeBSD/ / http://ftp.FreeBSD.org/pub/FreeBSD/)

	Primary Mirror Sites
	In case of problems, please contact the hostmaster
 <mirror-admin@FreeBSD.org> for this domain.
	ftp://ftp1.FreeBSD.org/pub/FreeBSD/ (ftp)

	ftp://ftp2.FreeBSD.org/pub/FreeBSD/ (ftp)

	ftp://ftp3.FreeBSD.org/pub/FreeBSD/ (ftp)

	ftp://ftp4.FreeBSD.org/pub/FreeBSD/ (ftp / ftpv6 / http://ftp4.FreeBSD.org/pub/FreeBSD/ / http://ftp4.FreeBSD.org/pub/FreeBSD/)

	ftp://ftp5.FreeBSD.org/pub/FreeBSD/ (ftp)

	ftp://ftp6.FreeBSD.org/pub/FreeBSD/ (ftp)

	ftp://ftp7.FreeBSD.org/pub/FreeBSD/ (ftp)

	ftp://ftp10.FreeBSD.org/pub/FreeBSD/ (ftp / ftpv6 / http://ftp10.FreeBSD.org/pub/FreeBSD/ / http://ftp10.FreeBSD.org/pub/FreeBSD/)

	ftp://ftp11.FreeBSD.org/pub/FreeBSD/ (ftp)

	ftp://ftp13.FreeBSD.org/pub/FreeBSD/ (ftp)

	ftp://ftp14.FreeBSD.org/pub/FreeBSD/ (ftp / http://ftp14.FreeBSD.org/pub/FreeBSD/)

	Armenia
	In case of problems, please contact the hostmaster
 <hostmaster@am.FreeBSD.org> for this domain.
	ftp://ftp1.am.FreeBSD.org/pub/FreeBSD/ (ftp / http://ftp1.am.FreeBSD.org/pub/FreeBSD/ / rsync)

	Australia
	In case of problems, please contact the hostmaster
 <hostmaster@au.FreeBSD.org> for this domain.
	ftp://ftp.au.FreeBSD.org/pub/FreeBSD/ (ftp)

	ftp://ftp2.au.FreeBSD.org/pub/FreeBSD/ (ftp)

	ftp://ftp3.au.FreeBSD.org/pub/FreeBSD/ (ftp)

	Austria
	In case of problems, please contact the hostmaster
 <hostmaster@at.FreeBSD.org> for this domain.
	ftp://ftp.at.FreeBSD.org/pub/FreeBSD/ (ftp / ftpv6 / http://ftp.at.FreeBSD.org/pub/FreeBSD/ / http://ftp.at.FreeBSD.org/pub/FreeBSD/)

	Brazil
	In case of problems, please contact the hostmaster
 <hostmaster@br.FreeBSD.org> for this domain.
	ftp://ftp2.br.FreeBSD.org/FreeBSD/ (ftp / http://ftp2.br.FreeBSD.org/)

	ftp://ftp3.br.FreeBSD.org/pub/FreeBSD/ (ftp / rsync)

	ftp://ftp4.br.FreeBSD.org/pub/FreeBSD/ (ftp)

	China
	In case of problems, please contact the hostmaster
 <hostmaster@cn.FreeBSD.org> for this domain.
	ftp://ftp.cn.FreeBSD.org/pub/FreeBSD/ (ftp)

	Czech Republic
	In case of problems, please contact the hostmaster
 <hostmaster@cz.FreeBSD.org> for this domain.
	ftp://ftp.cz.FreeBSD.org/pub/FreeBSD/ (ftp / ftp://ftp.cz.FreeBSD.org/pub/FreeBSD/ / http://ftp.cz.FreeBSD.org/pub/FreeBSD/ / http://ftp.cz.FreeBSD.org/pub/FreeBSD/ / rsync / rsyncv6)

	ftp://ftp2.cz.FreeBSD.org/pub/FreeBSD/ (ftp / http://ftp2.cz.FreeBSD.org/pub/FreeBSD/)

	Denmark
	In case of problems, please contact the hostmaster
 <hostmaster@dk.FreeBSD.org> for this domain.
	ftp://ftp.dk.FreeBSD.org/pub/FreeBSD/ (ftp / ftpv6 / http://ftp.dk.FreeBSD.org/pub/FreeBSD/ / http://ftp.dk.FreeBSD.org/pub/FreeBSD/)

	Estonia
	In case of problems, please contact the hostmaster
 <hostmaster@ee.FreeBSD.org> for this domain.
	ftp://ftp.ee.FreeBSD.org/pub/FreeBSD/ (ftp)

	Finland
	In case of problems, please contact the hostmaster
 <hostmaster@fi.FreeBSD.org> for this domain.
	ftp://ftp.fi.FreeBSD.org/pub/FreeBSD/ (ftp)

	France
	In case of problems, please contact the hostmaster
 <hostmaster@fr.FreeBSD.org> for this domain.
	ftp://ftp.fr.FreeBSD.org/pub/FreeBSD/ (ftp)

	ftp://ftp1.fr.FreeBSD.org/pub/FreeBSD/ (ftp / http://ftp1.fr.FreeBSD.org/pub/FreeBSD/ / rsync)

	ftp://ftp3.fr.FreeBSD.org/pub/FreeBSD/ (ftp)

	ftp://ftp5.fr.FreeBSD.org/pub/FreeBSD/ (ftp)

	ftp://ftp6.fr.FreeBSD.org/pub/FreeBSD/ (ftp / rsync)

	ftp://ftp7.fr.FreeBSD.org/pub/FreeBSD/ (ftp)

	ftp://ftp8.fr.FreeBSD.org/pub/FreeBSD/ (ftp)

	Germany
	In case of problems, please contact the hostmaster
 <de-bsd-hubs@de.FreeBSD.org> for this domain.
	ftp://ftp.de.FreeBSD.org/pub/FreeBSD/ (ftp)

	ftp://ftp1.de.FreeBSD.org/freebsd/ (ftp / http://www1.de.FreeBSD.org/freebsd/ / rsync://rsync3.de.FreeBSD.org/freebsd/)

	ftp://ftp2.de.FreeBSD.org/pub/FreeBSD/ (ftp / http://ftp2.de.FreeBSD.org/pub/FreeBSD/ / rsync)

	ftp://ftp4.de.FreeBSD.org/FreeBSD/ (ftp / http://ftp4.de.FreeBSD.org/pub/FreeBSD/)

	ftp://ftp5.de.FreeBSD.org/pub/FreeBSD/ (ftp)

	ftp://ftp7.de.FreeBSD.org/pub/FreeBSD/ (ftp / http://ftp7.de.FreeBSD.org/pub/FreeBSD/)

	ftp://ftp8.de.FreeBSD.org/pub/FreeBSD/ (ftp)

	Greece
	In case of problems, please contact the hostmaster
 <hostmaster@gr.FreeBSD.org> for this domain.
	ftp://ftp.gr.FreeBSD.org/pub/FreeBSD/ (ftp)

	ftp://ftp2.gr.FreeBSD.org/pub/FreeBSD/ (ftp)

	Hong Kong
		ftp://ftp.hk.FreeBSD.org/pub/FreeBSD/ (ftp)

	Ireland
	In case of problems, please contact the hostmaster
 <hostmaster@ie.FreeBSD.org> for this domain.
	ftp://ftp3.ie.FreeBSD.org/pub/FreeBSD/ (ftp / rsync)

	Japan
	In case of problems, please contact the hostmaster
 <hostmaster@jp.FreeBSD.org> for this domain.
	ftp://ftp.jp.FreeBSD.org/pub/FreeBSD/ (ftp)

	ftp://ftp2.jp.FreeBSD.org/pub/FreeBSD/ (ftp)

	ftp://ftp3.jp.FreeBSD.org/pub/FreeBSD/ (ftp)

	ftp://ftp4.jp.FreeBSD.org/pub/FreeBSD/ (ftp)

	ftp://ftp5.jp.FreeBSD.org/pub/FreeBSD/ (ftp)

	ftp://ftp6.jp.FreeBSD.org/pub/FreeBSD/ (ftp)

	ftp://ftp7.jp.FreeBSD.org/pub/FreeBSD/ (ftp)

	ftp://ftp8.jp.FreeBSD.org/pub/FreeBSD/ (ftp)

	ftp://ftp9.jp.FreeBSD.org/pub/FreeBSD/ (ftp)

	Korea
	In case of problems, please contact the hostmaster
 <hostmaster@kr.FreeBSD.org> for this domain.
	ftp://ftp.kr.FreeBSD.org/pub/FreeBSD/ (ftp / rsync)

	ftp://ftp2.kr.FreeBSD.org/pub/FreeBSD/ (ftp / http://ftp2.kr.FreeBSD.org/pub/FreeBSD/)

	Latvia
	In case of problems, please contact the hostmaster
 <hostmaster@lv.FreeBSD.org> for this domain.
	ftp://ftp.lv.FreeBSD.org/pub/FreeBSD/ (ftp / http://ftp.lv.FreeBSD.org/pub/FreeBSD/)

	Lithuania
	In case of problems, please contact the hostmaster
 <hostmaster@lt.FreeBSD.org> for this domain.
	ftp://ftp.lt.FreeBSD.org/pub/FreeBSD/ (ftp / http://ftp.lt.FreeBSD.org/pub/FreeBSD/)

	Netherlands
	In case of problems, please contact the hostmaster
 <hostmaster@nl.FreeBSD.org> for this domain.
	ftp://ftp.nl.FreeBSD.org/pub/FreeBSD/ (ftp / http://ftp.nl.FreeBSD.org/os/FreeBSD/ / rsync)

	ftp://ftp2.nl.FreeBSD.org/pub/FreeBSD/ (ftp)

	New Zealand
		ftp://ftp.nz.FreeBSD.org/pub/FreeBSD/ (ftp / http://ftp.nz.FreeBSD.org/pub/FreeBSD/)

	Norway
	In case of problems, please contact the hostmaster
 <hostmaster@no.FreeBSD.org> for this domain.
	ftp://ftp.no.FreeBSD.org/pub/FreeBSD/ (ftp / rsync)

	Poland
	In case of problems, please contact the hostmaster
 <hostmaster@pl.FreeBSD.org> for this domain.
	ftp://ftp.pl.FreeBSD.org/pub/FreeBSD/ (ftp)

	ftp2.pl.FreeBSD.org

	Russia
	In case of problems, please contact the hostmaster
 <hostmaster@ru.FreeBSD.org> for this domain.
	ftp://ftp.ru.FreeBSD.org/pub/FreeBSD/ (ftp / http://ftp.ru.FreeBSD.org/FreeBSD/ / rsync)

	ftp://ftp2.ru.FreeBSD.org/pub/FreeBSD/ (ftp / http://ftp2.ru.FreeBSD.org/pub/FreeBSD/ / rsync)

	ftp://ftp4.ru.FreeBSD.org/pub/FreeBSD/ (ftp)

	ftp://ftp5.ru.FreeBSD.org/pub/FreeBSD/ (ftp / http://ftp5.ru.FreeBSD.org/pub/FreeBSD/ / rsync)

	ftp://ftp6.ru.FreeBSD.org/pub/FreeBSD/ (ftp)

	Saudi Arabia
	In case of problems, please contact the hostmaster
 <ftpadmin@isu.net.sa> for this domain.
	ftp://ftp.isu.net.sa/pub/ftp.freebsd.org/ (ftp)

	Slovenia
	In case of problems, please contact the hostmaster
 <hostmaster@si.FreeBSD.org> for this domain.
	ftp://ftp.si.FreeBSD.org/pub/FreeBSD/ (ftp)

	South Africa
	In case of problems, please contact the hostmaster
 <hostmaster@za.FreeBSD.org> for this domain.
	ftp://ftp.za.FreeBSD.org/pub/FreeBSD/ (ftp)

	ftp://ftp2.za.FreeBSD.org/pub/FreeBSD/ (ftp)

	ftp://ftp4.za.FreeBSD.org/pub/FreeBSD/ (ftp)

	Spain
	In case of problems, please contact the hostmaster
 <hostmaster@es.FreeBSD.org> for this domain.
	ftp://ftp.es.FreeBSD.org/pub/FreeBSD/ (ftp / http://ftp.es.FreeBSD.org/pub/FreeBSD/)

	ftp://ftp3.es.FreeBSD.org/pub/FreeBSD/ (ftp)

	Sweden
	In case of problems, please contact the hostmaster
 <hostmaster@se.FreeBSD.org> for this domain.
	ftp://ftp.se.FreeBSD.org/pub/FreeBSD/ (ftp)

	ftp://ftp2.se.FreeBSD.org/pub/FreeBSD/ (ftp / rsync://ftp2.se.FreeBSD.org/)

	ftp://ftp3.se.FreeBSD.org/pub/FreeBSD/ (ftp)

	ftp://ftp4.se.FreeBSD.org/pub/FreeBSD/ (ftp / ftp://ftp4.se.FreeBSD.org/pub/FreeBSD/ / http://ftp4.se.FreeBSD.org/pub/FreeBSD/ / http://ftp4.se.FreeBSD.org/pub/FreeBSD/ / rsync://ftp4.se.FreeBSD.org/pub/FreeBSD/ / rsync://ftp4.se.FreeBSD.org/pub/FreeBSD/)

	ftp://ftp6.se.FreeBSD.org/pub/FreeBSD/ (ftp / http://ftp6.se.FreeBSD.org/pub/FreeBSD/)

	Switzerland
	In case of problems, please contact the hostmaster
 <hostmaster@ch.FreeBSD.org> for this domain.
	ftp://ftp.ch.FreeBSD.org/pub/FreeBSD/ (ftp / http://ftp.ch.FreeBSD.org/pub/FreeBSD/)

	Taiwan
	In case of problems, please contact the hostmaster
 <hostmaster@tw.FreeBSD.org> for this domain.
	ftp://ftp.tw.FreeBSD.org/pub/FreeBSD/ (ftp / ftp://ftp.tw.FreeBSD.org/pub/FreeBSD/ / rsync / rsyncv6)

	ftp://ftp2.tw.FreeBSD.org/pub/FreeBSD/ (ftp / ftp://ftp2.tw.FreeBSD.org/pub/FreeBSD/ / http://ftp2.tw.FreeBSD.org/pub/FreeBSD/ / http://ftp2.tw.FreeBSD.org/pub/FreeBSD/ / rsync / rsyncv6)

	ftp://ftp4.tw.FreeBSD.org/pub/FreeBSD/ (ftp)

	ftp://ftp5.tw.FreeBSD.org/pub/FreeBSD/ (ftp)

	ftp://ftp6.tw.FreeBSD.org/pub/FreeBSD/ (ftp / http://ftp6.tw.FreeBSD.org/ / rsync)

	ftp://ftp7.tw.FreeBSD.org/pub/FreeBSD/ (ftp)

	ftp://ftp8.tw.FreeBSD.org/pub/FreeBSD/ (ftp)

	ftp://ftp11.tw.FreeBSD.org/pub/FreeBSD/ (ftp / http://ftp11.tw.FreeBSD.org/FreeBSD/)

	ftp://ftp12.tw.FreeBSD.org/pub/FreeBSD/ (ftp)

	ftp://ftp13.tw.FreeBSD.org/pub/FreeBSD/ (ftp)

	ftp://ftp14.tw.FreeBSD.org/pub/FreeBSD/ (ftp)

	ftp://ftp15.tw.FreeBSD.org/pub/FreeBSD/ (ftp)

	Ukraine
		ftp://ftp.ua.FreeBSD.org/pub/FreeBSD/ (ftp / http://ftp.ua.FreeBSD.org/pub/FreeBSD/)

	ftp://ftp6.ua.FreeBSD.org/pub/FreeBSD/ (ftp / http://ftp6.ua.FreeBSD.org/pub/FreeBSD / rsync://ftp6.ua.FreeBSD.org/FreeBSD/)

	ftp://ftp7.ua.FreeBSD.org/pub/FreeBSD/ (ftp)

	United Kingdom
	In case of problems, please contact the hostmaster
 <hostmaster@uk.FreeBSD.org> for this domain.
	ftp://ftp.uk.FreeBSD.org/pub/FreeBSD/ (ftp)

	ftp://ftp2.uk.FreeBSD.org/pub/FreeBSD/ (ftp / rsync://ftp2.uk.FreeBSD.org/ftp.freebsd.org/pub/FreeBSD/)

	ftp://ftp3.uk.FreeBSD.org/pub/FreeBSD/ (ftp)

	ftp://ftp4.uk.FreeBSD.org/pub/FreeBSD/ (ftp)

	ftp://ftp5.uk.FreeBSD.org/pub/FreeBSD/ (ftp)

	USA
	In case of problems, please contact the hostmaster
 <hostmaster@us.FreeBSD.org> for this domain.
	ftp://ftp1.us.FreeBSD.org/pub/FreeBSD/ (ftp)

	ftp://ftp2.us.FreeBSD.org/pub/FreeBSD/ (ftp)

	ftp://ftp3.us.FreeBSD.org/pub/FreeBSD/ (ftp)

	ftp://ftp4.us.FreeBSD.org/pub/FreeBSD/ (ftp / ftpv6 / http://ftp4.us.FreeBSD.org/pub/FreeBSD/ / http://ftp4.us.FreeBSD.org/pub/FreeBSD/)

	ftp://ftp5.us.FreeBSD.org/pub/FreeBSD/ (ftp)

	ftp://ftp6.us.FreeBSD.org/pub/FreeBSD/ (ftp)

	ftp://ftp8.us.FreeBSD.org/pub/FreeBSD/ (ftp)

	ftp://ftp10.us.FreeBSD.org/pub/FreeBSD/ (ftp)

	ftp://ftp11.us.FreeBSD.org/pub/FreeBSD/ (ftp)

	ftp://ftp13.us.FreeBSD.org/pub/FreeBSD/ (ftp / http://ftp13.us.FreeBSD.org/pub/FreeBSD/ / rsync)

	ftp://ftp14.us.FreeBSD.org/pub/FreeBSD/ (ftp / http://ftp14.us.FreeBSD.org/pub/FreeBSD/)

	ftp://ftp15.us.FreeBSD.org/pub/FreeBSD/ (ftp)

A.3. Using Subversion

A.3. Using Subversion
A.3.1. Introduction
As of July 2012, FreeBSD uses
	Subversion as the only version
	control system for storing all of FreeBSD's source code,
	documentation, and the Ports Collection.
Note:
Subversion is generally a
	 developer tool. Users may prefer to use
	 freebsd-update (Section 23.2, “FreeBSD Update”) to update
	 the FreeBSD base system, and portsnap (Section 4.5, “Using the Ports Collection”) to update the FreeBSD Ports
	 Collection.

This section demonstrates how to install
	Subversion on a FreeBSD system and
	use it to create a local copy of a FreeBSD repository.
	Additional information on the use of
	Subversion is included.
A.3.2. Root SSL Certificates
Installing
	security/ca_root_nss allows
	Subversion to verify the identity
	of HTTPS repository servers. The root
	SSL certificates can be installed from a
	port:
cd /usr/ports/security/ca_root_nss
make install clean
or as a package:
pkg install ca_root_nss
A.3.3. Svnlite
A lightweight version of
	Subversion is already installed
	on FreeBSD as svnlite. The port or package
	version of Subversion is only
	needed if the Python or Perl API is needed,
	or if a later version of Subversion is desired.
The only difference from normal
	Subversion use is that the command
	name is svnlite.
A.3.4. Installation
If svnlite is unavailable or the full
	version of Subversion is needed,
	then it must be installed.
Subversion can be installed
	from the Ports Collection:
cd /usr/ports/devel/subversion
make install clean
Subversion can also be
	installed as a package:
pkg install subversion
A.3.5. Running Subversion
To fetch a clean copy of the sources into a local
	directory, use svn. The files in this
	directory are called a local working
	 copy.
Warning:
Move or delete an existing destination directory before
	 using checkout for the first time.
Checkout over an existing
	 non-svn directory can cause conflicts
	 between the existing files and those brought in from the
	 repository.

Subversion uses
	URLs to designate a repository, taking the
	form of protocol://hostname/path.
	The first component of the path is the FreeBSD repository to
	access. There are three different repositories,
	base for the FreeBSD base system source code,
	ports for the Ports Collection, and
	doc for documentation. For example, the
	URL
	https://svn.FreeBSD.org/ports/head/
	specifies the main branch of the ports repository,
	using the https protocol.
A checkout from a given repository is performed with a
	command like this:
svn checkout https://svn.FreeBSD.org/repository/branch lwcdir
where:
	repository is one of the
	 Project repositories: base,
	 ports, or
	 doc.

	branch depends on the
	 repository used. ports and
	 doc are mostly updated in the
	 head branch, while
	 base maintains the latest version of
	 -CURRENT under head and the respective
	 latest versions of the -STABLE branches under
	 stable/9
	 (9.x) and
	 stable/10
	 (10.x).

	lwcdir is the target
	 directory where the contents of the specified branch
	 should be placed. This is usually
	 /usr/ports for
	 ports,
	 /usr/src for
	 base, and
	 /usr/doc for
	 doc.

This example checks out the Ports Collection from the
	FreeBSD repository using the HTTPS
	protocol, placing the local working copy in
	/usr/ports. If
	/usr/ports is already
	present but was not created by svn,
	remember to rename or delete it before the checkout.
svn checkout https://svn.FreeBSD.org/ports/head /usr/ports
Because the initial checkout must download the full
	branch of the remote repository, it can take a while. Please
	be patient.
After the initial checkout, the local working copy can be
	updated by running:
svn update lwcdir
To update
	/usr/ports created in
	the example above, use:
svn update /usr/ports
The update is much quicker than a checkout, only
	transferring files that have changed.
An alternate way of updating the local working copy after
	checkout is provided by the Makefile in
	the /usr/ports,
	/usr/src, and
	/usr/doc directories.
	Set SVN_UPDATE and use the
	update target. For example, to
	update /usr/src:
cd /usr/src
make update SVN_UPDATE=yes
A.3.6. Subversion Mirror
	Sites
The FreeBSD Subversion
	repository is:
svn.FreeBSD.org
This is
	a publicly accessible mirror network that uses GeoDNS to
	select an appropriate back end server. To view the FreeBSD
	Subversion repositories through a
	browser, use https://svnweb.FreeBSD.org/.
HTTPS is the preferred protocol, but the
	security/ca_root_nss
	package will need to be installed in order to automatically
	validate certificates.
A.3.7. For More Information
For other information about using
	Subversion, please see the
	“Subversion Book”, titled
	Version
	 Control with Subversion, or the Subversion
	 Documentation.
A.4. Using rsync

A.4. Using rsync
These sites make FreeBSD available through the rsync
 protocol. The rsync utility
 transfers only the differences between two sets of files.
 This is useful for mirror sites of the FreeBSD
 FTP server. The
 rsync suite is available for many
 operating systems, on FreeBSD, see the net/rsync
 port or use the package.
	Czech Republic
	rsync://ftp.cz.FreeBSD.org/
Available collections:
	ftp: A partial mirror of the FreeBSD
		FTP server.

	FreeBSD: A full mirror of the FreeBSD
		FTP server.

	Netherlands
	rsync://ftp.nl.FreeBSD.org/
Available collections:
	FreeBSD: A full mirror of the FreeBSD
		FTP server.

	Russia
	rsync://ftp.mtu.ru/
Available collections:
	FreeBSD: A full mirror of the FreeBSD
		FTP server.

	FreeBSD-Archive: The mirror of FreeBSD Archive
		FTP server.

	Sweden
	rsync://ftp4.se.freebsd.org/
Available collections:
	FreeBSD: A full mirror of the FreeBSD
		FTP server.

	Taiwan
	rsync://ftp.tw.FreeBSD.org/
rsync://ftp2.tw.FreeBSD.org/
rsync://ftp6.tw.FreeBSD.org/
Available collections:
	FreeBSD: A full mirror of the FreeBSD
		FTP server.

	United Kingdom
	rsync://rsync.mirrorservice.org/
Available collections:
	ftp.freebsd.org: A full mirror of the FreeBSD
		FTP server.

	United States of America
	rsync://ftp-master.FreeBSD.org/
This server may only be used by FreeBSD primary mirror
	 sites.
Available collections:
	FreeBSD: The master archive of the FreeBSD
		FTP server.

	acl: The FreeBSD master ACL list.

rsync://ftp13.FreeBSD.org/
Available collections:
	FreeBSD: A full mirror of the FreeBSD
		FTP server.

Appendix B. Bibliography

Appendix B. Bibliography
While manual pages provide a definitive reference for
 individual pieces of the FreeBSD operating system, they seldom
 illustrate how to put the pieces together to
 make the whole operating system run smoothly. For this, there is
 no substitute for a good book or users' manual on UNIX® system
 administration.
B.1. Books Specific to FreeBSD
International books:
	Using
	 FreeBSD (in Traditional Chinese), published by
	 Drmaster,
	 1997. ISBN 9-578-39435-7.

	FreeBSD Unleashed (Simplified Chinese translation),
	 published by
	 China Machine
	 Press. ISBN 7-111-10201-0.

	FreeBSD From Scratch Second Edition (in Simplified
	 Chinese), published by China Machine Press. ISBN
	 7-111-10286-X.

	FreeBSD Handbook Second Edition (Simplified Chinese
	 translation), published by Posts &
	 Telecom Press. ISBN 7-115-10541-3.

	FreeBSD & Windows (in Simplified Chinese), published
	 by China Railway
	 Publishing House. ISBN 7-113-03845-X

	FreeBSD Internet Services HOWTO (in Simplified Chinese),
	 published by China Railway Publishing House. ISBN
	 7-113-03423-3

	FreeBSD (in Japanese), published by CUTT. ISBN
	 4-906391-22-2 C3055 P2400E.

	Complete
	 Introduction to FreeBSD (in Japanese), published by
	 Shoeisha Co.,
	 Ltd. ISBN 4-88135-473-6 P3600E.

	Personal
	 UNIX Starter Kit FreeBSD (in Japanese), published
	 by ASCII.
	 ISBN 4-7561-1733-3 P3000E.

	FreeBSD Handbook (Japanese translation), published by
	 ASCII.
	 ISBN 4-7561-1580-2 P3800E.

	FreeBSD mit Methode (in German), published by
	 Computer und Literatur
	 Verlag/Vertrieb Hanser, 1998. ISBN
	 3-932311-31-0.

	
	 FreeBSD de Luxe (in German), published by
	 Verlag Modere
	 Industrie, 2003. ISBN 3-8266-1343-0.

	FreeBSD
	 Install and Utilization Manual (in Japanese),
	 published by
	 Mainichi
	 Communications Inc., 1998. ISBN
	 4-8399-0112-0.

	Onno W Purbo, Dodi Maryanto, Syahrial Hubbany, Widjil
	 Widodo Building Internet
	 Server with FreeBSD (in Indonesia
	 Language), published by
	 Elex
	 Media Komputindo.

	Absolute BSD: The Ultimate Guide to FreeBSD (Traditional
	 Chinese translation), published by GrandTech
	 Press, 2003. ISBN 986-7944-92-5.

	The
	 FreeBSD 6.0 Book (in Traditional Chinese),
	 published by Drmaster, 2006. ISBN 9-575-27878-X.

English language books:
	Absolute
	 FreeBSD, 2nd Edition: The Complete Guide to
	 FreeBSD, published by
	 No Starch
	 Press, 2007. ISBN: 978-1-59327-151-0

	
	 The Complete FreeBSD, published by
	 O'Reilly,
	 2003. ISBN: 0596005164

	The
	 FreeBSD Corporate Networker's Guide, published by
	 Addison-Wesley,
	 2000. ISBN: 0201704811

	
	 FreeBSD: An Open-Source Operating System for Your Personal
	 Computer, published by The Bit Tree Press, 2001.
	 ISBN: 0971204500

	Teach Yourself FreeBSD in 24 Hours, published by Sams,
	 2002. ISBN: 0672324245

	FreeBSD 6 Unleashed, published by Sams,
	 2006. ISBN: 0672328755

	FreeBSD: The Complete Reference, published by McGrawHill,
	 2003. ISBN: 0072224096

B.3. Administrators' Guides

B.3. Administrators' Guides
	Jpman
	 Project, Japan FreeBSD Users Group. FreeBSD
	 System Administrator's Manual (Japanese
	 translation).
	 Mainichi
	 Communications Inc., 1998. ISBN4-8399-0109-0
	 P3300E.

	Dreyfus, Emmanuel. Cahiers
	 de l'Admin: BSD 2nd Ed. (in French), Eyrolles,
	 2004. ISBN 2-212-11463-X

B.4. Programmers' Guides

B.4. Programmers' Guides
	Computer Systems Research Group, UC Berkeley.
	 4.4BSD Programmer's Reference Manual.
	 O'Reilly & Associates, Inc., 1994. ISBN
	 1-56592-078-3

	Computer Systems Research Group, UC Berkeley.
	 4.4BSD Programmer's Supplementary
	 Documents. O'Reilly & Associates, Inc.,
	 1994. ISBN 1-56592-079-1

	Harbison, Samuel P. and Steele, Guy L. Jr. C:
	 A Reference Manual. 4th Ed. Prentice Hall,
	 1995. ISBN 0-13-326224-3

	Kernighan, Brian and Dennis M. Ritchie. The C
	 Programming Language. 2nd Ed. PTR Prentice
	 Hall, 1988. ISBN 0-13-110362-8

	Lehey, Greg. Porting UNIX
	 Software. O'Reilly & Associates, Inc.,
	 1995. ISBN 1-56592-126-7

	Plauger, P. J. The Standard C
	 Library. Prentice Hall, 1992. ISBN
	 0-13-131509-9

	Spinellis, Diomidis. Code
	 Reading: The Open Source Perspective.
	 Addison-Wesley, 2003. ISBN 0-201-79940-5

	Spinellis, Diomidis. Code
	 Quality: The Open Source Perspective.
	 Addison-Wesley, 2006. ISBN 0-321-16607-8

	Stevens, W. Richard and Stephen A. Rago.
	 Advanced Programming in the UNIX
	 Environment. 2nd Ed. Reading, Mass. :
	 Addison-Wesley, 2005. ISBN 0-201-43307-9

	Stevens, W. Richard. UNIX Network
	 Programming. 2nd Ed, PTR Prentice Hall, 1998.
	 ISBN 0-13-490012-X

B.6. Security Reference

B.6. Security Reference
	Cheswick, William R. and Steven M. Bellovin.
	 Firewalls and Internet Security: Repelling the
	 Wily Hacker. Reading, Mass. : Addison-Wesley,
	 1995. ISBN 0-201-63357-4

	Garfinkel, Simson. PGP Pretty Good
	 Privacy O'Reilly & Associates, Inc., 1995.
	 ISBN 1-56592-098-8

B.7. Hardware Reference

B.7. Hardware Reference
	Anderson, Don and Tom Shanley. Pentium
	 Processor System Architecture. 2nd Ed.
	 Reading, Mass. : Addison-Wesley, 1995. ISBN
	 0-201-40992-5

	Ferraro, Richard F. Programmer's Guide to the
	 EGA, VGA, and Super VGA Cards. 3rd ed.
	 Reading, Mass. : Addison-Wesley, 1995. ISBN
	 0-201-62490-7

	Intel Corporation publishes documentation on their CPUs,
	 chipsets and standards on their
	 developer web
	 site, usually as PDF files.

	Shanley, Tom. 80486 System
	 Architecture. 3rd Ed. Reading, Mass. :
	 Addison-Wesley, 1995. ISBN 0-201-40994-1

	Shanley, Tom. ISA System
	 Architecture. 3rd Ed. Reading, Mass. :
	 Addison-Wesley, 1995. ISBN 0-201-40996-8

	Shanley, Tom. PCI System
	 Architecture. 4th Ed. Reading, Mass. :
	 Addison-Wesley, 1999. ISBN 0-201-30974-2

	Van Gilluwe, Frank. The Undocumented
	 PC, 2nd Ed. Reading, Mass: Addison-Wesley Pub.
	 Co., 1996. ISBN 0-201-47950-8

	Messmer, Hans-Peter. The Indispensable PC
	 Hardware Book, 4th Ed. Reading, Mass :
	 Addison-Wesley Pub. Co., 2002. ISBN 0-201-59616-4

B.9. Periodicals, Journals, and Magazines

B.9. Periodicals, Journals, and Magazines
	Admin
	 Magazin (in German), published by
	 Medialinx AG. ISSN: 2190-1066

	BSD
	 Magazine, published by Software Press Sp. z o.o.
	 SK. ISSN: 1898-9144

	BSD Now
	 — Video Podcast, published by
	 Jupiter Broadcasting LLC

	BSD
	 Talk Podcast, by Will Backman

	FreeBSD
	 Journal, published by S&W
	 Publishing, sponsored by The FreeBSD Foundation.
	 ISBN: 978-0-615-88479-0

Appendix C. Resources on the Internet

Appendix C. Resources on the Internet
The rapid pace of FreeBSD progress makes print media
 impractical as a means of following the latest developments.
 Electronic resources are the best, if not often the only, way to
 stay informed of the latest advances. Since FreeBSD is a volunteer
 effort, the user community itself also generally serves as a
 “technical support department” of sorts, with
 electronic mail, web forums, and USENET news being the most
 effective way of reaching that community.
The most important points of contact with the FreeBSD user
 community are outlined below. Please send other resources not
 mentioned here to the FreeBSD documentation project mailing list so that they may also be
 included.
C.1. Websites
	The
	 FreeBSD Forums provide a web based discussion forum
	 for FreeBSD questions and technical
	 discussion.

	Planet
	 FreeBSD offers an aggregation feed of dozens of blogs
	 written by FreeBSD developers. Many developers use this to
	 post quick notes about what they are working on, new
	 patches, and other works in progress.

	The BSDConferences
	 YouTube Channel provides a collection of high
	 quality videos from BSD conferences around the world.
	 This is a great way to watch key developers give
	 presentations about new work in FreeBSD.

C.4. Official Mirrors

C.4. Official Mirrors
Central Servers, Armenia, Australia, Austria, Czech Republic, Denmark, Finland, France, Germany, Hong Kong, Ireland, Japan, Latvia, Lithuania, Netherlands, Norway, Russia, Slovenia, South Africa, Spain, Sweden, Switzerland, Taiwan, United Kingdom, USA.
(as of UTC)
	Central Servers
	
 https://www.FreeBSD.org/

	Armenia
	http://www1.am.FreeBSD.org/ (IPv6)

	Australia
	
 http://www.au.FreeBSD.org/

	
 http://www2.au.FreeBSD.org/

	Austria
	http://www.at.FreeBSD.org/ (IPv6)

	Czech Republic
	http://www.cz.FreeBSD.org/ (IPv6)

	Denmark
	http://www.dk.FreeBSD.org/ (IPv6)

	Finland
	
 http://www.fi.FreeBSD.org/

	France
	
 http://www1.fr.FreeBSD.org/

	Germany
	
 http://www.de.FreeBSD.org/

	Hong Kong
	
 http://www.hk.FreeBSD.org/

	Ireland
	
 http://www.ie.FreeBSD.org/

	Japan
	http://www.jp.FreeBSD.org/www.FreeBSD.org/ (IPv6)

	Latvia
	
 http://www.lv.FreeBSD.org/

	Lithuania
	
 http://www.lt.FreeBSD.org/

	Netherlands
	
 http://www.nl.FreeBSD.org/

	Norway
	
 http://www.no.FreeBSD.org/

	Russia
	http://www.ru.FreeBSD.org/ (IPv6)

	Slovenia
	
 http://www.si.FreeBSD.org/

	South Africa
	
 http://www.za.FreeBSD.org/

	Spain
	
 http://www.es.FreeBSD.org/

	
 http://www2.es.FreeBSD.org/

	Sweden
	
 http://www.se.FreeBSD.org/

	Switzerland
	http://www.ch.FreeBSD.org/ (IPv6)

	http://www2.ch.FreeBSD.org/ (IPv6)

	Taiwan
	
 http://www.tw.FreeBSD.org/

	
 http://www2.tw.FreeBSD.org/

	
 http://www4.tw.FreeBSD.org/

	http://www5.tw.FreeBSD.org/ (IPv6)

	United Kingdom
	
 http://www1.uk.FreeBSD.org/

	
 http://www3.uk.FreeBSD.org/

	USA
	http://www5.us.FreeBSD.org/ (IPv6)

Appendix D. OpenPGP Keys

Appendix D. OpenPGP Keys
The OpenPGP keys of the
 FreeBSD.org officers
 are shown here. These keys can be used to verify a signature or
 send encrypted email to one of the officers. A full list of FreeBSD
 OpenPGP keys is available in the
 PGP
 Keys article. The complete keyring can be downloaded
 at https://www.FreeBSD.org/doc/pgpkeyring.txt.
D.1. Officers
D.1.1. Security Officer Team <security-officer@FreeBSD.org>

pub rsa4096/D39792F49EA7E5C2 2017-08-16 [SC] [expires: 2023-01-02]
 Key fingerprint = FC0E 878A E5AF E788 028D 6355 D397 92F4 9EA7 E5C2
uid FreeBSD Security Officer <security-officer@FreeBSD.org>
sub rsa4096/6DD0A349F26ADEFD 2017-08-16 [E] [expires: 2023-01-02]

-----BEGIN PGP PUBLIC KEY BLOCK-----

mQINBFmT2+ABEACrTVJ7Z/MuDeyKFqoTFnm5FrGG55k66RLeKivzQzq/tT/6RKO9
K8DaEvSIqD9b0/xgK02KgLSdp0Bucq8HLDFYUk3McFa6Z3YwjobNCWkxc72ipvVl
uAOGN4H6fuoYOpeg4cLK1H9pktUIrzONTCixaZzc/Bu6X+aX4ywGeCfsuu8g5v03
fLCPBLLgf3Bm5wsyZ6ZaGmsmILrWzd+d/rbr35Mcc5BekdgywUI4R191qo1bdrw9
mEJP1V7Ik3jpExOsNnuhMTvm5OQMeCTfUvVEOtBU15QtbT+1LXF5FIOgML0LwS5v
RHZN+5w/xvzSnEULpj24UuMKLDs/u9rj8U/zET8QaE+oG7m/mr4jJWZEmdX8HKdO
WrpnVj6UAppk72qdBIEfLsOW2xB/NOjJpppbCQH3+sw7DRYA2UnKE9Mptj/KKiE4
cs4c8Cupo2WSu93lEZDC5rCrULpT2lFeEXnRYlC/5oIgY5w9sFide9VI4CzHkkWX
Z2NPW/i1w3mFhoXjvnNLGOYMfAMKPxsRC2/Bn3bY0IhKvuIZ4rAeu7FTmKDDqFKQ
YEcrUOW74ZVng17AB29xzjWr4zNJVvp/CybFiUb8JoKkwtVWRqAVZIEgenAjU40d
G5+W4e+ccL0mfTQfEBbXRjnL2BL2tnaoBR42cTfbZGRucPHz7MrlKBEeZQARAQAB
tDdGcmVlQlNEIFNlY3VyaXR5IE9mZmljZXIgPHNlY3VyaXR5LW9mZmljZXJARnJl
ZUJTRC5vcmc+iQJUBBMBCgA+FiEE/A6HiuWv54gCjWNV05eS9J6n5cIFAlmT2+AC
GwMFCQoek4AFCwkIBwMFFQoJCAsFFgIDAQACHgECF4AACgkQ05eS9J6n5cKd9A/9
Fz3uGjNy28D0ALT1d/JJGzdQ2R3YwspHk9KHBr1LePkog9wf1WRalwCeNtPmA+g5
cn24psuzOeh1tRElImTZ2eE2ENPZ9XzK/J0ok0nK42MvmIwmMCyz+CaWv9GXW+FK
0oXnFmHi4YaQUVN3p+45TGkD9T+O5biVww7P47n/NnWsTfhLx0bzC7LyjPKXINai
/LgPgtlcOgY65/YhW/qhADCkoU7qMp9is41jMjTu1WB3OBPJkUkNpHfu6r15y8FN
Wqsk7K4W6Obr/WQ6VKGGXgh/a5mTcaEoFGMO16uHijAY4nXeb2HGZlBKxgmPH9Ur
aT4A9Pz/n+rIRMrK+rs+msFPemQHHNBYxy+x99uBpRBNyT2Su6GouZIxu5J16aIM
V0ZyOy/dy7m/uJ4sMhJPqKkd8a+MoQs/2L1M1y1EAzsO/QZqIrKrCluaftNN9k/B
qU0XClSDqB6sRMF7HFzYqb+f+M6cwSL/3Cp1Yx4rZ/onEE/MdWp64+3R87dETTXd
5tWXQw04qOhfPri5cBTI7r3t/qMO1iNXCGSG5RJbGkas6N6t6Mj83L4ItjI8doLf
aSIWZjj1XP3/me2hFJ6h2G5y5A+khO4ZwhC0ATFSq1fYbVGHw5AtfthIgNn8FoWu
+Sb8h7/RqTr7F6LgWagAoAh0GtVj02SVABZjcNZz/AKJAjcEEAEKACEWIQQc9/9v
rfXKn74bjLLtZ+zWXc9q5wUCWZPcTAMFAngACgkQ7Wfs1l3PauflkRAAgYcaBX0Y
ic4btxKoP/eOVpgUciOPPKEhDCiloQDyf4XQnZFDoMfjgcHpbLTBZ6kiAz2UzDGr
fJ4yUqrD+xfixUfCd5YpwzsaSpCGzDzSxOBcP/SpuAFhe40awSOIf5MruQar9Mlf
33JyslDLULXXeewAq2pcGk0/WrrOragI6Cs2vPGy9XP96VvLxyhjrWjlKmnO+//w
UF8oIO5hhKoqbtoxxlcqJgsWVyHch0mnPzvr6GWwoPhFXocnh1oPdbLjX1AwmGm9
ltEYMge4QxONIXlXJR0TvuDuJOaLNvTOC3OI8L97fdBcZS7eNJrG5FAYR5Ft3ISf
KJowIsSLGDt/cYApqpyP2pv7FpCvnwHgXHYar7/q4zhngCFRxQ2DPUx1cIJQ3Bgh
HZolKyK1X7XE5ZVDfZ3s3gcHSVKS89pipgHHZNr4sSmOanA8rXHcyHS4o2zSi1ie
r4iBwnOk6cCd6UNzEIiq0y/XhP/sc7xeL0mn3wDuV7jDBP9sp65sexL1qtIAfnzL
pLQevm0z41ifrUH5nNeL6RdbXpaoXc8M4PJJeQKJDu04KzLcQpZdUdCJsbS6QO9w
srWR8enQXPEhz2CO4L77bM9TgYO29222jTqEPcbXcmxF/klxO1rpssTTHUnHHi1Z
LUGYCbZPjt+laTJ2YPHTjUtN1Jw85vSKCEuJATMEEAEKAB0WIQS7KNQLNg7uk2rt
FW/l97zLo73d+AUCWjSYRwAKCRDl97zLo73d+JKyB/9N5Ytao12nD5QzMLvceGh5
otCLN99TUryYiDVDLoNkBivq3jHQA/hOX2rwEueFq0+LF8/2DnglJuUICNtCxIzL
WXXf/Hr5iWBUQ0JxYNPQzzjdMSXGE0WMwYVpAbCGxHpIsetKLdHUCwneYhaywe3I
KzmRJSDJGV1IJB0sAfoFtgybZXHgIR61jQjtnNmmyYXliYCd0wmIhXQDFN91tzzG
+EZdJ3Fao9JsMC+x55jO6EOLVySZgRF5E8vCeKUWemQciKFC7EhKcljILPYAA21u
NmHCAgRHKWU9JMdFK0w9lQuN2HQaNfkahjarTNM/Q6LwxY0dLG0vVYifE085WFAf
uQINBFmT2+ABEACxi39m5nQZexzY3c9sg/w5mUYCD89ZNSkj427gduQMYYGn7YW6
jSPfVJ/V3+PDK824c0a0XasyDapQFY1CPTZYrReRPoyjb8tJjsSVGXXCTFpJZlFU
br6kS9mgcx58Sypke2PMVk73+W1N1Yco+nahfTECRuM2/T2zHHr0AdKuBPF28U+H
TxyLatKoIgQwHDs4E/f4ZTbAoHvu3PixAl7XHVXCgz0cHaLhRljXizbZDXngOdGm
lqdFlAIpL6/l8E3m1Er0m3IfFo6qSzWRHg/KaBGIL4YKetJ6ACjlkCe5qbatDpmk
gWlg3Ux4RBVjyCK834Xh7eZpEcNf2iwpm28glWh7XMHGUplTHkU3PWQ4vGfNxXB8
HBOd9r02/cHL6MiHwhCAfIzZGVtqR0i9Ira57TMdXTpJWNXUcgsCMsi/Bg2a+hsn
aiYLrZc18uNL5nqOqsqKG3c1TcmeN7nbxVgnrNST4AjteulkhmB9p8tNOXA3u979
OO0T5LPwdqIpobdZ0lfw4URnAGw4Wd4Sm9PtRw0RvuAk2M2e5KXNyxPWAuMVkoRR
a7wG6h/R8pki54Gexyc+JkfB4ZcOrzHNLurw6DhxroyfRs8WEgX0wNIGmJvCXSBG
54jb5w9qudYwzIg4YPfvuX8sfeY8MTNhal3rF0tvVloGj3l709wlaWlBYwARAQAB
iQI8BBgBCgAmFiEE/A6HiuWv54gCjWNV05eS9J6n5cIFAlmT2+ACGwwFCQoek4AA
CgkQ05eS9J6n5cKhWw/+PT0R4r2gPAxI8ESEe380BYOmneNAH24MFOgWXqWCj4zX
Uz992BVnW2aL5nH4O5d822LGeCrYUC7SCpQvlifdHZHjobgtizLTwuu40bc3gSOz
cxWlx2jKfx3Ezn6QQz2mhhK6fZ1AO0ObiQxQq25ldURep95L78E/C8XkCe11YlUR
ng3wQKeHM7awZWRw/QBC92haHuVtU3cx7At+zQL7jTBKSZqd34zzs0uoXIhk2h94
O07MMDZ8z8MeU337vdL+RKYtD2bljLwpf7/kqg1D/q44RJ4ZpZcha9G0GvtLaQg2
+MAPlLg1vOWZ8wOTLaQHm+uzYRpkqxkIV8OuVd4UikCd8t3VNjNG5rG/YRNIAX0A
UEzs6oMF5YOFE8LmykesbUHAbC07Vcb0AsT5u3XKixDiIpPdnYSwGlkvoOVVLdeh
q/aXLK9V8BpViG5+a8xP2fdF1eMqdnrKAsiO4GEiq193PN/FA049VeIs3fd0izAa
x7+ag1MGtoF5Pij5iTVJm6phH5SUd1P3FY3OmclxWj/MbL4ba/G/6FWcy5NXxdw9
L1bRqaM2KEHJ67aF6NZz7UMldwExAWzFbUon1LUpKysAukxVf0EnntydBeVOQ+JO
HdqEpirrVLMpxPttUB2xxbo947nMj7/Bnme2gvb0vxaC9xSGVxrpW9cg5iCwSdc=
=8rds
-----END PGP PUBLIC KEY BLOCK-----

D.1.2. Security Team Secretary <secteam-secretary@FreeBSD.org>

pub 4096R/3CB2EAFCC3D6C666 2013-09-24 [expires: 2018-01-01]
 Key fingerprint = FA97 AA04 4DF9 0969 D5EF 4ADA 3CB2 EAFC C3D6 C666
uid FreeBSD Security Team Secretary <secteam-secretary@FreeBSD.org>
sub 4096R/509B26612335EB65 2013-09-24 [expires: 2018-01-01]

-----BEGIN PGP PUBLIC KEY BLOCK-----

mQINBFJBjIIBEADadvvpXSkdnBOGV2xcsFwBBcSwAdryWuLk6v2VxjwsPcY6Lwqz
NAZr2Ox1BaSgX7106Psa6v9si8nxoOtMc5BCM/ps/fmedFU48YtqOTGF+utxvACg
Ou6SKintEMUa1eoPcww1jzDZ3mxx49bQaNAJLjVxeiAZoYHe9loTe1fxsprCONnx
Era1hrI+YA2KjMWDORcwa0sSXRCI3V+b4PUnbMUOQa3fFVUriM4QjjUBU6hW0Ub0
GDPcZq45nd7PoPPtb3/EauaYfk/zdx8Xt0OmuKTi9/vMkvB09AEUyShbyzoebaKH
dKtXlzyAPCZoH9dihFM67rhUg4umckFLc8vc5P2tNblwYrnhgL8ymUaOIjZB/fOi
Z2OZLVCiDeHNjjK3VZ6jLAiPyiYTG1Hrk9E8NaZDeUgIb9X/K06JXVBQIKNSGfX5
LLp/j2wr+Kbg3QtEBkcStlUGBOzfcbhKpE2nySnuIyspfDb/6JbhD/qYqMJerX0T
d5ekkJ1tXtM6aX2iTXgZ8cqv+5gyouEF5akrkLi1ySgZetQfjm+zhy/1x/NjGd0u
35QbUye7sTbfSimwzCXKIIpy06zIO4iNA0P/vgG4v7ydjMvXsW8FRULSecDT19Gq
xOZGfSPVrSRSAhgNxHzwUivxJbr05NNdwhJSbx9m57naXouLfvVPAMeJYwARAQAB
tD9GcmVlQlNEIFNlY3VyaXR5IFRlYW0gU2VjcmV0YXJ5IDxzZWN0ZWFtLXNlY3Jl
dGFyeUBGcmVlQlNELm9yZz6JAj0EEwEKACcFAlJBjIICGwMFCQgH7b8FCwkIBwMF
FQoJCAsFFgIDAQACHgECF4AACgkQPLLq/MPWxmYt8Q/+IfFhPIbqglh4rwFzgR58
8YonMZcq+5Op3qiUBh6tE6yRz6VEqBqTahyCQGIk4xGzrHSIOIj2e6gEk5a4zYtf
0jNJprk3pxu2Og05USJmd8lPSbyBF20FVm5W0dhWMKHagL5dGS8zInlwRYxr6mMi
UuJjj+2Hm3PoUNGAwL1SH2BVOeAeudtzu80vAlbRlujYVmjIDn/dWVjqnWgEBNHT
SD+WpA3yW4mBJyxWil0sAJQbTlt5EM/XPORVZ2tvETxJIrXea/Sda9mFwvJ02pJn
gHi6TGyOYydmbu0ob9Ma9AvUrRlxv8V9eN7eZUtvNa6n+IT8WEJj2+snJlO4SpHL
D3Z+l7zwfYeM8FOdzGZdVFgxeyBU7t3AnPjYfHmoneqgLcCO0nJDKq/98ohz5T9i
FbNR/vtLaEiYFBeX3C9Ee96pP6BU26BXhw+dRSnFeyIhD+4g+/AZ0XJ1CPF19D+5
z0ojanJkh7lZn4JL+V6+mF1eOExiGrydIiiSXDA/p5FhavMMu8Om4S0sn5iaQ2aX
wRUv2SUKhbHDqhIILLeQKlB3X26obx1Vg0nRhy47qNQn/xc9oSWLAQSVOgsShQeC
6DSzrKIBdKB3V8uWOmuM7lWAoCP53bDRW+XIOu9wfpSaXN2VTyqzU7zpTq5BHX1a
+XRw8KNHZGnCSAOCofZWnKyJAhwEEAEKAAYFAlJBjYgACgkQ7Wfs1l3PaudFcQ//
UiM7EXsIHLwHxez32TzA/0uNMPWFHQN4Ezzg4PKB6Cc4amva5qbgbhoeCPuP+XPI
2ELfRviAHbmyZ/zIgqplDC4nmyisMoKlpK0Yo1w4qbix9EVVZr2ztL8F43qN3Xe/
NUSMTBgt/Jio7l5lYyhuVS3JQCfDlYGbq6NPk0xfYoYOMOZASoPhEquCxM5D4D0Z
3J3CBeAjyVzdF37HUw9rVQe2IRlxGn1YAyMb5EpR2Ij612GFad8c/5ikzDh5q6JD
tB9ApdvLkr0czTBucDljChSpFJ7ENPjAgZuH9N5Dmx2rRUj2mdBmi7HKqxAN9Kdm
+pg/6vZ3vM18rBlXmw1poQdc3srAL+6MHmIfHHrq49oksLyHwyeL8T6BO4d4nTZU
xObP7PLAeWrdrd1Sb3EWlZJ9HB/m2UL9w9Om1c6cb6X2DoCzQAStVypAE6SQCMBK
pxkWRj90L41BS62snja+BlZTELuuLTHULRkWqS3fFkUxlDSMUn96QksWlwZLcxCv
hKxJXOX+pHAiUuMIImaPQ0TBDBWWf5d8zOQlNPsyhSGFR5Skwzlg+m9ErQ+jy7Uz
UmNCNztlYgRKeckXuvr73seoKoNXHrn7vWQ6qB1IRURj2bfphsqlmYuITmcBhfFS
Dw0fdYXSDXrmG9wad98g49g4HwCJhPAl0j55f93gHLGIRgQQEQoABgUCUkGO5gAK
CRAV1ogEymzfsol4AKCI7rOnptuoXgwYx2Z9HkUKuugSRwCgkyW9pxa5EovDijEF
j1jG/cdxTOaJAhwEEAEKAAYFAlJBkdUACgkQkshDRW2mpm6aLxAAzpWNHMZVFt7e
wQnCJnf/FMLTjduGTEhVFnVCkEtI+YKarveE6pclqKJfSRFDxruZ6PHGG2CDfMig
J6mdDdmXCkN//TbIlRGowVgsxpIRg4jQVh4S3D0Nz50h+Zb7CHbjp6WAPVoWZz7b
Myp+pN7qx/miJJwEiw22Eet4Hjj1QymKwjWyY146V928BV/wDBS/xiwfg3xIVPZr
RqtiOGN/AGpMGeGQKKplkeITY7AXiAd+mL4H/eNf8b+o0Ce2Z9oSxSsGPF3DzMTL
kIX7sWD3rjy3Xe2BM20stIDrJS2a1fbnIwFvqszS3Z3sF5bLc6W0iyPJdtbQ0pt6
nekRl9nboAdUs0R+n/6QNYBkj4AcSh3jpZKe82NwnD/6WyzHWtC0SDRTVkcQWXPW
EaWLmv8VqfzdBiw6aLcxlmXQSAr0cUA6zo6/bMQZosKwiCfGl3tR4Pbwgvbyjoii
pF+ZXfz7rWWUqZ2C79hy3YTytwIlVMOnp3MyOV+9ubOsFhLuRDxAksIMaRTsO7ii
5J4z1d+jzWMW4g1B50CoQ8W+FyAfVp/8qGwzvGN7wxN8P1iR+DZjtpCt7J+Xb9Pt
L+lRKSO/aOgOfDksyt2fEKY4yEWdzq9A3VkRo1HCdUQY6SJ/qt7IyQHumxvL90F6
vbB3edrR/fVGeJsz4vE10hzy7kI1QT65Ag0EUkGMggEQAMTsvyKEdUsgEehymKz9
MRn9wiwfHEX5CLmpJAvnX9MITgcsTX8MKiPyrTBnyY/QzA0rh+yyhzkY/y55yxMP
INdpL5xgJCS1SHyJK85HOdN77uKDCkwHfphlWYGlBPuaXyxkiWYXJTVUggSjuO4b
jeKwDqFl/4Xc0XeZNgWVjqHtKF91wwgdXXgAzUL1/nwN3IglxiIR31y10GQdOQEG
4T3ufx6gv73+qbFc0RzgZUQiJykQ3tZK1+Gw6aDirgjQYOc90o2Je0RJHjdObyZQ
aQc4PTZ2DC7CElFEt2EHJCXLyP/taeLq+IdpKe6sLPckwakqtbqwunWVoPTbgkxo
Q1eCMzgrkRu23B2TJaY9zbZAFP3cpL65vQAVJVQISqJvDL8K5hvAWJ3vi92qfBcz
jqydAcbhjkzJUI9t44v63cIXTI0+QyqTQhqkvEJhHZkbb8MYoimebDVxFVtQ3I1p
EynOYPfn4IMvaItLFbkgZpR/zjHYau5snErR9NC4AOIfNFpxM+fFFJQ7W88JP3cG
JLl9dcRGERq28PDU/CTDH9rlk1kZ0xzpRDkJijKDnFIxT2ajijVOZx7l2jPL1njx
s4xa1jK0/39kh6XnrCgK49WQsJM5IflVR2JAi8BLi2q/e0NQG2pgn0QL695Sqbbp
NbrrJGRcRJD9sUkQTpMsLlQTABEBAAGJAiUEGAEKAA8FAlJBjIICGwwFCQgH7b8A
CgkQPLLq/MPWxmZAew//et/LToMVR3q6/qP/pf9ob/QwQ3MgejkC0DY3Md7JBRl/
6GWfySYnO0Vm5IoJofcv1hbhc/y3OeZTvK4s+BOQsNokYe34mCxZG4dypNaepkQi
x0mLujeU/n4Y0p0LTLjhGLVdKina2dM9HmllgYr4KumT58g6eGjxs2oZD6z5ty0L
viU5tx3lz3o0c3I9soH2RN2zNHVjXNW0EvWJwFLxFeLJbk/Y3UY1/kXCtcyMzLua
S5L5012eUOEvaZr5iYDKjy+wOxY4SUCNYf0GPmSej8CBbwHOF2XCwXytSzm6hNb3
5TRgCGbOSFTIy9MxfV5lpddQcdzijmuFSl8LySkL2yuJxjlI7uKNDN+NlfODIPMg
rdH0hBSyKci6Uz7Nz/Up3qdE+aISq68k+Hk1fiKJG1UcBRJidheds29FCzj3hoyZ
VDmf6OL60hL0YI1/4GjIkJyetlPzjMp8J7K3GweOUkfHcFihYZlbiMe7z+oIWEc7
0fNScrAGF/+JN3L6mjXKB6Pv+ER5ztzpfuhBJ/j7AV5BaNMmDXAVO4aTphWl7Dje
iecENuGTpkK8Ugv5cMJc4QJaWDkj/9sACc0EFgigPo68KjegvKg5R8jUPwb8E7T6
lIjBtlclVhaUrE2uLx/yTz2Apbm+GAmD8M0dQ7IYsOFlZNBW9zjgLLCtWDW+p1A=
=5gJ7
-----END PGP PUBLIC KEY BLOCK-----

D.1.3. Core Team Secretary <core-secretary@FreeBSD.org>

pub rsa2048/0CB403E4E95B96EC 2018-06-30 [SC] [expires: 2020-06-29]
 Key fingerprint = 9F02 836F 50D3 AD5A B75A C588 0CB4 03E4 E95B 96EC
uid FreeBSD Core Team Secretary <core-secretary@freebsd.org>
sub rsa2048/133C3338A5B95A60 2018-06-30 [E] [expires: 2020-06-29]
 Key fingerprint = FA37 B8AA C667 C3AA D310 751D 133C 3338 A5B9 5A60

-----BEGIN PGP PUBLIC KEY BLOCK-----

mQENBFs3wcYBCAC7nlaUTMqyT7PBSFLtW/LleSz7BNUwqSTo8LfUVJOY5G/pzWt5
Mqjqh4oJcW/MvKFTDeRaJ2mHp+vELxIP7wO3gcP36dXgImw6sXwBTkPlKpmmFRm1
M+QqnCCrrLHtCznWaDg+1fTHmyQpFHpg37XzA1Z5ev6PryEUYJkcBP77oNCTY933
86sXOqRAJRywvN/LEkAoaawqBz0CpkNTOBACoJZRV8i9CIklEOy8J+hNzGtJpHkg
FxUOXWj7z+2y6UOR4GzSpYAWJGbtwEcpGPfhqJk5M5eZ6PJcwzZ6LeLKgGFzNi6r
tlShQh5LT7wAKkTrBsZ9vckyyuTEtqgdGCmhABEBAAG0OEZyZWVCU0QgQ29yZSBU
ZWFtIFNlY3JldGFyeSA8Y29yZS1zZWNyZXRhcnlAZnJlZWJzZC5vcmc+iQFUBBMB
CgA+FiEEnwKDb1DTrVq3WsWIDLQD5OlbluwFAls3wcYCGwMFCQPCZwAFCwkIBwMF
FQoJCAsFFgMCAQACHgECF4AACgkQDLQD5OlbluyRZAf/VG9VWpIsofcoHwDxhYAL
mm+xbuP/eq1/Q8HeO3XVhA/HZF5nvSKZbD8F+ujaHDH/waNStWb3wUK87l9AfB6G
QFMVYjVQWrPwgpwFtGjL9zLMCBS3T+ysuub+xSuPhr1KQHgKB4+t6NLoBlSwP+76
sLLx0SILGwTpsb0r84etaECgp5ymAXijbzIB0Pu44Y+DjZimBEVuw2YRZ4/Ug/3z
pcNQqpjbrHNYjU6AOZEHXftbXwuWfgdjINnrWpvTwkKVnU0FhGXV9UYWP2UAxE5u
OyAvIyYFbX10iSFQGUXle3eg6IuHncT5u6P1IxQM++d/TJIbKrQW+xdr+1I+vUrS
rokCMwQQAQoAHRYhBHLPrCF5vLAktbVFkANvbJ7n856/BQJbOJDdAAoJEANvbJ7n
856/1swQAN2QKGe1riRm9jKVxC8AMy57+Tzu1ITGDDUf6dH2+gxx0K5GoVmtdhLL
2qrmDJEqP7K232T25cU5zStQnaTHpEIUklY8Rn1Fati8+IZBdpemG4BXTzGnNDQ0
FS6PxuxOFvcELOFvuUil3PP7ArMKI9jfjxisEkOWFuwQVyIPeApcQuf8vyqrfTnV
/Qes/XhySrvsEL+ehq2OEorl6YjMB2/lVK2lVWYrWJ91Oq8Vwp0G09whZEMhMabQ
D1OxlmM6kofkTioM8DOmbGTbOXhiiiiCUI41pOAOzF9SrCqCpLV2OyrPFz7J+GU9
6u+DPPZyy7O8NmjdDsyrDg2hhbTwWC4dvW+QMJSWZ8Bo8eMx8b5ti9RX0XPEIwao
KrCKh3aemGgkP8zcVbFWOzOji8aXrpWrRr/oxQmJxE49d2j1oF4LydIfhDxOnfOF
428pVhDXDLjf0xdUIVQqCsOBQvzwVPWTQVOFSakVFNRYP6/SXyF5eUf5E6iSExKn
fn+G4FtrJd6QNwNUquI2LF8CEhJBpLNBqjJW3WEv1tDzU+rqS9QpHzSmLzLqtiE+
5HqynvOPXGRRsAcUOLmV4fMUGRH8tpNoH4iBEc7LmoFTQXIf6oJClaiwRkFKuT9c
2XlkJ4ca6fxU4KyoHtR6pmMNkLIcehfpoL11+TPyyBjNd2TwLpLbiQIzBBABCgAd
FiEEwHv14xCuZL9hILD2NqfAX+Hs+bsFAls4kV0ACgkQNqfAX+Hs+bvRrw//QVea
9diHHbzxq84yp4eOGQoj86usPSV+IOZN27+e6QDYR8ZsxqFE5wQycSAdyqo0n42Q
EDE6tnn+/HhyFogr7kF8CRJMtsSlwKgDrMMYjVPnP2fP5VFxAF36epSRgcGC0Lqh
Ris+xjfSzXM2oNiiebPu2MOe8qOe8LVGJMyuxJZbb/OuEfgLGLKtjcJ1SujKhzLl
TVS8JSSVRbxk62huh/Mo80eCKHMV+/NmbHP4QKZBOVSWn0U/lrm+SyDR78l3EhtN
x/KIfhiPZENYTjSBSxa8F/Vg19bcmUedLapcN9J8q2KVNx7VuiPz+X2ww/dOKFR0
FxwOvCweGFRNRyoytF4ziw0Gwt78RHw4OdhQg8YH38kbrRFvf2YqiddGUA2UWwKi
HRdj9ZGemzL++OE/MZvgODVhZA6V5QU/B9bR3xfnVcBsPyGTrlQ8XZ9aY1wBMTrS
TTbS3sD7HuyS4PO8rt3iZy50UDMc5v55Pr5SIPiaUdyV8Y401oOWnKvKgKtHzBtC
2ADT+iZk/I4a3iDj4hw07Y+O1Voqp72LaACGhqWqkN0zqoKq3TvD/ukEZwgsvDdP
ErzPUanN31gn055PlpWYQBVoLjupH8SXahrdTmo15Xjdr97VHCuABNT4Kh3QDELU
vQtF0IB+S+VQfTVR5wkC1OLj8J1edvoXlsVzREW5AQ0EWzfBxgEIAMZxwaI3hZ2G
je7L8N1TFfPJA62kMGzzFDvFqeH8mDPOXkd4JC4y2EIBySPS36y0c1MJM79oOkKI
6DQLyUb3p4hGZbEVKidAwXvp4t5x1QJ0bpodHc/7xh95EP11Lf8C/DFP5Js3YVPl
MsdeVhx7J8itQuivoLJrZVTgKSgFepatLuXXKUttYAJNcU11ziPwTlzjEuTx4X6V
RimPrp8+/dbkRmPhsDqMXrqJmjeNarYK9F0xKlaWnIhtyZnNXtHrdtQE/VOBjoXN
0NXiuJg02JZGqZuBM80Ig7yBdmUlZdPrxkYw92+kxHIdySM3+WYbGu/e6T/VY6wx
7KW2IV3u3b8AEQEAAYkBPAQYAQoAJhYhBJ8Cg29Q061at1rFiAy0A+TpW5bsBQJb
N8HGAhsMBQkDwmcAAAoJEAy0A+TpW5bsp0AH/Rht32xeJQk59UgDf7BPHiiphgg8
P1qmRVd6OZJ6GoVYWjJ87+gU9sChbZUTCFioiIYLWPbhm9AJKy1KDrcnP0zYjWL2
SKjezMbru9cgFYk6R3LO+mK5DwtGMgyzipKAN8Kh92pX2WERUeMFulkYa4+rdVkP
kBtB49hmDj25GPw/72Vuksg5m7sbpEZzt6JjXQN0ynDjBuizE/HYm2E8VW5tH1aH
wdzVGruNVIOMMF3gHKbJbrxKiq/SPJfph0YGeL6v5bF9mgizGamEUn9YHVkCqZ7z
wDuSIDVTSiQQOJesD58WOADCDINEP3uXFhlI1A0Au7X+XYyjIjHCdyTNhBI=
=5VKx
-----END PGP PUBLIC KEY BLOCK-----

D.1.4. Ports Management Team Secretary <portmgr-secretary@FreeBSD.org>

pub rsa2048/D8294EC3BBC4D7D5 2012-07-24 [SC]
 Key fingerprint = FB37 45C8 6F15 E8ED AC81 32FC D829 4EC3 BBC4 D7D5
uid FreeBSD Ports Management Team Secretary <portmgr-secretary@FreeBSD.org>
sub rsa2048/5CC117965F65CFE7 2012-07-24 [E]

-----BEGIN PGP PUBLIC KEY BLOCK-----

mQENBFAOzqYBCACYd+KGv0/DduIRpSEKWZG2yfDILStzWfdaQMD+8zdWihB0x7dd
JDBUpV0o0Ixzt9mvu5CHybx+9lOHeFRhZshFXc+bIJOPyi+JrSs100o7Lo6jg6+c
Si2vME0ixG4x9YjCi8DisXIGJ1kZiDXhmVWwCvL+vLInpeXrtJnK8yFkmszCOr4Y
Q3GXuvdU0BF2tL/Wo/eCbSf+3U9syopVS2L2wKcP76bbYU0ioO35Y503rJEK6R5G
TchwYvYjSXuhv4ec7N1/j3thrMC9GNpoqjVninTynOk2kn+YZuMpO3c6b/pfoNcq
MxoizGlTu8VT4OO/SF1y52OkKjpAsENbFaNTABEBAAG0R0ZyZWVCU0QgUG9ydHMg
TWFuYWdlbWVudCBUZWFtIFNlY3JldGFyeSA8cG9ydG1nci1zZWNyZXRhcnlARnJl
ZUJTRC5vcmc+iQE4BBMBAgAiBQJQDs6mAhsDBgsJCAcDAgYVCAIJCgsEFgIDAQIe
AQIXgAAKCRDYKU7Du8TX1QW2B/0coHe8utbTfGKpeM4BY9IyC+PFgkE58Hq50o8d
shoB9gfommcUaK9PNwJPxTEJNlwiKPZy+VoKs/+dO8gahovchbRdSyP1ejn3CFy+
H8pol0hDDU4n7Ldc50q54GLuZijdcJZqlgOloZqWOYtXFklKPZjdUvYN8KHAntgf
u361rwM4DZ40HngYY9fdGc4SbXurGA5m+vLAURLzPv+QRQqHfaI1DZF6gzMgY49x
qS1JBF4kPoicpgvs3o6CuX8MD9ewGFSAMM3EdzV6ZdC8pnpXC8+8Q+p6FjNqmtjk
GpW39Zq/p8SJVg1RortCH6qWLe7dW7TaFYov7gF1V/DYwDN5iEYEEBECAAYFAlN2
WksACgkQtzkaJjSHbFtuMwCg0MXdQTcGMMOma7LC3L5b4MEoZ+wAn0WyUHpHwHnn
pn2oYDlfAbwTloWIiQEcBBABAgAGBQJQDuVrAAoJENk3EJekc8mQ3KwIAImNDMXA
F8ajPwCZFpM6KDi3F/jpwyBPISGY1oWuYPEi1zN94k5jS90aZb3W8Y8x4JTh35Ew
b6XODi3uGLSLCmnlqu2a80yPfXf5IuWmIQdFNQxvosj9UHrg+icZGFmm+f0hPJxM
TsZREv3AvivQfnb/N3xIICxW4SjKSYXQcq4hr4ObhUx7GKnjayq+ofU2cRlujr87
uOH0fO3xhOJG4+cX5mI1HGK38k0Csc1zqYa/66Qe5dnIZz+sNXpEPMLAHIt1a45U
B967igJdZSDFN33bPl1QWmf3aUXU3d1VttiSyHkpm4kb9KgsDkUk1IJ5nUe9OXyd
WtoqNW5afDa5N0aIRgQQEQIABgUCUA7lwwAKCRB59uBxdBRinNh2AJ41+zfsaQSR
HWvSkqOXGcP/fgOduwCfUJDT+M1eXe2udmKof/9yzGYMirKJASIEEAECAAwFAlAa
IT8FAwASdQAACgkQlxC4m8pXrXwCHAf+J7l+L7AvRpqlQcezjnjFS/zG1098qkDf
lThHZlpVnrBMJZaXdvL6LzVgiIYVWZC5CSSazW9EWFjp9VjM7FBHdWFZNMV7GAuU
t0jzx6gGXOWwi+/v/hs1P11RyDZN5hICHdPNmyZVupciDxe+sIEP9aEbVxcaiccq
zM/pFzIVIMMP5tCiA42q6Mz3h0hy6hntUKptS8Uon6sje5cDVcVlKAUj1wO2cphC
qkYlwMQfZV5J9f/hcW5ODriD3cBwK8SocA2Cq5JYF8kYDL1+pXnUutGnvAHUYt87
RWvQdKmfXjzBcMFJ2LlPUB1+IFvwQ13V9R8j9B/EdLmSWQYT9qRA2okCHAQTAQoA
BgUCV1XMpwAKCRCtu/hhCjeJt2CyD/9JLe+Ck23CJkeRSF8oC+4SFOUdSAmejSzn
klPwmEClffABYd/kckO1T6um+2FUcXuJZQE1nKKUNvZ8pBWwsm1RDHsyroKi/XB1
0a1Tdx/rvlU88ytbeLfUCLzoCrf6pkMQWoU6/3qS6elV0WwOlDufk+XjD1sja2wu
sshG8y+1WCA5JjP3rZdD9NVdzo5DgkotTRUfuYN1LJIN4zlDgHj7FVP7wW7+R0cZ
FoOiNsLJCA0FN8SiyU98UysjawLiIY9dTJz6XVA0DgB0TZWO3mWiDjITeKrdGcqf
PNiJhmvUKBkn07YpTPNfkoTT/p/q5ChYmu0ubGeyS1ELKjmklJ+DzynfZLzvnXYX
Ngo5ckeuqEqUNxM0J63v8lmfhDRROFveqHWdp0XMxXVmR5bMunSldg5EZsoLyQbN
+ScIPnDTAEPGrCtf0t84RQxNQeET6/WBbZfzeSeAFmpBFCdicsZ6Mjwtwjr4+o15
n1QMTZco1NaTqf8vXwzl9wM4aYtg1OkF4z8HdHuy50CHCet4mT5eJgwZUfFvXdbM
pHXprEI0Y9OOL4aMinC1egF3dXt/0n57i6CE+E2k3UJPNvMrtp0HaDEnKZ8cfkBU
EBzkUYi5wwqntHV2JRisqoRnHdvJT7ImlHMe7WaJsifBK874PnToaKg8P6K1Tph+
FyLxULaYjYkCHAQSAQgABgUCVBg2zwAKCRDqsDxYv9xHj1klEADXYJdHC3zsdx7w
DsJsttWdykcZoOd/VUKUdN0BAU72nLV0tLn4uFjETA6MhHZVxzwIDTeLB8kqyEpc
fZnoVbqJIUJz1sJXMdOty7CwZzlZlAwmUaIfFiazJY1p398JbyYfSrVKNOpw9wCm
Db7WP9dBritwvjaLzu8HQsiztO0S/5ha/EDfTU3qocBUTjbCtGR9LqAmPE4X8+li
F2EfZMEoJd3rJWsYv2y/k6pSgC/MpQewnyr6f+JQ/781UoZB6PpxCxfu4D6xlOyd
ERBUg+FfDAWYR+KX+DGOalRlUyaSz8Nvxl8/b0Im/AQhx9afqyEZxIDpg52zt8jJ
t3wx23YP8EQGUgwF8pIrj3wFSBSG3a/cskiBNUIhChIR9hQrVPUahN/jx7DGAGxk
/Ka9qsRGYTHfSr9jjTUQ+htfeFBRDR0nkZKMo5+Wk/cAcBKVbPlBpwvnzT3fh+wL
cF3ErBbx5jp+BoFee8D6ATeUvQxMcgVbDPUkgMsy3EtKMVO10jhIoXoVV+Sg9GZ8
zMEy1tORKn0zsd2ZgXC2sRJOm5ttCSdYQ4ddbM1A9jg6tiRx4hES16GDywvkL8P2
M9+qyIfjQxjGU33f/r8zp9DyNT1VlrtwhFxtOoMdmrsbYOCTja4Xg14hK1hRac0k
GB7bj6w97p8uMrQT3PlSMtoyrRyo7bkBDQRQDs6mAQgAzNxJYpf5PrqV8pdRXkn3
6Fe45q671YtbZ2WrT7D0CVZ8Z+AZsxnP/tiY1SrM2MepCeA2xBAhKGsWBWo1aRk5
mfZOksKsiXsi2XeBVhdZlCkrOMKBTVian7I1lH59ZnNIMX0Nl0tlj3L1IjeWWNvf
ej43URV81S9EmSwpjaWboatr2A+1oJku5m7nPD9JIOckE1TzBsyhx7zIUN9w6MKr
7gFw8DCzypwUKyYgKYToVm8QlkT/L3B0fuQHWhT6ROGk4o8SC71ia5tc1TzUzGEZ
1AQO8bbnbmJLBDKveWHCoaeAkRzINzoD9wAn9z4pnilze59QtKC1cOqUksTvBSDh
6wARAQABiQEfBBgBAgAJBQJQDs6mAhsMAAoJENgpTsO7xNfVOHoH/i5VyggVdwpq
PX8YBmN5mXQziYZNQoiON8IhOsxpX4W2nXCj5m6MACV6nJDVV6wyUH8/VvDQC9nH
arCe1oaNsHXJz0HamYt5gHJ0G1bYuBcuJp/FEjLa48XFI7nXQjJHn8rlwZMjK/PW
j1lw2WZiekviuzTEDH8c3YStGJSa+gYe8Eyq3XJVAe2VQOhImoWgGDR3tWfgrya/
IdEFb/jmjHSG5XUfbI0vNwqlf832BqSQKPG/Zix4MmBJgvAz4R71PH8WBmbmNFjD
elxVyfz80+iMgEb9aL91MfeBNC2KB1pFmg91mQTsiq7ajwVLVJK8NplHAkdLmkBC
O8MgMjzGhlE=
=iw7d
-----END PGP PUBLIC KEY BLOCK-----

FreeBSD Glossary

FreeBSD Glossary
This glossary contains terms and acronyms used within the FreeBSD
 community and documentation.
A
	ACL
	See Access Control List.

	ACPI
	See Advanced Configuration and Power Interface.

	AMD
	See Automatic Mount Daemon.

	AML
	See ACPI Machine Language.

	API
	See Application Programming Interface.

	APIC
	See Advanced Programmable Interrupt Controller.

	APM
	See Advanced Power Management.

	APOP
	See Authenticated Post Office Protocol.

	ASL
	See ACPI Source Language.

	ATA
	See Advanced Technology Attachment.

	ATM
	See Asynchronous Transfer Mode.

	ACPI Machine Language
	Pseudocode, interpreted by a virtual machine within an
	 ACPI-compliant operating system, providing a
	 layer between the underlying hardware and the documented
	 interface presented to the OS.

	ACPI Source Language
	The programming language AML is written in.

	Access Control List
	A list of permissions attached to an object, usually either a
	 file or a network device.

	Advanced Configuration and Power Interface
	A specification which provides an abstraction of the
	 interface the hardware presents to the operating system, so
	 that the operating system should need to know nothing about
	 the underlying hardware to make the most of it. ACPI
	 evolves and supersedes the functionality provided previously by
	 APM, PNPBIOS and other technologies, and
	 provides facilities for controlling power consumption, machine
	 suspension, device enabling and disabling, etc.

	Application Programming Interface
	A set of procedures, protocols and tools that specify the
	 canonical interaction of one or more program parts; how, when
	 and why they do work together, and what data they share or
	 operate on.

	Advanced Power Management
	An API enabling the operating system to work
	 in conjunction with the BIOS in order to achieve
	 power management. APM has been superseded by
	 the much more generic and powerful ACPI
	 specification for most applications.

	Advanced Programmable Interrupt Controller
	

	Advanced Technology Attachment
	

	Asynchronous Transfer Mode
	

	Authenticated Post Office Protocol
	

	Automatic Mount Daemon
	A daemon that automatically mounts a filesystem when a file
 or directory within that filesystem is accessed.

B
	BAR
	See Base Address Register.

	BIND
	See Berkeley Internet Name Domain.

	BIOS
	See Basic Input/Output System.

	BSD
	See Berkeley Software Distribution.

	Base Address Register
	The registers that determine which address range a PCI device
	 will respond to.

	Basic Input/Output System
	The definition of BIOS depends a bit on
	 the context. Some people refer to it as the ROM
	 chip with a basic set of routines to provide an interface between
	 software and hardware. Others refer to it as the set of routines
	 contained in the chip that help in bootstrapping the system. Some
	 might also refer to it as the screen used to configure the
	 bootstrapping process. The BIOS is PC-specific
	 but other systems have something similar.

	Berkeley Internet Name Domain
	An implementation of the DNS protocols.

	Berkeley Software Distribution
	This is the name that the Computer Systems Research Group
	 (CSRG) at The University
	 of California at Berkeley
	 gave to their improvements and modifications to
	 AT&T's 32V UNIX®.
	 FreeBSD is a descendant of the CSRG work.

	Bikeshed Building
	A phenomenon whereby many people will give an opinion on
	 an uncomplicated topic, whilst a complex topic receives little
	 or no discussion. See the
	 FAQ for
	 the origin of the term.

C
	CD
	See Carrier Detect.

	CHAP
	See Challenge Handshake Authentication Protocol.

	CLIP
	See Classical IP over ATM.

	COFF
	See Common Object File Format.

	CPU
	See Central Processing Unit.

	CTS
	See Clear To Send.

	Carrier Detect
	An RS232C signal indicating that a carrier
	 has been detected.

	Central Processing Unit
	Also known as the processor. This is the brain of the
	 computer where all calculations take place. There are a number of
	 different architectures with different instruction sets. Among
	 the more well-known are the Intel-x86 and derivatives, Sun SPARC,
	 PowerPC, and Alpha.

	Challenge Handshake Authentication Protocol
	A method of authenticating a user, based on a secret shared
	 between client and server.

	Classical IP over ATM
	

	Clear To Send
	An RS232C signal giving the remote system
 permission to send data.
See Also Request To Send.

	Common Object File Format
	

D
	DAC
	See Discretionary Access Control.

	DDB
	See Debugger.

	DES
	See Data Encryption Standard.

	DHCP
	See Dynamic Host Configuration Protocol.

	DNS
	See Domain Name System.

	DSDT
	See Differentiated System Description Table.

	DSR
	See Data Set Ready.

	DTR
	See Data Terminal Ready.

	DVMRP
	See Distance-Vector Multicast Routing Protocol.

	Discretionary Access Control
	

	Data Encryption Standard
	A method of encrypting information, traditionally used as the
	 method of encryption for UNIX® passwords and the crypt(3)
	 function.

	Data Set Ready
	An RS232C signal sent from the modem to the
	 computer or terminal indicating a readiness to send and receive
	 data.
See Also Data Terminal Ready.

	Data Terminal Ready
	An RS232C signal sent from the computer or
	 terminal to the modem indicating a readiness to send and receive
	 data.

	Debugger
	An interactive in-kernel facility for examining the status of
	 a system, often used after a system has crashed to establish the
	 events surrounding the failure.

	Differentiated System Description Table
	An ACPI table, supplying basic configuration
	 information about the base system.

	Distance-Vector Multicast Routing Protocol
	

	Domain Name System
	The system that converts humanly readable hostnames (i.e.,
	 mail.example.net) to Internet addresses and vice versa.

	Dynamic Host Configuration Protocol
	A protocol that dynamically assigns IP addresses to a computer
	 (host) when it requests one from the server. The address assignment
	 is called a “lease”.

E
	ECOFF
	See Extended COFF.

	ELF
	See Executable and Linking Format.

	ESP
	See Encapsulated Security Payload.

	Encapsulated Security Payload
	

	Executable and Linking Format
	

	Extended COFF
	

F
	FADT
	See Fixed ACPI Description Table.

	FAT
	See File Allocation Table.

	FAT16
	See File Allocation Table (16-bit).

	FTP
	See File Transfer Protocol.

	File Allocation Table
	

	File Allocation Table (16-bit)
	

	File Transfer Protocol
	A member of the family of high-level protocols implemented
	 on top of TCP which can be used to transfer
	 files over a TCP/IP network.

	Fixed ACPI Description Table
	

G
	GUI
	See Graphical User Interface.

	Giant
	The name of a mutual exclusion mechanism
	 (a sleep mutex) that protects a large
	 set of kernel resources. Although a simple locking mechanism
	 was adequate in the days where a machine might have only
	 a few dozen processes, one networking card, and certainly
	 only one processor, in current times it is an unacceptable
	 performance bottleneck. FreeBSD developers are actively working
	 to replace it with locks that protect individual resources,
	 which will allow a much greater degree of parallelism for
	 both single-processor and multi-processor machines.

	Graphical User Interface
	A system where the user and computer interact with
 graphics.

H
	HTML
	See HyperText Markup Language.

	HUP
	See HangUp.

	HangUp
	

	HyperText Markup Language
	The markup language used to create web pages.

I
	I/O
	See Input/Output.

	IASL
	See Intel’s ASL compiler.

	IMAP
	See Internet Message Access Protocol.

	IP
	See Internet Protocol.

	IPFW
	See IP Firewall.

	IPP
	See Internet Printing Protocol.

	IPv4
	See IP Version 4.

	IPv6
	See IP Version 6.

	ISP
	See Internet Service Provider.

	IP Firewall
	

	IP Version 4
	The IP protocol version 4, which uses 32 bits
	 for addressing. This version is still the most widely used, but it
	 is slowly being replaced with IPv6.
See Also IP Version 6.

	IP Version 6
	The new IP protocol. Invented because the
	 address space in IPv4 is running out. Uses 128
	 bits for addressing.

	Input/Output
	

	Intel’s ASL compiler
	Intel’s compiler for converting ASL into
	 AML.

	Internet Message Access Protocol
	A protocol for accessing email messages on a mail server,
	 characterised by the messages usually being kept on the server as
	 opposed to being downloaded to the mail reader client.
See Also Post Office Protocol Version 3.

	Internet Printing Protocol
	

	Internet Protocol
	The packet transmitting protocol that is the basic protocol on
	 the Internet. Originally developed at the U.S. Department of
	 Defense and an extremely important part of the TCP/IP
	 stack. Without the Internet Protocol, the Internet
	 would not have become what it is today. For more information, see
	
	 RFC 791.

	Internet Service Provider
	A company that provides access to the Internet.

K
	KAME
	Japanese for “turtle”, the term KAME is used
	 in computing circles to refer to the KAME Project, who work on
	 an implementation of IPv6.

	KDC
	See Key Distribution Center.

	KLD
	See Kernel ld(1).

	KSE
	See Kernel Scheduler Entities.

	KVA
	See Kernel Virtual Address.

	Kbps
	See Kilo Bits Per Second.

	Kernel ld(1)
	A method of dynamically loading functionality into a FreeBSD kernel
	 without rebooting the system.

	Kernel Scheduler Entities
	A kernel-supported threading system. See the project home page
	 for further details.

	Kernel Virtual Address
	

	Key Distribution Center
	

	Kilo Bits Per Second
	Used to measure bandwidth (how much data can pass a given
	 point at a specified amount of time). Alternates to the Kilo
	 prefix include Mega, Giga, Tera, and so forth.

L
	LAN
	See Local Area Network.

	LOR
	See Lock Order Reversal.

	LPD
	See Line Printer Daemon.

	Line Printer Daemon
	

	Local Area Network
	A network used on a local area, e.g. office, home, or so forth.
	

	Lock Order Reversal
	The FreeBSD kernel uses a number of resource locks to
	 arbitrate contention for those resources. A run-time
	 lock diagnostic system found in FreeBSD-CURRENT kernels
	 (but removed for releases), called witness(4),
	 detects the potential for deadlocks due to locking errors.
	 (witness(4) is actually slightly conservative, so
	 it is possible to get false positives.) A true positive
	 report indicates that “if you were unlucky, a deadlock would
	 have happened here”.
True positive LORs tend to get fixed quickly, so
	 check http://lists.FreeBSD.org/mailman/listinfo/freebsd-current and the
	
	 LORs Seen page before posting to the mailing lists.

M
	MAC
	See Mandatory Access Control.

	MADT
	See Multiple APIC Description Table.

	MFC
	See Merge From Current.

	MFH
	See Merge From Head.

	MFS
	See Merge From Stable.

	MIT
	See Massachusetts Institute of Technology.

	MLS
	See Multi-Level Security.

	MOTD
	See Message Of The Day.

	MTA
	See Mail Transfer Agent.

	MUA
	See Mail User Agent.

	Mail Transfer Agent
	An application used to transfer email. An
	 MTA has traditionally been part of the BSD
	 base system. Today Sendmail is included in the base system, but
	 there are many other MTAs, such as postfix,
	 qmail and Exim.

	Mail User Agent
	An application used by users to display and write email.

	Mandatory Access Control
	

	Massachusetts Institute of Technology
	

	Merge From Current
	To merge functionality or a patch from the -CURRENT
	 branch to another, most often -STABLE.

	Merge From Head
	To merge functionality or a patch from a repository HEAD
	 to an earlier branch.

	Merge From Stable
	In the normal course of FreeBSD development, a change will
	 be committed to the -CURRENT branch for testing before being
	 merged to -STABLE. On rare occasions, a change will go into
	 -STABLE first and then be merged to -CURRENT.
This term is also used when a patch is merged from -STABLE
	 to a security branch.
See Also Merge From Current.

	Message Of The Day
	A message, usually shown on login, often used to
	 distribute information to users of the system.

	Multi-Level Security
	

	Multiple APIC Description Table
	

N
	NAT
	See Network Address Translation.

	NDISulator
	See Project Evil.

	NFS
	See Network File System.

	NTFS
	See New Technology File System.

	NTP
	See Network Time Protocol.

	Network Address Translation
	A technique where IP packets are rewritten
	 on the way through a gateway, enabling many machines behind the
	 gateway to effectively share a single IP address.

	Network File System
	

	New Technology File System
	A filesystem developed by Microsoft and available in its
	 “New Technology” operating systems, such as
	 Windows® 2000, Windows NT® and Windows® XP.

	Network Time Protocol
	A means of synchronizing clocks over a network.

O
	OBE
	See Overtaken By Events.

	ODMR
	See On-Demand Mail Relay.

	OS
	See Operating System.

	On-Demand Mail Relay
	

	Operating System
	A set of programs, libraries and tools that provide access to
	 the hardware resources of a computer. Operating systems range
	 today from simplistic designs that support only one program
	 running at a time, accessing only one device to fully
	 multi-user, multi-tasking and multi-process systems that can
	 serve thousands of users simultaneously, each of them running
	 dozens of different applications.

	Overtaken By Events
	Indicates a suggested change (such as a Problem Report
	 or a feature request) which is no longer relevant or
	 applicable due to such things as later changes to FreeBSD,
	 changes in networking standards, the affected hardware
	 having since become obsolete, and so forth.

P
	PAE
	See Physical Address Extensions.

	PAM
	See Pluggable Authentication Modules.

	PAP
	See Password Authentication Protocol.

	PC
	See Personal Computer.

	PCNSFD
	See Personal Computer Network File System Daemon.

	PDF
	See Portable Document Format.

	PID
	See Process ID.

	POLA
	See Principle Of Least Astonishment.

	POP
	See Post Office Protocol.

	POP3
	See Post Office Protocol Version 3.

	PPD
	See PostScript Printer Description.

	PPP
	See Point-to-Point Protocol.

	PPPoA
	See PPP over ATM.

	PPPoE
	See PPP over Ethernet.

	PPP over ATM
	

	PPP over Ethernet
	

	PR
	See Problem Report.

	PXE
	See Preboot eXecution Environment.

	Password Authentication Protocol
	

	Personal Computer
	

	Personal Computer Network File System Daemon
	

	Physical Address Extensions
	A method of enabling access to up to 64 GB of RAM on
	 systems which only physically have a 32-bit wide address space
	 (and would therefore be limited to 4 GB without PAE).

	Pluggable Authentication Modules
	

	Point-to-Point Protocol
	

	Pointy Hat
	A mythical piece of headgear, much like a
	 dunce cap, awarded to any FreeBSD
	 committer who breaks the build, makes revision numbers
	 go backwards, or creates any other kind of havoc in
	 the source base. Any committer worth his or her salt
	 will soon accumulate a large collection. The usage is
	 (almost always?) humorous.

	Portable Document Format
	

	Post Office Protocol
	
See Also Post Office Protocol Version 3.

	Post Office Protocol Version 3
	A protocol for accessing email messages on a mail server,
	 characterised by the messages usually being downloaded from the
	 server to the client, as opposed to remaining on the server.
See Also Internet Message Access Protocol.

	PostScript Printer Description
	

	Preboot eXecution Environment
	

	Principle Of Least Astonishment
	As FreeBSD evolves, changes visible to the user should be
	 kept as unsurprising as possible. For example, arbitrarily
	 rearranging system startup variables in
	 /etc/defaults/rc.conf violates
	 POLA. Developers consider
	 POLA when contemplating user-visible
	 system changes.

	Problem Report
	A description of some kind of problem that has been
	 found in either the FreeBSD source or documentation. See
	
	 Writing FreeBSD Problem Reports.

	Process ID
	A number, unique to a particular process on a system,
	 which identifies it and allows actions to be taken against it.

	Project Evil
	The working title for the NDISulator,
	 written by Bill Paul, who named it referring to how awful
	 it is (from a philosophical standpoint) to need to have
	 something like this in the first place. The
	 NDISulator is a special compatibility
	 module to allow Microsoft Windows™ NDIS miniport
	 network drivers to be used with FreeBSD/i386. This is usually
	 the only way to use cards where the driver is closed-source.
	 See src/sys/compat/ndis/subr_ndis.c.

R
	RA
	See Router Advertisement.

	RAID
	See Redundant Array of Inexpensive Disks.

	RAM
	See Random Access Memory.

	RD
	See Received Data.

	RFC
	See Request For Comments.

	RISC
	See Reduced Instruction Set Computer.

	RPC
	See Remote Procedure Call.

	RS232C
	See Recommended Standard 232C.

	RTS
	See Request To Send.

	Random Access Memory
	

	Revision Control System
	The Revision Control System
 (RCS) is one of the oldest software suites
 that implement “revision control” for plain
 files. It allows the storage, retrieval, archival, logging,
 identification and merging of multiple revisions for each
 file. RCS consists of many small tools that work together.
 It lacks some of the features found in more modern revision
 control systems, like Git, but it is very simple
 to install, configure, and start using for a small set of
 files.
See Also Subversion.

	Received Data
	An RS232C pin or wire that data is
	 received on.
See Also Transmitted Data.

	Recommended Standard 232C
	A standard for communications between serial devices.

	Reduced Instruction Set Computer
	An approach to processor design where the operations the hardware
	 can perform are simplified but made as general purpose as possible.
	 This can lead to lower power consumption, fewer transistors and in
	 some cases, better performance and increased code density. Examples
	 of RISC processors include the Alpha, SPARC®, ARM® and
	 PowerPC®.

	Redundant Array of Inexpensive Disks
	

	Remote Procedure Call
	

	Request For Comments
	A set of documents defining Internet standards, protocols, and
	 so forth. See
	 www.rfc-editor.org.
	
Also used as a general term when someone has a suggested change
	 and wants feedback.

	Request To Send
	An RS232C signal requesting that the remote
	 system commences transmission of data.
See Also Clear To Send.

	Router Advertisement
	

S
	SCI
	See System Control Interrupt.

	SCSI
	See Small Computer System Interface.

	SG
	See Signal Ground.

	SMB
	See Server Message Block.

	SMP
	See Symmetric MultiProcessor.

	SMTP
	See Simple Mail Transfer Protocol.

	SMTP AUTH
	See SMTP Authentication.

	SSH
	See Secure Shell.

	STR
	See Suspend To RAM.

	SVN
	See Subversion.

	SMTP Authentication
	

	Server Message Block
	

	Signal Ground
	An RS232 pin or wire that is the ground
	 reference for the signal.

	Simple Mail Transfer Protocol
	

	Secure Shell
	

	Small Computer System Interface
	

	Subversion
	Subversion is a version control system
 currently used by the FreeBSD project.

	Suspend To RAM
	

	Symmetric MultiProcessor
	

	System Control Interrupt
	

T
	TCP
	See Transmission Control Protocol.

	TCP/IP
	See Transmission Control Protocol/Internet Protocol.

	TD
	See Transmitted Data.

	TFTP
	See Trivial FTP.

	TGT
	See Ticket-Granting Ticket.

	TSC
	See Time Stamp Counter.

	Ticket-Granting Ticket
	

	Time Stamp Counter
	A profiling counter internal to modern Pentium® processors
	 that counts core frequency clock ticks.

	Transmission Control Protocol
	A protocol that sits on top of (e.g.) the IP
	 protocol and guarantees that packets are delivered in a reliable,
	 ordered, fashion.

	Transmission Control Protocol/Internet Protocol
	The term for the combination of the TCP
	 protocol running over the IP protocol. Much of
	 the Internet runs over TCP/IP.

	Transmitted Data
	An RS232C pin or wire that data is transmitted
	 on.
See Also Received Data.

	Trivial FTP
	

U
	UDP
	See User Datagram Protocol.

	UFS1
	See Unix File System Version 1.

	UFS2
	See Unix File System Version 2.

	UID
	See User ID.

	URL
	See Uniform Resource Locator.

	USB
	See Universal Serial Bus.

	Uniform Resource Locator
	A method of locating a resource, such as a document on
	 the Internet and a means to identify that resource.

	Unix File System Version 1
	The original UNIX® file system, sometimes called the
	 Berkeley Fast File System.

	Unix File System Version 2
	An extension to UFS1, introduced in
	 FreeBSD 5-CURRENT. UFS2 adds 64 bit block
	 pointers (breaking the 1T barrier), support for extended file
	 storage and other features.

	Universal Serial Bus
	A hardware standard used to connect a wide variety of
	 computer peripherals to a universal interface.

	User ID
	A unique number assigned to each user of a computer,
	 by which the resources and permissions assigned to that
	 user can be identified.

	User Datagram Protocol
	A simple, unreliable datagram protocol which is used
	 for exchanging data on a TCP/IP network. UDP
	 does not provide error checking and correction like
	 TCP.

V
	VPN
	See Virtual Private Network.

	Virtual Private Network
	A method of using a public telecommunication
	 such as the Internet, to provide remote access to a
	 localized network, such as a corporate
	 LAN.

Index

Index
Symbols
	-CURRENT, Tracking a Development Branch
		compiling, Using FreeBSD-CURRENT
	
	using, Using FreeBSD-CURRENT
	

	-STABLE, Tracking a Development Branch
		compiling, Using FreeBSD-STABLE
	
	using, Using FreeBSD-STABLE
	

	.k5login, Configuring a Client to Use
	Kerberos
	
	.k5users, Configuring a Client to Use
	Kerberos
	
	.rhosts, File System Backups
	
	/boot/kernel.old, Building and Installing a Custom Kernel
	
	/etc, Designing the Partition Layout
	
	/etc/groups, Managing Groups
	
	/etc/login.conf, Configuring Login Classes
	
	/etc/mail/access, Sendmail Configuration
	Files
	
	/etc/mail/aliases, Sendmail Configuration
	Files
	
	/etc/mail/local-host-names, Sendmail Configuration
	Files
	
	/etc/mail/mailer.conf, Sendmail Configuration
	Files
	
	/etc/mail/mailertable, Sendmail Configuration
	Files
	
	/etc/mail/sendmail.cf, Sendmail Configuration
	Files
	
	/etc/mail/virtusertable, Sendmail Configuration
	Files
	
	/etc/remote, Using AT Commands
	
	/etc/ttys, Modem Configuration
	
	/usr, Designing the Partition Layout
	
	/usr/bin/login, Modem Configuration
	
	/usr/share/skel, adduser
	
	/var, Designing the Partition Layout
	
	386BSD, A Brief History of FreeBSD, A Brief History of FreeBSD
	
	386BSD Patchkit, A Brief History of FreeBSD
	
	4.3BSD-Lite, A Brief History of FreeBSD
	
	4.4BSD-Lite, Welcome to FreeBSD!, Welcome to FreeBSD!
	
	802.11 (see wireless networking)
	

A
	AbiWord, AbiWord
	
	accounting
		disk space, Disk Quotas
	

	accounts
		adding, adduser
	
	changing password, passwd
	
	daemon, System Accounts
	
	groups, Managing Groups
	
	limiting, Configuring Login Classes
	
	modifying, Managing Accounts
	
	nobody, System Accounts
	
	operator, System Accounts
	
	removing, rmuser
	
	superuser (root), The Superuser Account
	
	system, System Accounts
	
	user, User Accounts
	

	ACL, Access Control Lists
	
	ACPI, Power and Resource Management, Common Problems
		ASL, BIOS Contains Buggy Bytecode, Overriding the Default AML
	
	debugging, Getting and Submitting Debugging Info
	
	problems, Common Problems, Getting and Submitting Debugging Info, Getting and Submitting Debugging Info
	

	address redirection, Address Redirection
	
	adduser, adduser, Utilities Which Change Login Classes
	
	AIX, Network Information System
 (NIS)
	
	amd, Automating Mounts with amd(8)
	
	anti-aliased fonts, Anti-Aliased Fonts
	
	Apache, Who Uses FreeBSD?, Apache HTTP Server
		configuration file, Configuring and Starting Apache
	
	modules, Apache Modules
	
	starting or stopping, Configuring and Starting Apache
	

	
	 Apache OpenOffice
	, Apache OpenOffice
	
	APIC
		disabling, System Hangs
	

	APM, Power and Resource Management
	
	Apple, Who Uses FreeBSD?
	
	ASCII, Using Localization
	
	AT&T, A Brief History of FreeBSD
	
	AUDIT, Synopsis
	
	autofs, Automating Mounts with autofs(5)
	
	automatic mounter daemon, Automating Mounts with amd(8)
	
	automounter subsystem, Automating Mounts with autofs(5)
	
	AutoPPP, Configuring Dial-in Services
	

B
	backup software, Third-Party Backup Utilities
		cpio, Directory Backups
	
	dump / restore, File System Backups
	
	pax, Directory Backups
	
	tar, Directory Backups
	

	Basic Input/Output
	System (see BIOS)
	
	BGP, Configuring a Router with Static Routes
	
	binary compatibility
		Linux, Welcome to FreeBSD!, Synopsis
	

	BIND, Troubleshooting
	
	BIOS, FreeBSD Boot Process
	
	bits-per-second, Serial Terminology and Hardware
	
	Bluetooth, Bluetooth
	
	Bluetooth audio, Setting up Bluetooth Sound Devices
	
	Boot Loader, FreeBSD Boot Process
	
	Boot Manager, FreeBSD Boot Process, The Boot Manager
	
	boot-loader, Stage Three
	
	booting, Synopsis
	
	bootstrap, Synopsis
	
	Bourne shells, Shells
	
	bridge, Bridging
	
	browsers
		web, Browsers
	

	BSD Copyright, FreeBSD Project Goals
	
	BSD Router, Who Uses FreeBSD?
	
	bsdlabel, Emergency Recovery
	

C
	Calligra, Calligra
	
	CARP, Common Address Redundancy Protocol
	(CARP)
	
	CD burner
		ATAPI, Creating and Using CD Media
	
	ATAPI/CAM driver, Supported Devices
	

	CD-ROMs
		burning, Burning a CD
	
	creating, Creating and Using CD Media
	
	creating bootable, Writing Data to an ISO File
	System
	

	CHAP, PAP and CHAP Authentication
	
	chpass, chpass
	
	Chromium, Chromium
	
	Cisco, Who Uses FreeBSD?
	
	Citrix, Who Uses FreeBSD?
	
	command line, Shells
	
	committers, The FreeBSD Development Model
	
	Common Address Redundancy Protocol, Common Address Redundancy Protocol
	(CARP)
	
	Compiler, What Can FreeBSD Do?
	
	Computer Systems Research Group (CSRG), Welcome to FreeBSD!
	
	Concurrent Versions System (see CVS)
	
	console, Virtual Consoles and Terminals, Single-User Mode
	
	contributors, The FreeBSD Development Model
	
	core team, The FreeBSD Development Model
	
	country codes, Using Localization
	
	cron
		configuration, Configuring cron(8)
	

	cryptography, mod_ssl
	
	cuau, Serial Port Configuration
	
	CVS, The FreeBSD Development Model
	
	CVS Repository, The FreeBSD Development Model
	

D
	dangerously dedicated, Disk Organization
	
	DCE, Serial Terminology and Hardware
	
	Dell KACE, Who Uses FreeBSD?
	
	device nodes, Troubleshooting Sound
	
	device.hints, Device Hints
	
	DGA, Determining Video Capabilities
	
	DHCP
		configuration files, Configuring a DHCP Client, Installing and Configuring a DHCP
	Server
	
	dhcpd.conf, Installing and Configuring a DHCP
	Server
	
	diskless operation, Configuring the DHCP Server
	
	installation, Installing and Configuring a DHCP
	Server
	
	server, Installing and Configuring a DHCP
	Server
	

	dial-in service, Dial-in Service
	
	dial-out service, Dial-out Service
	
	directories, Permissions
	
	directory hierarchy, Directory Structure
	
	Disk Labels, Labeling Disk Devices
	
	Disk Mirroring, RAID1 - Mirroring
	
	disk quotas, Resource Limits, Disk Quotas
		checking, Enabling Disk Quotas, Checking Quota Limits and Disk Usage
	
	limits, Setting Quota Limits
	

	diskless operation, Diskless Operation with PXE
	
	diskless workstation, Diskless Operation with PXE
	
	disks
		adding, Adding Disks
	
	detaching a memory disk, Attaching and Detaching Existing Images
	
	encrypting, Encrypting Disk Partitions
	
	memory, Attaching and Detaching Existing Images
	
	memory file system, Creating a File- or Memory-Backed Memory Disk
	
	resizing, Resizing and Growing Disks
	

	Django, Django
	
	DNS, Hostnames, Advanced Configuration, Mail Components, Mail for a Domain, Domain Name System (DNS)
	
	DNS Server, What Can FreeBSD Do?
	
	Documentation (see Updating and Upgrading)
	
	documentation package (see Updating and Upgrading)
	
	DSP, Troubleshooting Sound
	
	DTE, Serial Terminology and Hardware
	
	DTrace, Synopsis
	
	DTrace support (see DTrace)
	
	dual homed hosts, Configuring a Router with Static Routes
	
	dump, File System Backups
	
	DVD
		burning, Creating and Using DVD Media
	
	DVD+RW, Using a DVD+RW
	
	DVD-RAM, Using a DVD-RAM
	
	DVD-RW, Using a DVD-RW
	
	DVD-Video, Burning a DVD-Video
	

	Dynamic Host Configuration Protocol (see DHCP)
	

E
	editors, Text Editors, Text Editors
		ee1, Text Editors
	

	ee, Text Editors
	
	electronic mail (see email)
	
	ELF, Advanced Topics
		branding, Advanced Topics
	

	emacs, Text Editors
	
	email, What Can FreeBSD Do?, Synopsis
		change mta, Changing the Mail Transfer Agent
	
	configuration, Basic Configuration
	
	receiving, Mail Components
	
	troubleshooting, Troubleshooting
	

	embedded, What Can FreeBSD Do?
	
	encodings, Using Localization
	
	environment variables, Shells
	
	ePDFView, ePDFView
	
	execution class loader, Advanced Topics
	

F
	failover, Link Aggregation and Failover
	
	FEC, Link Aggregation and Failover
	
	fetchmail, Using fetchmail
	
	file permissions, Permissions
	
	file server
		UNIX clients, Network File System (NFS)
	
	Windows clients, File and Print Services for Microsoft® Windows® Clients
 (Samba)
	

	file systems
		ISO 9660, Creating and Using CD Media, Writing Data to an ISO File
	System
	
	Joliet, Writing Data to an ISO File
	System
	
	mounted with fstab, The fstab File
	
	mounting, Using mount(8)
	
	snapshots, File System Snapshots
	
	unmounting, Using umount(8)
	

	File Systems, Synopsis
	
	File Systems Support (see File Systems)
	
	Firefox, Firefox
	
	firewall, What Can FreeBSD Do?, Firewalls
		IPFILTER, IPFILTER (IPF)
	
	IPFW, IPFW
	
	PF, PF
	
	rulesets, Firewall Concepts
	

	fonts
		anti-aliased, Anti-Aliased Fonts
	
	spacing, Anti-Aliased Fonts
	
	TrueType, TrueType® Fonts
	

	Fonts
		LCD screen, Anti-Aliased Fonts
	

	Free Software
	 Foundation, A Brief History of FreeBSD, GNU Info Files
	
	FreeBSD Project
		development model, The FreeBSD Development Model
	
	goals, FreeBSD Project Goals
	
	history, A Brief History of FreeBSD
	

	FreeBSD Security Advisories, FreeBSD Security Advisories
	
	freebsd-update (see updating-upgrading)
	
	FreeNAS, Who Uses FreeBSD?
	
	FreshPorts, Finding Software
	
	FTP
		anonymous, Configuration, Configuration
	

	FTP servers, What Can FreeBSD Do?, File Transfer Protocol (FTP)
	

G
	gateway, Gateways and Routes
	
	Geeqie, Geeqie
	
	GEOM, Synopsis, RAID0 - Striping, RAID1 - Mirroring, RAID3 - Byte-level Striping with
	Dedicated Parity, Software RAID Devices, Labeling Disk Devices, UFS Journaling Through GEOM
	
	GEOM Disk Framework (see GEOM)
	
	getty, Modem Configuration
	
	GhostBSD, Who Uses FreeBSD?
	
	GNOME, What Can FreeBSD Do?, GNOME
	
	GNU General Public License (GPL), FreeBSD Project Goals
	
	GNU Lesser General Public License (LGPL), FreeBSD Project Goals
	
	GNU toolchain, Installing Linux® ELF
	Binaries
	
	GnuCash, GnuCash
	
	Gnumeric, Gnumeric
	
	gpart, Adding Disks, Resizing and Growing Disks
	
	grace period, Checking Quota Limits and Disk Usage
	
	Greenman, David, A Brief History of FreeBSD
	
	Grimes, Rod, A Brief History of FreeBSD
	
	groups, Managing Groups
	
	gv, gv
	

H
	hard limit, Setting Quota Limits
	
	HAST
		high availability, Highly Available Storage
	(HAST)
	

	HCI, Finding Other Bluetooth Devices
	
	hostname, Hostnames
	
	hosts, /etc/hosts
	
	HP-UX, Network Information System
 (NIS)
	
	Hubbard, Jordan, A Brief History of FreeBSD
	
	hw.ata.wc, hw.ata.wc
	

I
	I/O port, Troubleshooting Sound
	
	IEEE, Directory Backups
	
	image scanners, Image Scanners
	
	IMAP, Mail Components
	
	init8, FreeBSD Boot Process, Last Stage
	
	installation, Synopsis
		troubleshooting, Troubleshooting
	

	Intel i810 graphic chipset, Configuration with Intel® i810
	 Graphics Chipsets
	
	internationalization (see localization)
	
	Internet Systems Consortium (ISC), Dynamic Host Configuration Protocol
 (DHCP)
	
	interrupt storms, System Hangs
	
	IP
	aliases, Virtual Hosts
	
	IP masquerading (see NAT)
	
	IP subnet, Bridging
	
	IPFILTER
		enabling, Enabling IPF
	
	kernel options, Enabling IPF
	
	logging, IPF Logging
	
	rule syntax, IPF Rule Syntax
	
	statistics, Viewing IPF Statistics
	

	ipfstat, Viewing IPF Statistics
	
	IPFW
		enabling, Enabling IPFW
	
	kernel options, IPFW Kernel Options
	
	logging, Logging Firewall Messages
	
	rule processing order, IPFW Rule Syntax
	
	rule syntax, IPFW Rule Syntax
	

	ipfw, The IPFW Command
	
	ipmon, IPF Logging
	
	ipnat, Configuring NAT
	
	IPsec, VPN over
	IPsec
		AH, VPN over
	IPsec
	
	ESP, VPN over
	IPsec
	

	IRQ, Troubleshooting Sound
	
	Isilon, Who Uses FreeBSD?
	
	ISO
 9660, Creating and Using CD Media
	
	iXsystems, Who Uses FreeBSD?
	

J
	jails, Jails
	
	Jolitz, Bill, A Brief History of FreeBSD
	
	Journaling, UFS Journaling Through GEOM
	
	Juniper, Who Uses FreeBSD?
	

K
	KDE, What Can FreeBSD Do?, KDE
		display manager, KDE
	

	Kerberos5
		configure clients, Configuring a Client to Use
	Kerberos
	
	enabling services, Configuring a Server to Use
	Kerberos
	
	external resources, Resources and Further Information
	
	Key Distribution Center, Setting up a Heimdal KDC
	
	limitations and shortcomings, Mitigating Kerberos
	Limitations
	

	kern.cam.scsi_delay, SCSI_DELAY
	 (kern.cam.scsi_delay)
	
	kern.ipc.soacceptqueue, kern.ipc.soacceptqueue
	
	kern.maxfiles, kern.maxfiles
	
	kernel, FreeBSD Boot Process
		boot interaction, Stage Three
	
	bootflags, Last Stage
	
	building / installing, Building and Installing a Custom Kernel
	
	building a custom kernel, Synopsis
	
	configuration, Setting Up the Sound Card
	
	configuration file, The Configuration File
	
	NOTES, The Configuration File
	

	kernel options
		COMPAT_LINUX, Configuring Linux® Binary Compatibility
	
	IPFILTER, Enabling IPF
	
	IPFILTER_DEFAULT_BLOCK, Enabling IPF
	
	IPFILTER_LOG, Enabling IPF
	
	IPFIREWALL, IPFW Kernel Options
	
	IPFIREWALL_VERBOSE, IPFW Kernel Options
	
	IPFIREWALL_VERBOSE_LIMIT, IPFW Kernel Options
	
	IPSEC, VPN over
	IPsec
	
	IPSEC_DEBUG, VPN over
	IPsec
	
	MROUTING, Multicast Considerations
	
	SCSI DELAY, SCSI_DELAY
	 (kern.cam.scsi_delay)
	

	keymap, Console Setup
	
	KLD (kernel loadable
	 object), Using Windows® NDIS Drivers
	
	KMyMoney, KMyMoney
	
	Konqueror, Konqueror
	

L
	L2CAP, Logical Link Control and Adaptation Protocol
	 (L2CAP)
	
	LACP, Link Aggregation and Failover
	
	lagg, Link Aggregation and Failover
	
	language codes, Using Localization
	
	LCD screen, Anti-Aliased Fonts
	
	LCP, Configuring Dial-in Services
	
	LDAP, Lightweight Directory Access Protocol
	(LDAP), Security Settings
	
	LDAP Server, Configuring an LDAP Server
	
	LibreOffice, LibreOffice
	
	limiting users, Configuring Login Classes
		coredumpsize, Configuring Login Classes
	
	cputime, Configuring Login Classes
	
	filesize, Configuring Login Classes
	
	maxproc, Configuring Login Classes
	
	memorylocked, Configuring Login Classes
	
	memoryuse, Configuring Login Classes
	
	openfiles, Configuring Login Classes
	
	quotas, Resource Limits
	
	sbsize, Configuring Login Classes
	
	stacksize, Configuring Login Classes
	

	Linux, Network Information System
 (NIS)
		ELF binaries, Installing Linux® ELF
	Binaries
	

	Linux binary compatibility, Synopsis
	
	livefs
	 CD, Emergency Recovery
	
	loadbalance, Link Aggregation and Failover
	
	loader, Stage Three
	
	loader configuration, Stage Three
	
	locale, Using Localization, Setting Locale for Login Shell
	
	localization, Synopsis
		German, Additional Language-Specific Resources
	
	Greek, Additional Language-Specific Resources
	
	Japanese, Additional Language-Specific Resources
	
	Korean, Additional Language-Specific Resources
	
	Russian, Russian Language (KOI8-R Encoding)
	
	Traditional Chinese, Additional Language-Specific Resources
	

	log files
		FTP, Configuration
	

	log management, Log Management and Rotation
	
	log rotation, Log Management and Rotation
	
	login class, Setting Locale for Login Shell, Utilities Which Change Login Classes
	
	ls1, Permissions
	

M
	MAC, Synopsis
		File System Firewall Policy, The MAC BSD Extended Policy
	

	MAC Biba Integrity Policy, The MAC Biba Module
	
	MAC Configuration Testing, Testing the Configuration
	
	MAC Interface Silencing Policy, The MAC Interface Silencing Policy
	
	MAC LOMAC, The MAC Low-watermark Module
	
	MAC Multi-Level Security Policy, The MAC Multi-Level Security Module
	
	MAC Port Access Control List Policy, The MAC Port Access Control List Policy
	
	MAC Process Partition Policy, The MAC Partition Policy
	
	MAC See Other UIDs Policy, The MAC See Other UIDs Policy
	
	MAC Troubleshooting, Troubleshooting the MAC Framework
	
	MacOS, Generating a Single One-time Password
	
	mail host, Mail Components
	
	mail server daemons
		Exim, Mail Components
	
	Postfix, Mail Components
	
	qmail, Mail Components
	
	Sendmail, Mail Components
	

	Mail User Agents, Mail User Agents
	
	Mandatory Access Control (see MAC)
	
	manual pages, Manual Pages
	
	Master Boot Record
	(MBR), FreeBSD Boot Process, The Boot Manager
	
	McAfee, Who Uses FreeBSD?
	
	mencoder, MPlayer and
	 MEncoder
	
	mfsBSD, Who Uses FreeBSD?
	
	mgetty, Configuring Dial-in Services
	
	Microsoft Windows, File and Print Services for Microsoft® Windows® Clients
 (Samba)
	
	Microsoft Windows
		device drivers, Using Windows® NDIS Drivers
	

	MIME, Setting Locale for Login Shell
	
	modem, Dial-in Service
	
	mod_perl
		Perl, mod_perl
	

	mod_php
		PHP, mod_php
	

	mountd, Network File System (NFS)
	
	moused, Console Setup
	
	MPlayer, MPlayer and
	 MEncoder
	
	MS-DOS, Generating a Single One-time Password
	
	multi-user mode, Multi-User Mode
	
	multicast routing, Multicast Considerations
	
	MX record, Mail Components, Troubleshooting, Basic Configuration
	

N
	Nagios in a MAC Jail, Nagios in a MAC Jail
	
	NAS4Free, Who Uses FreeBSD?
	
	NAT, What Can FreeBSD Do?, Configuring NAT
		and IPFW, Configuring NAT
	

	NDIS, Using Windows® NDIS Drivers
	
	NDISulator, Using Windows® NDIS Drivers
	
	net.inet.ip.portrange.*, net.inet.ip.portrange.*
	
	Net/2, A Brief History of FreeBSD, A Brief History of FreeBSD
	
	NetApp, Who Uses FreeBSD?
	
	NetBIOS, Advanced Configuration
	
	NetBSD, Network Information System
 (NIS)
	
	Netflix, Who Uses FreeBSD?
	
	netgroups, Using Netgroups, Using Netgroups
	
	network address translation (see NAT)
	
	network cards
		configuration, Setting Up Network Interface Cards, Configuring the Network Card
	
	driver, Locating the Correct Driver
	
	testing, Testing the Ethernet Card
	
	troubleshooting, Troubleshooting
	

	newsyslog, Log Management and Rotation
	
	newsyslog.conf, Log Management and Rotation
	
	NFS, Quotas over NFS, Network File System (NFS)
		configuration, Configuring the Server
	
	export examples, Configuring the Server
	
	installing multiple machines, Tracking for Multiple Machines
	
	mounting, Configuring the Client
	
	server, Network File System (NFS)
	

	nfsd, Network File System (NFS)
	
	NIS, Network Information System
 (NIS)
		client, Machine Types
	
	client configuration, Setting Up an NIS Client
	
	domain name, Choosing a NIS Domain Name
	
	domains, Network Information System
 (NIS)
	
	maps, Initializing the NIS Maps
	
	master server, Machine Types
	
	password formats, Password Formats
	
	server configuration, Configuring the NIS Master
	Server
	
	slave server, Machine Types, Setting up a NIS Slave Server
	

	NIS+, Security Settings
	
	NOTES, The Configuration File
	
	Novell, A Brief History of FreeBSD
	
	NTP
		ntp.conf, NTP Configuration
	
	ntpd, Clock Synchronization with NTP
	

	null-modem cable, Serial Cables and Ports, In-Depth Serial Console Configuration
	

O
	OBEX, OBEX Object Push
	 (OPUSH)
	
	office suite
		
	 Apache OpenOffice
	, Apache OpenOffice
	
	Calligra, Calligra
	
	LibreOffice, LibreOffice
	

	Okular, Okular
	
	one-time passwords, One-time Passwords
	
	OpenBSD, Network Information System
 (NIS)
	
	OpenSSH, OpenSSH
		client, Using the SSH Client Utilities
	
	enabling, Enabling the SSH Server
	
	secure copy, Using the SSH Client Utilities
	
	tunneling, SSH Tunneling
	

	OpenSSL
		certificate generation, Generating Certificates
	

	Opera, Opera
	
	OPNsense, Who Uses FreeBSD?
	
	OSPF, Configuring a Router with Static Routes
	

P
	packages, Synopsis
	
	PAP, PAP and CHAP Authentication
	
	partition layout, Designing the Partition Layout
	
	partitions, Disk Organization, Adding Disks, Resizing and Growing Disks
	
	passwd, passwd
	
	password, PAP and CHAP Authentication
	
	pax, Directory Backups
	
	PCI, Setting Up the Sound Card
	
	PDF
		viewing, Xpdf, gv, ePDFView, Okular
	

	permissions, Permissions
		symbolic, Symbolic Permissions
	

	pfSense, Who Uses FreeBSD?
	
	pgp keys, OpenPGP Keys
	
	pkg, Monitoring Third Party Security Issues
		search, Finding Software
	

	POP, Mail Components
	
	portmap, NIS Terms and Processes
	
	portmaster, Upgrading Ports Using
	 Portmaster
	
	ports, Synopsis
		disk-space, Ports and Disk Space
	
	installing, Installing Ports
	
	removing, Removing Installed Ports
	
	upgrading, Upgrading Ports
	
	upgrading-tools, Tools to Upgrade and Manage Ports
	

	Ports Collection, Configuring Linux® Binary Compatibility
	
	portupgrade, Upgrading Ports Using Portupgrade
	
	POSIX, Directory Backups, Setting Locale for Login Shell
	
	PostScript
		viewing, gv
	

	PPP, Synopsis, Synopsis
		configuration, Final System Configuration
	
	Microsoft extensions, Advanced Configuration
	
	NAT, Using PPP Network Address
	 Translation Capability
	
	over ATM, Using PPP over
 ATM (PPPoA)
	
	over Ethernet, Synopsis, Using PPP over Ethernet (PPPoE)
	
	troubleshooting, Troubleshooting PPP Connections
	
	with static IP
	 addresses, Basic Configuration
	

	PPPoA, Using PPP over
 ATM (PPPoA)
	
	print server
		Windows clients, File and Print Services for Microsoft® Windows® Clients
 (Samba)
	

	printers, Russian Language (KOI8-R Encoding)
	
	Process Accounting, Process Accounting
	
	procmail, Using procmail
	
	pw, pw, Utilities Which Change Login Classes
	
	Python, Django
	

Q
	quotas, Resource Limits
	

R
	RAID1, RAID1 - Mirroring
	
	RAID3, RAID3 - Byte-level Striping with
	Dedicated Parity
	
	rc files, Multi-User Mode
		rc.conf, Managing System-Specific Configuration
	
	rc.serial, Serial Port Configuration, Modem Configuration
	

	resolv.conf, /etc/resolv.conf
	
	resolver, Domain Name System (DNS)
	
	Resource limits, Resource Limits
	
	restore, File System Backups
	
	reverse
 DNS, Domain Name System (DNS)
	
	RIP, Configuring a Router with Static Routes
	
	rmuser, rmuser
	
	root file system, Mounting and Unmounting File Systems
	
	root zone, Domain Name System (DNS)
	
	roundrobin, Link Aggregation and Failover
	
	routed, Final System Configuration
	
	router, What Can FreeBSD Do?, Configuring a Router with Static Routes
	
	routing, Gateways and Routes
	
	rpcbind, Network File System (NFS), NIS Terms and Processes
	
	Ruby on Rails, Ruby on Rails
	

S
	Samba server, File and Print Services for Microsoft® Windows® Clients
 (Samba)
	
	Sandvine, Who Uses FreeBSD?
	
	scp1, Using the SSH Client Utilities
	
	screenmap, Console Setup
	
	SDL, Determining Video Capabilities
	
	SDP, Service Discovery Protocol
	 (SDP)
	
	security, Security
		firewalls, Firewalls
	
	